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Abstract : We would like to discuss the unsteady thermal convection flow through a porous medium due to 

the imposed traveling thermal boundary waves on horizontal channel bounded by non-uniform walls. The 

effect of free convection on the flow has been discussed by solving the governing unsteady non-linear 

equations under perturbation scheme. The Shear stress and the average Nusselt number on the boundaries 

have been evaluated for different variations of the governing parameters.  
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1. INTRODUCTION 

The study of unsteady thermal convection flows has gained importance in view of its applications in 

several technological fields like chemical engineering aerospace technology and design of heat exchangers 

etc. The unsteadiness in the flow may be due to time dependent free stream osicillations,  dependent 

convection flows may be generated due to heat transfer in an oscillatory fluid flow bounded by wall 

maintained at periodically varying temperatures. Such convection flows generated by a periodic boundary 

thermal wave has received attention in the recent years due to its applications in the design of oil or gas fired 

boilers and a few other physical phenomena. It has been shown that a traveling thermal wave can generate a 

mean shear flow with in a layer of fluid and also give rise to a significant secondary flow in the field. This 

analysis of convection flows generated due to these traveling thermal waves has been studied by Nanda and 

Purushothaman [6]. The perturbation technique is used to obtain the mean and the perturbed flow under 

longwave approximation for four different possible configurations at the wavy channel. However, this study 

of convection flows due to imposed thermal boundry waves has not been done in horizontal channel flows 

bounded by uniform or non-uniform horizontal waves. Ravindra [8] has analyzed mixed convection effects 

on the flow of an incompressible, viscous fluid through a porous medium in a vertical channel with traveling 

thermal waves imposed on one wall. Eswaraiah Setty [4] has analyzed unsteady free convection flow 

through a horizontal wavy channel with traveling thermal waves imposed on the walls.  

                   In the content of space technology and in the processes involving high temperatures, the effects 

of radiation are of vital importance. The unsteady flow past a moving plate in the presence of free 

convection and radiation were studied by Mansour [5], Raptis and Perdikis [7] studied the effects of thermal 

radiation and free convective flow past moving plate. Das et al [3] analyzed the radiation effects on the flow 

past an impulsively started infinite isothermal vertical plate. Chamkha et al [2] considered the effect of 

radiation on free convective flow past a semi-infinite vertical plate with mass transfer.Recently Bharathi [1] 

has discussed the mixed convective heat and mass transfer through a porous medium in a vertical channel 

with traveling thermal wave imposed on the boundaries. 
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2.  FORMULATION OF THE PROBLEM 

 We consider the unsteady flow of an incompressible viscous fluid through a porous medium 

confined in a horizontal channel bounded by corrugated walls in the presence of a constant heat source. The 

Boussinesque approximation is used so that the density variation will be retained only in the buoyancy 

force. The viscous dissipation is neglected in comparison to the flow by conduction and convection. We 

choose the rectangular Cartesian coordinates system O(x,y,z) with x-axis in the direction of motion and y-

axis in the vertical direction and walls are taken at )/( LxLfy  ,where 2L is the distance between the 

walls, f is a twice differentiable function and   is a small parameter proportional to the boundary slope. A 

linear density temperature variation is assumed with e
 and Te being the density and temperature of the 

fluid in the equilibrium state.   

 Equation of linear momentum 
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Equation of continuity     
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Equation of energy 
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Equation of state 
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Invoking Rosseland approximation for radiation (9) 
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Expanding 4T  in Taylor series about Te and neglecting higher order terms (8a)                          

434 34 ee TTTT                                          (2.7) 

where r is the mean absorption coefficient and 
  is the Stefan-Boltzmann constant. e   is the density of 

the fluid in the equilibrium state, Te is the temperature in the equilibrium state,(u,v) are the velocity 

components along O(x,y) directions, p is the pressure, T is the temperature in the flow region,is the density 

of the fluid, is the constant coefficient of viscosity ,Cp is the specific heat at constant pressure,k1 is the 

coefficient of thermal conductivity, k is the permeability of the porous medium and  is the coefficient of 

thermal expansion.  

In the equilibrium state 

 g
x

p
e

e 



0                                                      (2.8)  

where DDe pppp ,  being the hydrodynamic pressure. 

