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 Abstract: 

Phase space is a consequence of Heisenberg uncertainty principle (HUP) and it has become one of the 

greatest invention of modern physics because study of phase space provide very deep understanding of many 

microscopical physical phenomenon. Since as we are aware that nature loves symmetry and when symmetry 

and phase space both are taken into account simultaneously then it provide  deep and easiest understanding 

of 1 D, 2D,3D and DD fermi parameters. In this research paper we have calculated various physical properties 

like as fermi energy, fermi momentum, fermi wavelength, fermi temperature, fermi wavevector etc with the 

help of symmetry and concept of phase space. 

Keywords: Heisenberg uncertainty principle ,phase space, symmetry, fermi energy etc 

Introduction: 

In classical mechanics, microstates of any system can be defined by position and momentum of all the 

particles of the system. Now if a system  consist N , number of particles in the system then microstate of 

system can be specified by 3N position co-ordinates q1,q2,q3……….q3N  and 3N momentum co-ordinates 

p1,p2,p3………p3N. obviously 6N dimension is required to completely described the system. This type of 6N 

dimensional space is known to be phase space. Phase point(qj,pj) are said to be representative point of the 

given system. 

State of a particle in phase space is then given by specifying that its position co-ordinate lie in the interval 

between q and q+δq , and at the same instant its momentum co-ordinates lies in the interval between p and 

p+δp , it means phase space is divided into very small phase cells of size δpδq here each cell have the same 

size and each cell represents a different states of the particle.  

According to Heisenberg uncertainty principle (HUP) ∆𝑞∆𝑝~h  here h is planck constant and having the 

dimension of joule-sec.  ∆𝑞 represents uncertainty in the measurement of position and ∆𝑝 is the 

corresponding uncertainty in the measurement of the momentum.  HUP itself ensure that phase space should 

be divided into subparts having the volume h of a particular phase cell.  Therefore  two dimensional volume 

of a particular phase cell will be of the order of h (planck constant). In a 2f dimensional space volume of a 

particular phase cell will be hf .  This result ensure that in two dimensional phase space, volume of a particular 

phase cell will be order of h. Similarly in four dimensional phase space and six dimensional space volume 

of a corresponding phase cell will be of the order of h2 and h3 respectively. In mathematical form we can 

represent volume of a phase cell 

∆𝑥∆𝑝𝑥~h (joule-sec)                              two dimension phase cell volume 

∆𝑥∆𝑝𝑥∆𝑦∆𝑝𝑦~ℎ2 (joule-sec)2                       four dimension phase cell volume 

∆𝑥∆𝑝𝑥∆𝑦∆𝑝𝑦∆𝑧∆𝑝𝑧 ~ℎ3(joule-sec)3      six  dimension phase cell volume 
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From modern quantum physics we know that state of a system is described by spatial parts and spin parts. 

Due to this volume of phase space also depends upon spatial or position- momentum part and it also depends 

upon  total spin states. For a particular system which consist many particles and each individual particle have 

spin S then for  such particle magnetic spin quantum number ms  have the value lies between -s to +s , so 

tatal spin state is equal to ∑ 𝑚𝑠
+𝑠
−𝑠 = (2s+1)=γ values. 

 Fermi Energy:   

It is described as the highest energy that the electrons assumes at a temperature of 0K. under the free electron 

model , the electrons in a metal can be considered to form a fermi gas and number density (N/V) of the 

conduction electron in metals range between approximately 1028 to 1029 electrons per met3 and value of fermi 

energy is of the order of  2 to 10 eV .  More appropriately fermi energy is lowest for cesium metal 1.53 eV 

and it is highest for aluminium metal 11.8eV. for white dwarf fermi energy is about to be order of 0.3 MeV. 

For nucleus it is of the order of 40MeV. Fermi energy in different dimensions have different dependency but 

in all the cases it always depends upon density and mass of the particle. 

