
© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR1901I50 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 389

An Analysis of Software Bug Prediction

Techniques

Jai Bhagwan

Assistant Professor

Department of Computer Science & Engineering,

Guru Jambheshwar University of Science & Technology, Hisar, India

Abstract: In the technological era, the demand of software is increasing unconditionally. Various social media platforms have

been designed for entertainment and business purposes. Software development is not an easy task because we need to keep in

mind the budget, development time, efficiency and other parameters too. To deliver successful software, the developers need to

go through various phases of software development. To reduce the development efforts and cost of software, software bug

detection may play a vital role. In past, various machine learning models have been designed to predict the software fault at any

level of software development life cycle. In this research, various techniques have been examined and a comparative analysis has

been presented.

IndexTerms – Software Quality, Bug Prediction, Software Fault, Object-Oriented, ML (Machine Learning), ML

Techniques.

I. INTRODUCTION

Computer systems have received a great deal of attention and research because of the critical challenges of software quality and

reliability. In order to prevent poor software design, which would result in a low-quality output, it is highly desired for project

managers to have some early understanding about the target software product's quality. Early on, it could be identified and

prevented [4]. Defective software modules can be found and the number of defects that occur during system operations can be

decreased with targeted software quality inspection and improvement. A flaw in an executable product that results in system
problems while it is being used is called a software fault [10].

Early detection of defective modules contributes to increased software process control, lower work required to rectify defects,

lower costs, and increased software reliability. Planning resources for testing is made easier by identifying modules that are prone

to defects, as managing resources while screening is seen as a challenging effort. Defect prediction techniques, which aid in

resource and test plan development and software project control, are used for this process of detection [1]. Predicting software

errors is a crucial task that must be completed in order to lower maintenance costs and increase software quality prior to system

deployment. Early defect identification could result in fast defect rectification and the release of sustainable software [2].

Currently, the object-oriented paradigm forms the basis of most software development. Software metrics are the most effective

means of evaluating object-oriented software quality. Researchers and practitioners have developed a variety of criteria to assess

software quality. These measurements support the validation of software quality attributes including effort and error proneness [5].

C. Catal (2012) said, one of the quality assurance tasks in Software Quality Engineering, along with formal verification, fault

tolerance, inspection, and testing, is software fault prediction. The prediction model is constructed using software metrics and fault

data from an earlier software version [7].

In this paper, the literature of various software fault prediction techniques have been presented in detail. It has also been

presented various techniques, their limitations and practical effects. Likewise, the paper is systematized as: Section II represents the

related work. In section III, comparative analysis is presented. Finally, section IV summaries this research work.

II. RELATED WORK

A deep study of various software bug detection techniques is presented in this section. In [1], a model for predicting software

bugs is introduced. The researchers employed an empirical investigation to examine the impact of utilizing two distinct solution

algorithms and three distinct similarity functions on our CBR system's prediction accuracy. It is also investigated how changing the

quantity of nearest neighbor cases affects performance accuracy. Additionally, the advantages of employing metric-selection

processes for the CBR system are assessed. We base our study on case studies of a sizable legacy telecommunications system. The

best fault prediction was found to be produced by the CBR system when it used the inverse distance weighted solution technique

and the Mahalanobis-distance similarity function. Furthermore, the CBR models outperform models that rely on multiple linear

regressions. Seven kinds of machine learning approaches and 64 primary researches have been identified by the experts for this

research [2]. The outcomes demonstrate how well machine learning algorithms can predict whether a module or class will have

faults or not. The methods that estimate software fault proneness using machine learning approaches perform better than the
conventional statistical models.

In [3], the scientists' method for predicting fault densities in this work uses a decision tree learner applied to evolution data

taken from the Mozilla open source web browser project. The evolution data consists of various defect, modification, and source

code measurements that were calculated from seven current Mozilla releases. We also include the change correlation, which

quantifies the quantity of change-dependencies among source files, in our analysis of modification metrics. Finding underlying

rules that are simple for humans to understand was the primary motivation behind selecting decision tree learners over other

models, such neural nets. The authors set up several experiments to test popular theories about flaws in software entities in order to

determine these criteria. The experiments produced noteworthy findings. The suggested model [4] combines the best features of

both Artificial Neural Networks (ANN) and Fuzzy Logic (FL) while removing their drawbacks. The model shows some positive

characteristics, including the ability to handle objective data gathered during the software development process and

knowledge/experiences gained from experts or from projects similar to the one being worked on, which is the primary information

available during the early stages of a software development process. By using this technique, design flaws can be found and costly

http://www.jetir.org/

© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR1901I50 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 390

rework can be avoided by using early software quality prediction. The suggested model can be practically applied and is easy to
train, according to the experimental results.