  The flow is maintained by a constant volume flux for which a characteristic velocity is defined as 
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The boundary conditions for the velocity and temperature fields are  
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  u = 0  , v = 0  ,T=T1                                    on y = -L  

 )(,0,0 2 ntmxSinTTTvu e          on  y = L                                          (2.10)  

 where 12 TTTe   and )( ntmxSin   is the imposed traveling thermal wave 

In view of the continuity equation we define the stream function  as 

 u = - y , v =  x                                                                                                 (2.11) 

Eliminating pressure p from equations (2.1)&(2.2) the equations governing the flow in terms of  are 
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Introducing the non-dimensional variables in (2 .12 )- (2.13) as   
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the governing equations in the non-dimensional form (after dropping the dashes) are  
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The energy equation in the non-dimensional form is  
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The corresponding boundary conditions are  
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The value of  on the boundary assumes the constant volumetric flow in consistant with the hypothesis 

(2.9) .Also the wall temperature varies in the axial direction in accordance with the prescribed arbitrary 

function t. 

 

3.  ANALYSIS OF THE FLOW 

    The perturbation analysis is carried out by assuming the aspect ratio   is small. In order that the 

convection effects is felt at the zeroth order in the perturbed analysis we choose the thermal buoyancy 

parameter G is of order. δ so that )1(ˆ OGG    
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4. SHEAR STRESS AND NUSSELT NUMBER 

 The shear stress on the channel walls is given by       
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The rate of heat transfer (Nusselt Number) on the channel walls has been calculated using the 

formula 
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where d1,d2,………d43 are constants  

 

5. RESULTS AND DISCUSSION 

 

We analyze the effect of radiation on the unsteady convective heat transfer of a viscous 

incompressible fluid in a horizontal channel bounded by wavy walls. The perturbation analysis is carried out 

making use of the wall slope   as a small 

parameter.Forcomputationalpurposewechoose
2

( ) 1 xf x e   .The non uniformity in boundary curve gives 

rise to a secondary flow in the transverse direction. In order that the thermal buoyancy influence is felt at the 

zeroth order. We insist the Grashoff number GO(-1) 

The variation of u for different G(><0) in the dilated constricted channel. It is found that for all 

G(><0) the reversal flow appears in the lower half in the dilated channel while it appears in the entire fluid 

for (<0). The region on reversed flow grows in size with increase in  G for >0 while for <0 it reduces in 

its size(Fig.1). The maximum u occurs in the vicinity of the lower boundary In both the configurations the 

variation of u with R, α,, D-1 has been depicted in figures 2,3&4 and 10. It is found that reversal flow 

appears in the lower half for all R, , D-1 in a dilated channel. The region of reversed flow increases with 

R70 (and 10) and for higher values of R140 & (15) it grows in size. Also lower the permeability of 

the porous medium larger the magnitude of u. In constricted case the reversal flow  appears in the region -

0.6 0.4. It enlarges to the entire flow region for higher R70. (Figs.2,3&4) 

         The secondary velocity (v) which arises due to the non-uniformity of the boundaries is represented in 

Figs.5-8 for >0. It is found that in dilated channel the fluid in the lower half is directed towards the 

boundary and in upper half it is directed towards the midregion in the heating case while in the cooling case 

the fluid in the lower half is towards the midregion and is towards the boundary in the upper half. The 

magnitude of v enhances with G(<>0). (Fig.5). The variation of R, D-1 and  is shown in Figs.6,7&8 It is 

found that for >0 an increase in R depreciates the magnitude of v. Also lower the permeability of the 

porous medium higher the magnitude of v in both the configurations. The variation with thermal velocity  

shows that for >0 an increase in 10 enhances v in the lower half and reduces it in the upper half and for 

higher 15 we notice a reversed effect in v. The variation of v with  shows that higher the 

dilation/constriction larger the magnitude of v in the flow region (Fig.6,7&8).  

The Non dimensional  temperature distribution () is exhibited in Figs.9&10 for (><0) for different 

G,R, ,. The peturbed  temperature in general is positive and hence contributes to the enhancement of the 

actual temperature in the fluid region. Fig.9 depicts the variation of   with G(<>0). We notice that in a 

dilated channel the temperature increases/decreases in the region -0.8y0.4 according as  as G>0 or G<0. 