Fermi Temperature: 

The fermi temperature can be assumed to be  the temperature at which thermal effects becomes comparable 

to quantum effects associated with fermi statistics. The fermi temperature for a metal is a couple of orders of 

magnitude above room temperature. 

In mathematical form fermi temperature is defined as 𝑇𝑓 =  (
𝜀𝑓

𝐾𝐵
)  where 𝜀𝑓  is the fermi energy and KB 

is the Boltzmann constant. 

Fermi momentum: 

Momentum of a electron corresponding to fermi energies said to be fermi momentum.                                  In 

mathematical form 𝜀𝑓 =  (
𝑝𝑓

2

2𝑚
)   where  𝑝𝑓  is the fermi momentum 

Fermi velocity can be described as Vf= 
𝑝𝑓

𝑚
 here fermi velocity is the group velocity of a fermion at the fermi 

surface . 

Fermi momentum 𝑝𝑓 =  ћ𝑘𝑓  where 𝑘𝑓  is called fermi wave vector. 

Use of phase space in classical and quantum theory was discussed in detail [1] . quantum field theory [2], 

Ising model [3] random walk [4] phenomenon was explained with the help of phase space and its dimensions. 

Energy, density of states and dimensions relation was discussed and necessary mathematics was drawn in 

detail, [5,6]. Path integration of a relativistic particle in D dimensional space [7,8] was discussed by different 

research workers and finite dimensional Hillbert space [9-13] and its construction also discussed by various 

workers. 

𝑁𝑠 =  [𝐷 − 1] [
𝐿

2𝜋
]

𝐷 𝜋
𝐷

2⁄

Г1+
𝐷

2

 (
2𝑚

ћ2
)

𝐷

2
𝐸

𝐷
2⁄            here  𝑁𝑠   is the  number of particle quantum states , E is the  

energy of the particle, m is the mass of the particle, L is the length of the system and D is the dimension of 

the system. 

Density of states g(E) is defined as the number of particles quantum states per unit energy range so number  

g(E)dE of particles states with in the energy range E to E+dE is thus given by dNs so that we have  
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                                  g(E) = 
dNs

𝑑𝐸
 =

𝐷

2
  [𝐷 − 1] [

𝐿

2𝜋
]

𝐷 𝜋
𝐷

2⁄

Г1+
𝐷

2

 (
2𝑚

ћ2 )

𝐷

2
𝐸

𝐷−2

2  

This expression clearly shows that density of state is directly proportional to  

g(E)∝  𝐿𝐷 

g(E)∝  𝐸
𝐷−2

2  

As we know that for 1D space D=1 so we have  

g(E)∝  𝐿 

g(E)∝  𝐸
−1

2  

similarly for 2D space D=2 so we have  

g(E)∝  𝐿2 

g(E)∝  𝐸0 independent upon E 

and in the same way for 3D space D=3 so we have 

g(E)∝  𝐿3 

g(E)∝  𝐸
1

2 

now to evaluate for fermi energy we have 

N= ∫ g(E)dE
𝜀𝐹

0
 

𝑁 =  [𝐷 − 1] [
𝐿

2𝜋
]

𝐷 𝜋
𝐷

2⁄

Г1 +
𝐷
2

 (
2𝑚

ћ2
)

𝐷
2

𝜀𝐹
𝐷

2⁄  

 

𝜀𝐹 =  
ћ2

2𝑚
4𝜋 [

Г1 +
𝐷
2

𝐷 − 1
 𝜌]

2
𝐷

 

From this expression for a 1D system 

𝜀𝐹 ∝ 𝜌2 ∝  (
𝑁

𝐿
)

2

 

For 2D system 

𝜀𝐹 ∝ 𝜌 ∝
𝑁

𝐴
 

For 3D system  

𝜀𝐹 ∝ 𝜌
2

3 ∝  (
𝑁

𝑉
)

2

3
 

In above expressions L represents the length of the system in 1D , A represents the area of the system in 2D 

and V represents the volume of the system in 3D .  
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Now total energy of a fermi gas in the ground state at absolute temperature T = 0K is 