The study [5] uses Chidamber and Kemerer (CK) metrics to investigate the use of logistic regression, artificial neural network,

and linear regression techniques for software fault prediction. In this case, the CK metric suite is regarded as an independent

variable and fault as a dependent variable. To find errors related to the classes, machine learning techniques like neural networks

and statistical techniques like logistic and linear regression are being used. The Apache Integration Framework (AIF) version 1.6,

case study was used to apply the comparative approach. In addition to highlighting the importance of the weighted method per

class metric for fault categorization, the research demonstrates that, when compared to the other three neural network models, the

hybrid approach of the radial basis function network produced a better fault prediction rate. By giving current faults with the

Bayesian Interference a means of recourse, the fault prediction model aids in software development. This work [6] uses a combined

Bayesian inference and Logistic Regression model design to aid all fault prediction strategies. Additionally, it is stated as true that a

probabilistic approach to the faults that are reported and found for the next release can be represented by a Bayesian inference

graph. The purpose of Bayesian inference for probabilistic reliability analysis is to assess risk-related data. These results imply a

connection between object-oriented metrics and defective classes. This study serves as an example of a software performance
evaluation method.

Based on performance evaluation criteria, the scientist [7] examined 85 fault prediction articles in this study and divided the

metrics into two major categories. Only assessment metrics are looked at because evaluation techniques like cross validation and

stratification of samples are outside the purview of this paper. This study demonstrates that several assessment factors have been

employed by academics up to this point for the prediction of software faults, and more research on metrics to assess performance

for imbalanced datasets is warranted. An entire industrial software system is the subject of the case study [8] that is being

presented. The data from hypothesis testing and model selection methods were found to be inconsistent with the count models'

ability to predict outcomes. Furthermore, the results of the comparison study based on one of the criteria did not correspond with

those of another. Nonetheless, a count model's performance remains comparable with both the fit and test data sets with regard to a

particular criterion. This guarantees that the model will produce a good prediction using the same criterion if a fitted model is

judged fair based on a certain criterion.

The cost curve analysis of fault prediction model was presented and discussed by the authors in this study [9]. When a software

module is categorized as fault-prone, verification processes must be applied, which raises the cost of development. Declaring a

module to be fault-free when it isn't increases the likelihood of system failure and its related expenses. We find that software

quality does not always increase with the prediction of fault-prone components through the examination of 16 projects from public

repositories. The addition of misclassification cost in model assessment could suggest that even the "best" models perform no better

than triangular classification, which uses cost curves as a typical technique for evaluating the performance of software quality

models. The research [10] examines the effects of applying two alternative solution methods and three distinct similarity functions

on our CBR system's prediction accuracy empirically. Additionally, the impact of altering the quantity of closest neighbor cases

upon the accuracy of performance is investigated. Also assessed are the advantages of applying metric-selection processes for our

CBR system. Our analysis is based on investigations of a sizable legacy telecom network. The CBR system that employed the

inverse distance weighted solution technique and the Mahalanobis distance similarity function produced the best fault prediction,
according to observations. Furthermore, the CBR models outperform models that use multiple-linear regression.

The researchers [12] examine a neural network approach in this paper to create models that forecast the quantity of errors in

software modules. Using the data gathered during the construction of two commercial software systems, the scientists employ this

process to create neural network models. We use a variety of linear regression techniques to create regression models using the

exact same set of data after creating neural network models. The neural network strategy yielded improved predictive models for

the investigated data sets in terms of both predictive quality and quality of fit. The scientists [13] take into account the cross-

company forecasting of defects scenario in this study, in which the target and source data are obtained from various companies. The

authors attempt to use the transfer learning approach to develop a prediction model that is both extremely efficient and quick in

order to utilize cross-company data. The results of the trials on data sets from various organizations are presented, together with a

theoretical analysis of the comparative methodologies. It shows that compared to state-of-the-art techniques, TNB is more accurate

in terms of the area under the receiver operating characteristic curve in less runtime.

III. COMPARATIVE ANALYSIS

A comparative analysis of various software bug detection techniques is shown below in Table 1.

Table 1. Comparative Analysis of various Techniques

Ref. No. Methods Used Limitations Practical Implications

[1] Pre-preprocessing,

Equifrequency bins for results,

Over sampling and under

sampling.

Not Mentioned

Enhanced Naive Bayes classifier

performance for predicting software

defects.

Pre-processing method to investigate

relationships between faults and software

metrics.

Modules with a higher likelihood of defects

were predicted when bins were labeled with

missing data.

Potential advantages for the software sector

if the recommended strategy is

http://www.jetir.org/

© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR1901I50 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 391

implemented.