In the remaining region a reversed effect is noticed  in . The variation  with reference to R,, and  is 

given in Figs.9&10. In a dilated case  is positive and in constricted case  is positive in lower half and 

negative in the upper half we find that  decreases with in the region -0.8ή0.4 and enhances  in the 

remaining region for >0(Fig.10)  
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           m1=2 , D-1=10, R=10                                                                   m1 =2, R=10, G=102 

             I            II         III           IV          V            VI                        I                II               III            IV 

G         102       2x102    3x102      -102      -2x102    -3x102          D-1   102         2x102          3x102    5 x102 

   

     
-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

I

I
I

 
 Fig. 3 Profile for velocity (u) with  and                                               Fig.4 Profile for velocity (u) with R 

         m1=2 , ,G=100 D-1=10, R=10                                                                  m1 =2, D-1=10, G=100 

     I               II            III       IV            V                                              I        II         III       IV       V     VI    VII 

  2               4              6         2              2                                   R      0.1     0.3        0.5     1.5        5     10    100       

   2              2              2         4               6 

-15

-10

-5

0

5

10

-1 -0.5 0 0.5 1

I

II

III

        

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

 
Fig. 5 Profile for velocity (v) with G                                                         Fig. 6 Profile for velocity (v) with D-1 
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  Fig. 7 Profile for velocity (v) with  and                                          Fig.8 Profile for velocity (v) with R 
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Fig. 9 Profile for temperature () with  and                                      Fig.10  Profile for temperature  () with R 
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The shear stress has been evaluated at the boundaries for different variations in G,R,D-1, ,  and N1 

and are given in tables for >0 or <0. The shear stress at the both the plates =1 decrease in magnitude 

with increase in G>0 and enhances with increase in G(<0) fixing the other parameters. An increase in R 

leads to an enhancement in the magnitude of . Also lesser the permeability of porous medium smaller the 

magnitude of   and for further lowering of the permeability we find an enhancement  (Table 1). From 

Table.2 we notice that higher the dilation 0.7 larger  and for further increase in 0.9,  enhances at 

=1, Also an increase in thermal wave velocity 4 leads to an enhancement in  and for higher 6 it 

reduces at =1, for all G  while at =-1  enhances with  in the heating of the channel and in the case of 

cooling  enhances with 4 and reduces with higher 6. In a constricted channel the magnitude of  is 

positive for all variations. It is found that the stress at =1 increases with increase in G>0 and reduces with 

increase in G (<0) while a reversed effect is observed at the lower plate = -1. An increase in R reduces  

at =1 and enhances at =-1 in the heating case, while it enhances  at =1 and reduces at =-1 in the 

cooling case. (table 3&4).  
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                                             Table.1Shear stress (τ) at y= 1 P=0.71,γ=2,β=0.5 

  

G I II III IV V 

103 12.9003 12.9017 12.9025 -2.2383 0.3420 

2 x 103 12.8943 12.8988 12.9010 -2.4566 0.3424 

3 x 103 12.8884 12.8958 12.8995 -2.5035 0.3416 

-103 12.9062 12.9047 12.9040 -2.4524 0.3439 

-2 x 103 12.9121 12.9077 12.9054 -2.5074 0.3446 

-3 x 103 12.91805 12.9106 12.9069 -2.5949 0.3453 

R 35 70 35 140 35 

D-1 3x102 3x102 102 3x102 2x102 

 

Table.2    Shear stress  (τ) at y= 1  P=0.71,R=35,N1=4.0 

  

G I II III IV V 

103 9.8631 14.0044 11.0688 12.2104 11.5332 

2 x 103 9.8613 14.1890 11.0331 12.2004 11.5447 

3 x 103 9.8594 14.1735 10.9974 12.1905 11.5561 

-103 9.8649 14.2198 11.1047 12.2203 11.5215 

-2 x 103 9.8668 14.2353 11.1407 12.2303 11.5103 

-3 x 103 9.8686 14.2508 11.1769 12.2402 11.4989 

β 0.3 0.7 0.9 0.5 0.5 

γ 2 2 2 4 6 

 

 Table.3  Shear  stress  (τ) at y=1P=0.71,R=35,γ=2,β=0.5 

 

G I II III IV V 

103 12.9803 12.9431 12.9363 12.9106 12.9003 

2 x 103 12.8943 12.8723 12.8543 12.8343 12.8143 

3 x 103 12.8884 12.8724 12.8544 12.8384 12.8184 

-103 12.9062 12.9234 12.9482 12.9602 12.9882 

-2 x 103 12.9631 12.9764 12.984 12.932 13.024 

-3 x 103 12.9386 12.9532 12.9708 12.9934 13.0125 

N1 0.5 1 5 10 100 

 