Etotal = ∫ Eg(E)dE
𝜀𝐹

0
 

                                                                       = 
𝐷(𝐷−1)𝑉

(𝐷+2)(2𝜋)𝐷 (
2𝑚

ћ2 )

𝐷

2 𝜋
𝐷

2⁄

Г1+
𝐷

2

𝜀𝐹

𝐷+2

2

 

So we have  Etotal = (
𝐷

𝐷+2
) 𝑁𝜀𝐹     And average energy per particle  

E0 = 
Etotal

𝑁
=  (

𝐷

𝐷+2
) 𝜀𝐹 

From this expression it can be concluded that  

For 1D , D=1      E0  = 
𝜀𝐹

3
 

For 2D, D=2   E0  = 
𝜀𝐹

2
 

For 3D, D=3    E0  = 
3

5
𝜀𝐹 

Fermi wave vector  KF = [
(4𝜋)

𝐷
2⁄

𝐷−1
Г1 +

𝐷

2
   𝜌]

1

𝐷

 

For 2D , D=2  then  KF = [4𝜋 𝜌]
1

2 

For 3D,  D=3  then  KF = [3𝜋2 𝜌]
1

3 

Symmetrical mathematical analysis for fermi parameters: 

1D Analysis: 

N(total number of particle quantum states) = 
∬ 𝑑𝑥𝑑𝑝𝑥

ℎ
              ×            ∑ 𝑚𝑠

+𝑠
−𝑠  

                                                                    Due to spatial states         due to spin states 

Now taking the limit of x from 0 to L and for the momentum limit of px is from 0 to pf   where L is the length 

of the system and pf  is the fermi momentum.so we have 

N = 
∫ ∫ 𝑑𝑥𝑑𝑝𝑥

pf 
0

𝐿
0

ℎ
  ×   (2𝑆 + 1)   where S is the spin of the particle 

N = 
𝐿

ℎ
𝑝𝑓 × 𝛾   where γ =   (2𝑆 + 1)  

𝑝𝑓 = 
𝑁ℎ

𝛾𝐿
       This expression shows that fermi momentum depends upon the directly proportional to density 

𝑁

𝐿
  and inversely proportional to γ in the case of 1D 

Fermi wavelength: 

Wavelength corresponding to fermi momentum is said to be fermi wavelength. From the De Broglie 

hypothesis of wave particle duality we have 

𝜆𝑓 =  
ℎ

𝑝𝑓
 = 

ℎ
𝑁ℎ

𝛾𝐿
 
 = (

𝑁

𝛾𝐿
)

−1
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This expression shows that fermi wavelength depends upon inversely proportional to density 
𝑁

𝐿
  and directly 

proportional to γ in the case of 1D. 

Fermi Energy:  

Energy corresponding to the fermi momentum is said to be fermi energy. So we have 

𝜀𝑓 =
(𝑝𝑓)

2

2𝑚
 = 

1

2𝑚
[

𝑁ℎ

𝛾𝐿
]

2

  

This expression shows that fermi energy depends upon directly proportional to square power of density and 

inversely proportional to square power of γ in case of 1D. 

Fermi Temperature:  

Temperature at which thermal effects becomes comparable to quantum effects associate with the fermi Dirac 

statistics is said to be fermi temperature and mathematically we have  

𝜀𝑓 = 𝑘𝐵𝑇𝑓 or  𝑇𝑓 =  
𝜀𝑓

𝑘𝐵
 =  

1

2𝑚𝑘𝐵
[

𝑁ℎ

𝛾𝐿
]

2

 

This expression shows that fermi temperature  depends upon directly proportional to square power of density 

and inversely proportional to square power of γ in case of 1D. 