Examining several binning strategies and

varying the number of bins for every

variable.

[2] Data extraction process and

data synthesis process.

AUC, RF, NB, MLP, C4.5,

and SVM.

Out of 64 primary research, only 19

compare LR and ML methods.

Various experimental setups are

employed to compare machine

learning methods.

Potential omission of a relevant

study.

Excluding research studies that have

not been published.

Presumption that every study is

objective.

ML approaches can predict software error

proneness with a reasonable degree of

accuracy.

ML models fared better in software fault

prediction than logistic regression methods.

In every study, the Random Forest

approach fared better than other ML

models.

There has to be more research done

contrasting ML methods with logistic

regression.

Predicting software faults has never been

done using some ML approaches.

[3] Decision tree learner, Data

mining and ML techniques.

Metric relationships are intricate and

challenging to comprehend

intuitively.

Understanding classifier decisions is

impossible because to the vast

volume of data.

Insufficient direction to proactively

enhance the quality of software in

projects.

Give resources a proactive allocation of

tools to raise the caliber of software.

Estimate the number of defects in software

modules.

Recognize the causes of the problems in

software entities.

Utilize decision tree learners to anticipate

defects from a range of input data.

Dismiss theories concerning change

couplings and size measurements.

Subsequent research will integrate precise

measurements of alterations and flaws.

[4] Fuzzy neural network.

Not Mentioned

The proposed approach can accommodate

several aspects that affect the quality of

software.

The model is capable of handling both

objective data and expert knowledge and

experience.

It becomes possible to anticipate software

quality in advance.

Aids in locating design flaws and prevents

costly rework.

For small- to medium-sized problems, the

model is easily trainable.

[5] linear regression, logistic

regression, neural network

Not Mentioned

Prediction models are a useful tool for

system analysts to classify faults.

For defect prediction, statistical and

machine learning techniques can be used.

When predicting faults, the WMC metric is

helpful.

Better fault prediction was obtained using

http://www.jetir.org/

© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR1901I50 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 392

the hybrid technique of RBFN.

[6] Logistic regression model and

various metrics, Bayesian

Inference Model.

Not Mentioned

To forecast the occurrence of a failure,

design Bayesian inference for each of the

metrics.

To determine the posterior probability of

errors, apply Bayesian inference.

Reception operational characteristic curves

can be used to determine software metric

threshold values.

Establish a process for allocating resources

to the development of dependable software.

[7] Examination of different

evaluation parameters used for

software fault prediction.

Further study is required on metrics

for performance assessment related to

software fault prediction.

Misclassification cost ratio

calculation and cost curve application

are challenging.

Inherent variations in software failure

forecasting in contrast to other

difficulties with imbalanced datasets.

Research results cannot be compared

because of disparate evaluation criteria.

AUC, or area under the ROC curve, is a

widely used statistic in fault prediction.

One can anticipate the number of defects

using R2 and AAE ARE.

Further research is required on performance

evaluation criteria related to fault

prediction.

For ease of comparison, commonly used

measures for performance evaluation

should be employed.

[8] Newton-Raphson iteration

technique, EM algorithm

Comparable outcomes were obtained

by other mixing models and count

models.

A few mixture models weren't

appropriate for the software platform

under investigation.

Other mixing models' modeling

outcomes are not shown.

Software quality modeling can benefit from

the use of count models such as Poisson

regression.

The hurdle negative binomial model and

zero-inflated negative binomial model both

function effectively.

Models produced by various choice factors

may differ.

Regarding the same metric, the best fitted

model produces the best prediction

accuracy.

Further case studies and research on noise

and outliers are planned for the future.

[9] Cost curve analysis There is no agreement on the process

for choosing the "best model" for a

certain project.

Predicting which components are

likely to have errors does not always

improve software quality.

The performance of the "best"

models is not better than that of

trivial categorization.

Models of software quality have real

advantages for software developers.

A defect prediction model's evaluation

needs to take the business environment into

account.

Evaluation includes the cost of component

misclassification through the use of cost

curve analysis.

Cost analysis for misclassification is

project-specific.

Fault prediction models are especially

useful for high-risk projects.

Various risk projects benefit from the use

http://www.jetir.org/

© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR1901I50 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 393

of different modeling algorithms.

[10] Case-based reasoning (CBR),

City Block, Euclidean, and

Mahalanobis, nearest-

neighbor, cross – validation,

average and inverse distance

weighted average.

Not Mentioned

For software components that are still being

developed, the CBR system can offer

timely fault forecasts.

Forecasts can assist in allocating resources

for increased dependability.

The impacts of various functions of

similarity and solution techniques were

investigated empirically.