Table.4 Shear stress  (τ) at y= -1 P=0.71,β= 0.5,γ=2 

 

G I II III IV V 

103 11.5970 12.1827 12.4756 26.447 1.4069 

2 x 103 9.2541 11.0113 11.8899 28.6118 1.0794 

3 x 103 6.9113 9.8399 11.3042 29.044 0.7631 

-103 13.9399 13.3542 13.0613 28.749 1.7121 

-2 x 103 16.2828 14.5256 13.6470 29.487 2.0284 

-3 x 103 18.6256 15.6970 14.2328 30.584 2.3447 

R 35 70 140 35 35 

D-1 3x102 3x102 3x102 102 2x102 

 

 

 

http://www.jetir.org/


© 2019 JETIR  January 2019, Volume 6, Issue 1                                    www.jetir.org  (ISSN-2349-5162) 

 

JETIR1901584 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 661 

 

6. REFERENCES 

[1] Bharathi, K: Convective heat and mass transfer through porous medium in      channels/pipes with 

radiation/soret effect, Ph.D thesis, S.K. University, Anantapur,     India (2007) 

[2] Chamkha A.J., and Takhar H.S and Soundalgekar V.M. Radiation effects on free  

convection flow past a semi-infinite vertical plate with mass transfer, Chem- Engg.J V.84, pp.335-342, 

(2001) 

[3] Das U.N., Deka .R. and Soundalgekar V.M.: Radiation effects on flow past an     impulsively started 

vertical plate on exact solution, J.Theo. Appl-Fluid Mech., V.112,  pp.111-115 (1996) 

[4] Eswaraiah Setty .S: Transient hydromagnetic convection flow through wavy channels,  Ph.D. thesis, 

S.K. University Anantapur, India (1996) 

[5] Mansour M.H:. Radiative and free convection effects on the oscillatory flow past a vertical plate, 

Astrophysics and space science, V.166, pp.26-75 (1990) 

[6] Nanda R.S and Purushothaman ,R: Int. Dedication seminar on Recent Advances in  

Maths. And Applications, Varanasi (1976). 

[7] Raptis A. and Perrdikis .C.: Radiation and free convection flow past a moving plate  Appl. Mech., Eng., 

V.4, pp. 817-821 (1999) 

[8] Ravindra .M : MHD convection flow through porous medium with non-uniform wall  temperature, 

Ph.D. thesis, S.K. University Anantapur., India (1994) 

[9] Raptis,A.: Radiation and free convection flow through porous cavity using thermal non-equilibrium 

model.,Int.J.Therm.Sci,V.41,pp.861-870(2002) 

[10] Bharathi, K: Convective heat and mass transfer through porous medium in      channels/pipes with 

radiation/soret effect, Ph.D thesis, S.K. University, Anantapur,     India (2007) 

[11] Chamkha A.J., and Takhar H.S and Soundalgekar V.M. Radiation effects on free  

convection flow past a semi-infinite vertical plate with mass transfer, Chem- Engg.J V.84, pp.335-342, 

(2001) 

[12] Das U.N., Deka .R. and Soundalgekar V.M.: Radiation effects on flow past an     impulsively started 

vertical plate on exact solution, J.Theo. Appl-Fluid Mech., V.112,  pp.111-115 (1996) 

[13] Eswaraiah Setty .S: Transient hydromagnetic convection flow through wavy channels,  Ph.D. thesis, 

S.K. University Anantapur, India (1996) 

[14] Mansour M.H:. Radiative and free convection effects on the oscillatory flow past a vertical plate, 

Astrophysics and space science, V.166, pp.26-75 (1990) 

[15] Nanda R.S and Purushothaman ,R: Int. Dedication seminar on Recent Advances in  

Maths. And Applications, Varanasi (1976). 

[16] Raptis A. and Perrdikis .C.: Radiation and free convection flow past a moving plate  Appl. Mech., 

Eng., V.4, pp. 817-821 (1999) 

[17] Ravindra .M : MHD convection flow through porous medium with non-uniform wall  temperature, 

Ph.D. thesis, S.K. University Anantapur., India (1994) 

[18] Raptis,A.: Radiation and free convection flow through porous cavity using thermal non-equilibrium 

model.,Int.J.Therm.Sci,V.41,pp.861-870(2002) 

http://www.jetir.org/