Fermi wavevector: 

Wave vector corresponding to fermi momentum is said to be fermi wavevector. Mathematically we have  

                                              𝑝𝑓 =  ћ𝑘𝑓  or  𝑘𝑓 =  
𝑝𝑓

ћ
  = 

1

ћ

𝑁ℎ

𝛾𝐿
  = 

2𝜋𝑁

𝛾𝐿
   

This expression shows that fermi wavevector  is directly proportional to density and inversely proportional 

to γ in case of 1D. 

Relation between average energy and fermi energy: 

𝜀0̅ =  
∫ 𝜀𝐷(𝜀)𝑑𝜀

𝜀𝑓

0

∫ 𝐷(𝜀)𝑑𝜀
𝜀𝑓

0

 

In 1D density of states is inversely proportional to half power of energy so we have 

𝜀0̅ =  
∫ 𝜀𝐴𝜀

−1
2 𝑑𝜀

𝜀𝑓

0

∫ 𝐴𝜀
−1
2 𝑑𝜀

𝜀𝑓

0

 

                                                       Here A is proportional constant   

𝜀0̅ =  
𝜀𝑓

3
 

This shows that average energy of the particle is equal to one third of fermi energy in 1D. 

2D Analysis: 

N(total number of particle quantum states) = 
∬ 𝑑𝑥𝑑𝑝𝑥 ∬ 𝑑𝑦𝑑𝑝𝑦

ℎ2               ×            ∑ 𝑚𝑠
+𝑠
−𝑠  

                                                                    Due to spatial states         due to spin states 
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∬ 𝑑𝑥𝑑𝑦 = 𝐴(𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚)   and for  ∬ 𝑑𝑝𝑥 𝑑𝑝𝑦 construct a ring of radius having the momentum 

p and width dp and then take the limit of momentum from 0 to pf  where  pf   is the fermi momentum.so we 

have 

                     N = 
𝐴

ℎ2 ∫ 2𝜋𝑝𝑑𝑝
𝑝𝑓

0
  ×   (2𝑆 + 1)   where S is the spin of the particle 

                      N = 
𝜋𝐴

ℎ2
𝑝𝑓

2 × 𝛾   where γ =   (2𝑆 + 1)  

                      𝑝𝑓
2= 

𝑁ℎ2

𝜋𝐴𝛾
      

                     So 𝑝𝑓 = ℎ [
𝑁

𝜋𝐴𝛾
]

1

2
   

This expression shows that fermi momentum depends upon the directly proportional to half power of density 
𝑁

𝐴
  and inversely proportional to half power of γ in the case of 2D 

Fermi wavelength: 

Wavelength corresponding to fermi momentum is said to be fermi wavelength. From the De Broglie 

hypothesis of wave particle duality we have 

                                                 𝜆𝑓 =  
ℎ

𝑝𝑓
 = 

ℎ

ℎ[
𝑁

𝜋𝐴𝛾
]

1
2  

 = [
𝑁

𝜋𝐴𝛾
]

−1

2
   

This expression shows that fermi wavelength depends upon inversely proportional to half power of  density 
𝑁

𝐴
  and directly proportional to half power of  γ in the case of 2D. 

Fermi Energy:  

Energy corresponding to the fermi momentum is said to be fermi energy. So we have 

                                                                   𝜀𝑓 =
(𝑝𝑓)

2

2𝑚
 = 

1

2𝑚

𝑁ℎ2

𝜋𝐴𝛾
     

This expression shows that fermi energy depends upon directly proportional to density and inversely 

proportional to  γ in case of 2D. 

Fermi Temperature:  

Temperature at which thermal effects becomes comparable to quantum effects associate with the fermi Dirac 

statistics is said to be fermi temperature and mathematically we have  

                                             𝜀𝑓 = 𝑘𝐵𝑇𝑓 or  𝑇𝑓 =  
𝜀𝑓

𝑘𝐵
 =  

1

𝑘𝐵

1

2𝑚

𝑁ℎ2

𝜋𝐴𝛾
    

This expression shows that fermi temperature  depends upon directly proportional to density and inversely 

proportional to γ in case of 2D. 