The CBR system's accuracy was increased

via the metric selection process.

Scalability and automatic estimation

interpretation are features of the CBR

system.

[11] Regression tree modeling

technique, Fault density

technique

Not Mentioned

Analyzing software data effectively can be

achieved by regression tree modeling.

It facilitates the identification of

problematic modules and the

comprehension of links between data

elements.

The method can deal with missing values

and is reliable and stable.

It offers a reliable method for estimating

program quality.

Its misclassification rate and deviation are

lower than those of the fault density

procedure.

[12] Neural network methodology,

Multiple linear regression

methods.

When there are significant

assumptions broken, multiple

regression models get unstable.

For modeling software defects, neural

network methods are better suitable

than regression models.

The prediction models generated by

neural network methods were

superior in terms of fit and quality.

Regression models are inferior to neural

network models in terms of predictive

quality.

Data on software complexity is better

suited for modeling using neural network

models.

Regression techniques can be effectively

substituted by neural network modeling.

To determine the usefulness of neural

network representations in software

engineering applications, more

investigation is needed.

[13] Transfer Naive Bayes

Not Mentioned

With cross-company data, the Transfer

Naive Bayes (TNB) method may forecast

software problems.

On test data sets, TNB has excellent

efficiency and runtime cost characteristic.

TNB can direct the best resource allocation

plans to lower the cost of software testing.

TNB has the potential to improve software

testing process efficacy.

http://www.jetir.org/

© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR1901I50 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 394

IV. CONCLUSION

The need for software is always growing in the age of technology. Different social media networks have been created with

both business and fun in mind. The budget, development time, efficiency, and other factors must all be considered, making

software development an exhausting task. The developers must go through several software development phases in order to

produce successful software. Software bug identification may be essential to lowering software development costs and effort.

Multiple models based on machine learning have been developed in the past to forecast software errors at any stage of the software

development life cycle.

This study has looked at a number of approaches and provided a comparative analysis. The limitations of the various
techniques encourage us to develop a new machine learning technique for software bug prediction in future.

References

[1] Rana, Z. A., Mian, M., & Shamail, S. 2015. Improving Recall of Software Defect Prediction Models using Association

Mining. Knowledge-Based Systems, 90: 1-13.

[2] Malhotra, R. 2015. A Systematic Review of Machine Learning Techniques for Software Fault Prediction. Applied Soft

Computing, 27: 504–518.

[3] Knab, P., Pinzger, M., & Bernstein, A. 2006. Predicting Defect Densities in Source Code Files with Decision Tree Learners.

MSR, ACM, 119-125.

[4] Yang, B., Yao, L., & Huang, H. 2007. Early Software Quality Prediction Based on a Fuzzy Neural Network Model. 3rd

International Conference on Natural Computation, IEEE.

[5] Suresh, Y., Kumar, L., & Rath, S. K. 2014. Statistical and Machine Learning Methods for Software Fault Prediction using

CK Metric Suite: A Comparative Analysis. ISRN Software Engineering, 2014: 1–15.

[6] Kapila, H., & Singh, S. 2013. Analysis of CK Metrics to Predict Software Fault-Proneness using Bayesian Inference.

International Journal of Computer Applications, 74(2): 1–4.

[7] Catal, C. 2012. Performance Evaluation Metrics for Software Fault Prediction Studies. Acta Polytechnica Hungarica, 9(4):

193-206.

[8] Gao, K., & Khoshgoftaar, T. M. 2007. A Comprehensive Empirical Study of Count Models for Software Fault Prediction.

IEEE Transactions on Reliability, 56(2): 223–236.

[9] Yue Jiang, Bojan Cukic, Tim Menzies, 2008. Cost Curve Evaluation of Fault Prediction Models. International Symposium

on Software Reliability Engineering, 197-206.

[10] Khoshgoftaar, T. M., Seliya, N., & Sundaresh, N. 2006. An Empirical Study of Predicting Software Faults with Case-Based

Reasoning. Software Quality Journal, 14(2): 85–111.

[11] Gokhale, S. S., & Lyu, M. R. 1997. Regression Tree Modelling for The Prediction of Software Quality. Third ISSAT

International Conference on Reliability. 1-6.

[12] Khoshgoftaar, T. M., Pandya, A. S., & Lanning, D. L. 1995. Application of Neural Networks for Predicting Program Faults.

Annals of Software Engineering, 1(1): 141–154.

[13] Ma, Y., Luo, G., Zeng, X., & Chen, A. 2012. Transfer Learning for Cross-Company Software Defect Prediction. Information

and Software Technology, 54(3): 248–256.

http://www.jetir.org/