Fermi wavevector: 

Wave vector corresponding to fermi momentum is said to be fermi wavevector. Mathematically we have  

                                              𝑝𝑓 =  ћ𝑘𝑓  or  𝑘𝑓 =  
𝑝𝑓

ћ
  = 

1

ћ
ℎ [

𝑁

𝜋𝐴𝛾
]

1

2
    = 2π[

𝑁

𝜋𝐴𝛾
]

1

2
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This expression shows that fermi wavevector  is directly proportional to half power of density and inversely 

proportional to half power of γ in case of 2D. 

 

 

 

Relation between average energy and fermi energy: 

𝜀0̅ =  
∫ 𝜀𝐷(𝜀)𝑑𝜀

𝜀𝑓

0

∫ 𝐷(𝜀)𝑑𝜀
𝜀𝑓

0

 

In 2D density of states is independent upon energy so we have 

𝜀0̅ =  
∫ 𝜀𝐴𝑑𝜀

𝜀𝑓

0

∫ 𝐴𝑑𝜀
𝜀𝑓

0

 

                                                    Here A is proportional constant             

𝜀0̅ =  
𝜀𝑓

2
 

This shows that average energy of the particle is equal to half of fermi energy in 2D. 

 

3D Analysis: 

N(total number of particle quantum states) = 
∬ 𝑑𝑥𝑑𝑝𝑥 ∬ 𝑑𝑦𝑑𝑝𝑦 ∬ 𝑑𝑧𝑑𝑝𝑧

ℎ3               ×            ∑ 𝑚𝑠
+𝑠
−𝑠  

                                                                    Due to spatial states         due to spin states 

∭ 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑉(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚)   and for  ∭ 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 construct a spherical shell having the 

radius of momentum p and width dp and then take the limit of momentum from 0 to pf  where  pf   is the fermi 

momentum.so we have 

                            N = 
𝑉

ℎ3 ∫ 4𝜋𝑝2𝑑𝑝
𝑝𝑓

0
  ×   (2𝑆 + 1)   where S is the spin of the particle 

                            N = 
𝑉

ℎ3

4

3
𝜋𝑝𝑓

3 × 𝛾   where γ =   (2𝑆 + 1)  

                             𝑝𝑓
3= 

3𝑁ℎ3

4𝜋𝑉𝛾
      

                             So 𝑝𝑓 = ℎ [
3𝑁

4𝜋𝑉𝛾
]

1

3
   

This expression shows that fermi momentum depends upon the directly proportional to one third power of 

density 
𝑁

𝑉
  and inversely proportional to one third power of γ in the case of 3D 

Fermi wavelength: 

Wavelength corresponding to fermi momentum is said to be fermi wavelength. From the De Broglie 

hypothesis of wave particle duality we have 
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                                                   𝜆𝑓 =  
ℎ

𝑝𝑓
 = 

ℎ

ℎ[
3𝑁

4𝜋𝑉𝛾
]

1
3  

 = [
3𝑁

4𝜋𝑉𝛾
]

−1

3
   

This expression shows that fermi wavelength depends upon inversely proportional to one third power of  

density 
𝑁

𝑉
  and directly proportional to one third power of  γ in the case of 3D. 

Fermi Energy:  

Energy corresponding to the fermi momentum is said to be fermi energy. So we have 

                                                    𝜀𝑓 =
(𝑝𝑓)

2

2𝑚
 = 

1

2𝑚
ℎ2 [

3𝑁

4𝜋𝑉𝛾
]

2

3
       

This expression shows that fermi energy depends upon directly proportional to two third power of  density 

and inversely proportional to two third power of γ in case of 3D. 

Fermi Temperature:  

Temperature at which thermal effects becomes comparable to quantum effects associate with the fermi Dirac 

statistics is said to be fermi temperature and mathematically we have  

                                               𝜀𝑓 = 𝑘𝐵𝑇𝑓 or  𝑇𝑓 =  
𝜀𝑓

𝑘𝐵
 =  

1

𝑘𝐵
 

1

2𝑚
ℎ2 [

3𝑁

4𝜋𝑉𝛾
]

2

3
  

This expression shows that fermi temperature  depends upon directly proportional to two third power of 

density and inversely proportional to two third power of  γ in case of 3D. 

Fermi wavevector: 

Wave vector corresponding to fermi momentum is said to be fermi wavevector. Mathematically we have  

                              𝑝𝑓 =  ћ𝑘𝑓  or  𝑘𝑓 =  
𝑝𝑓

ћ
  = 

1

ћ
ℎ [

3𝑁

4𝜋𝑉𝛾
]

1

3
     = 2π [

3𝑁

4𝜋𝑉𝛾
]

1

3
   

This expression shows that fermi wavevector  is directly proportional to one third power of density and 

inversely proportional to one third power of γ in case of 3D. 

Relation between average energy and fermi energy: 

𝜀0̅ =  
∫ 𝜀𝐷(𝜀)𝑑𝜀

𝜀𝑓

0

∫ 𝐷(𝜀)𝑑𝜀
𝜀𝑓

0

 

In 3D density of states is directly proportional to half power of  energy so we have 

𝜀0̅ =  
∫ 𝜀𝐴𝜀

1
2𝑑𝜀

𝜀𝑓

0

∫ 𝐴𝜀
1
2𝑑𝜀

𝜀𝑓

0

 

                                                    Here A is proportional constant             

𝜀0̅ =  
3

5
𝜀𝑓 

This shows that average energy of the particle is equal to three fifth part of fermi energy in 3D. 
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DD Analysis: 

N(total number of particle quantum states) = 
∬ 𝑑𝑥𝑑𝑝𝑥 ∬ 𝑑𝑦𝑑𝑝𝑦 ∬ 𝑑𝑧𝑑𝑝𝑧……………… ∬ 𝑑𝑥𝐷𝑑𝑝𝐷

ℎ𝐷    ×

                                                                                                                                                                       ∑ 𝑚𝑠
+𝑠
−𝑠  

                                                                              Due to spatial states                     due to spin states 

On solving we get 
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                                    where γ =   (2𝑆 + 1) ,  S is the spin of the particle 
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Fermi momentum: 
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This expression shows that fermi momentum depends upon the directly proportional to one upon D power 

of density ρ and inversely proportional to one upon D power of γ in the case of DD 

Fermi wavelength: 

Wavelength corresponding to fermi momentum is said to be fermi wavelength. From the De Broglie 

hypothesis of wave particle duality we have 
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This expression shows that fermi wavelength depends upon inversely proportional to one upon D  power of  

density ρ  and directly proportional to one upon D power of  γ in the case of DD. 

 

Fermi Energy:  

Energy corresponding to the fermi momentum is said to be fermi energy. So we have 
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This expression shows that fermi energy depends upon directly proportional to two upon D  power of  density 

and inversely proportional to two upon D power of γ in case of DD. 

Fermi Temperature:  

Temperature at which thermal effects becomes comparable to quantum effects associate with the fermi Dirac 

statistics is said to be fermi temperature and mathematically we have  

                                               𝜀𝑓 = 𝑘𝐵𝑇𝑓 or  𝑇𝑓 =  
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This expression shows that fermi temperature  depends upon directly proportional to two upon D power of 

density and inversely proportional to two upon D  power of  γ in case of DD. 

Fermi wavevector: 

Wave vector corresponding to fermi momentum is said to be fermi wavevector. Mathematically we have  

                              𝑝𝑓 =  ћ𝑘𝑓  or  𝑘𝑓 =  
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This expression shows that fermi wavevector  is directly proportional to one upon D power of density and 

inversely proportional to one upon D power of γ in case of DD. 

Relation between average energy and fermi energy: 

𝜀0̅ =  
∫ 𝜀𝐷(𝜀)𝑑𝜀

𝜀𝑓

0
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In DD density of states is directly proportional to half power of  energy so we have 

𝜀0̅ =  
∫ 𝜀𝐴𝜀
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                                                    Here A is proportional constant             

𝜀0̅ =  
𝐷

𝐷 + 2
𝜀𝑓 

This shows that average energy of the particle is equal to 
𝐷

𝐷+2
 part of fermi energy in DD. 

Result and Discussion: 

Symmetry always play an important role with respect to law of nature. As nature loves symmetry to make 

thing beautiful so here we have applied symmetry concept on phase space to evaluate the various physical 

fermi parameters in 1D,2D,3D and DD. Various physical properties like as fermi energy, fermi momentum, 

fermi wavelength, fermi temperature, fermi wavevector calculated  with the help of symmetry and concept 

of phase space and fermi parameters  dependency on  density of the system and spin of the particle is shown 

in the table 1.1 in symmetrical form. 
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Table 1.1: Comparative table for fermi parameters in 1D,2D and 3D 

Physical quantities 1D 2D 3D DD 

No. of states filled upto 

energy ε is proportional to 
𝜀

1
2 𝜀

2
2 𝜀

3
2 𝜀

𝐷
2  

Density of states D(ε) is 

proportional to  
𝜀

−1
2  𝜀

2−2
2  𝜀

1
2 𝜀

𝐷−2
2  

Density Dependency of 

fermi momentum [
𝑁

𝐿
]

1
1
 [

𝑁

𝐴
]

1
2
 [

𝑁

𝑉
]

1
3
 

𝜌
1
𝐷 

Spin Dependency of fermi 

momentum     γ = 2S+1 [
1

𝛾
]

1
1
 [

1

𝛾
]

1
2
 [

1

𝛾
]

1
3
 [

1

𝛾
]

1
𝐷

 

Density Dependency Fermi 

wavelength 

 
[
𝑁

𝐿
]

−1
1

 [
𝑁

𝐴
]

−1
2

 [
𝑁

𝑉
]

−1
3

 
𝜌

−1
𝐷  

Spin Dependency Fermi 

wavelength     γ = 2S+1 
[𝛾]

1
1 [𝛾]

1
2 [𝛾]

1
3 [𝛾]

1
𝐷 

Density Dependency Fermi 

energy 

 
[
𝑁

𝐿
]

2
1
 [

𝑁

𝐴
]

2
2
 [

𝑁

𝑉
]

2
3
 

𝜌
2
𝐷 

Spin Dependency Fermi 

energy     γ = 2S+1    [
1

𝛾
]

2
1
 [

1

𝛾
]

2
2
 [

1

𝛾
]

2
3
 [

1

𝛾
]

2
𝐷

 

Density Dependency Fermi 

temperature 

 

[
𝑁

𝐿
]

2

 [
𝑁

𝐴
] 

[
𝑁

𝑉
]

2
3
 

𝜌
2
𝐷 

Spin Dependency Fermi 

temperature     γ = 2S+1 [
1

𝛾
]

2
1
 [

1

𝛾
]

2
2
 [

1

𝛾
]

2
3
 [

1

𝛾
]

2
𝐷

 

Density Dependency Fermi 

wavevector 

 
[
𝑁

𝐿
]

1
1
 [

𝑁

𝐴
]

1
2
 [

𝑁

𝑉
]

1
3
 

𝜌
1
𝐷 

Spin Dependency Fermi 

wavevector      γ = 2S+1 [
1

𝛾
]

1
1
 [

1

𝛾
]

1
2
 [

1

𝛾
]

1
3
 [

1

𝛾
]

1
𝐷

 

Average energy 𝜺𝟎̅̅ ̅ and 

fermi energy 𝜺𝒇 relation 
𝜀0̅ =  

𝜀𝑓

3
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𝜀𝑓

2
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3

5
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