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Abstract:  This study envisages on many infinitely conservation laws for the damped forced Gardner equation. 

Based on the use of binary bell polynomial, a bilinear form and a Bäcklund transformation for the said equation 

with certain condition are derived. Then from the bilinear Bäcklund transformation, the many infinitely 

conservation law for this equation is obtained through decomposing the binary Bell polynomial. Here 

conservation laws are all local and depend on the coefficients of terms of the said equation. 
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1. Introduction 
In physical system, conservation law is a measurable properties which do not change when the system rolls over 
time. Mathematically the study of conservation laws are helpful in studying of integrability of non-linear partial 
differential equation. It is helpful for studying the solution of non-linear partial differential equation. Neother’s 
theorem (Bessel-Hagen, 1921;Bluman and Kumei, 1989; Boyer, 1967; Noether, 1918: Olver,1986) states that 
action symmetries can be used to find out local conservation laws for a differential equation with a variational 
principle.The infinite conservation laws and conserved quantities can be obtained by various methods like 
Bäcklund transformation (Wadatietal, 1975), from Lax pairs (Zhang and Chen, 2002), Eigen function method 
(Konnoetal, 1974), scattering method( Zakharov and Shabat, 1972), trace identities method(Tsuchida and 
Wadati, 1998), quasi-differential operators method by SATA (Kajiwara et al, 1990) etc. 
Generally Gardner equation is formed by the KdV quadratic non-linearity and modified KdV cubic non-linearity. 
Different physical phenomena like the dusty-waves in plasma medium (Khateretal, 1999), internal sea waves in 
shear flows(Grimshawetal, 2001), negative ion wave in plasma(Watanabe, 1984), fluid dynamic(Kakutani and 
Yamasaki, 1978; Marchant and Smyth, 1990)  can characterized by this model equation. The Gardner equation is 
as follows 
 

                             Ht+AHHx+BH2Hx+CHxxx=0                                                                         (1) 
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Where A, B, C are all constants coefficient parameters. 
It is known that particles collision makes a damping effect in any physical environment. For instance resonant 
energy transfer between particles and electrostatic waves in plasma medium causes for making damping. In 
some experimental work on space plasma it is noticed the affect of externally applied different type of damping 
on plasma wave(Senetal, 2015; Aslanov and Yudintsev, 2015). In addition in certain circumstances like water 
flowing crosses the bottom, wave by ship(Grimshaw, 1997; deSzoeke, 2004; Grimshawetal, 2010; Singh and 
Rao, 1999; Mowafy, 2008; Masood, 2010; Grimshaw et al, 2002; Li and Xiao, 2013) may produce external 
forces. In such circumstances we focus on the damped force Gardner equation which is as follows 

Ht+AHHx+BH2Hx+CHxxx+LH=∆(t),                                                 (2) 

where A, B, C are any constant parameters, whereas, the damping and forcing coefficients are represented by L 
and Λ(t) respectively. 
 

 

2. Preliminary of binary Bell polynomial 

In this a brief concept of Bell polynomial (Bell, 1834; Lambert et al, 1997; Roger and Schief, 2002; Fan, 2011) 
and corresponding useful notation has been discussed. Suppose 𝑔 =  𝑔(𝑥1, 𝑥2,··· , 𝑥𝑚) is a continuously 
differentiable function up to infinite time. Then the multi-dimensional general Bell polynomials are defined by 

𝑌𝑛1𝑥1……….𝑛𝑘𝑥𝑘
(𝑔) = exp (−g)𝜕𝑥1

𝑛1 … … 𝜕𝑥𝑘

𝑛𝑘exp (𝑔)                 (3)

 

and  the multi-dimensional binary Bell polynomial is defined as 
 

 

 

                 𝑌𝑛1𝑥1……….𝑛𝑘𝑥𝑘
(𝑉, 𝑊)={

𝑉𝑛1𝑥1……….𝑛𝑘𝑥𝑘
,   𝑛1+𝑛2 … +𝑛𝑘  𝑖𝑠 𝑜𝑑𝑑      

𝑊𝑛1𝑥1……….𝑛𝑘𝑥𝑘
,   𝑛1+𝑛2 … +𝑛𝑘   𝑖𝑠 𝑒𝑣𝑒𝑛   

} 

 
                         (4)

Few examples are 

,   
𝑌𝑥 = 𝑉𝑥, 𝑌𝑥𝑥 = Wxx + Vx

2,   Yxy = Wxy + 

VxVy,    𝑌𝑥𝑥𝑥 =𝑉𝑥𝑥𝑥+3𝑉𝑥Wxx +Vx
3,     𝑌𝑥𝑥𝑦 = 𝑉𝑥𝑥𝑦+ 2𝑉𝑥Wxy + Vx

2Vy +WxxVy                               (5) 

 

Theorem1. The connection between binary Bell polynomial Yn1x1 ⋯
nkxk(V, W) and the standard   Hirota’s bilinear 

operators(Hirota, 1971; Hirota, 1976; Hirota, 1980) can be given by 
 

 

 
 
 
 
 
 
 
 
 
 
 

Yn1x1……….nkxk
(V = ln

F

G
, W = lnFG) = (𝐹𝐺)−1D𝑥1

𝑛1 ⋯ D𝑥𝑘

𝑛𝑘FG                                                  (6) 
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where 𝑛1+. . . . +nk    ≥ 1 and operators 𝐷𝑥1

𝑛1 , … , 𝐷𝑥𝑘

𝑛𝑘       which are Hirota’s bilinear operators, are  

given by       
 

𝐷𝑥1

𝑛1 … 𝐷𝑥𝑘

𝑛𝑘𝐹𝐺 = (𝜕𝑥1
− 𝜕𝑥1

, )𝑛1 … (𝜕𝑥𝑘
− 𝜕𝑥𝑘

, )
𝑛𝑘

𝐹(𝑥1, … , 𝑥𝑘) ∗ 𝐺(𝑥 ′
1, … , 𝑥′𝑘)                            (7) 

 

 

 

 

3. Bilinear Bäcklund transformation for the damped force-Gardner equation 

 
Using the transformation 
 

Eq. 8 is reduced to the equation 

 

𝐻 = 𝑎(𝑡)𝑉𝑥 + 𝑚(𝑡)                                            (8)

𝑉𝑥𝑡 + (𝐴 + 2𝐵𝑚(𝑡))𝑎(𝑡)𝑉𝑥𝑉𝑥𝑥 + 𝐵𝑎(𝑡)2𝑉𝑥
2𝑉𝑥𝑥 + (𝐴 + 𝐵𝑚(𝑡))𝑚(𝑡)𝑉2𝑥 + 𝐶𝑉4𝑥 =  0      

                                                                                                                                                 (9) 

with the choice of  a(t)=𝑠0e−
,
Ldt  and  m(t)=𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡. Integrating Eq.9 once w. r. t. x, one can get 

 

𝑉𝑡 +
𝐴 + 2𝐵𝑚(𝑡))𝑎(𝑡)

2
𝑉𝑥

2 +
𝐵a(t)2

3
𝑉𝑥

3 + 𝐴 + 𝐵𝑚(𝑡))𝑚(𝑡)𝑉𝑥 + 𝐶𝑉3𝑥 = 0 
 
 
                                                                                                                    (10)

with the choice of integrating constant as 0. To express Eq.10 into the Y-polynomial form, we need to set a 
constraint 

                                                                                              𝑌2𝑥(𝑉, 𝑊) = 0                                                      (11) 

Then we have  

                          𝑌𝑡(𝑉, 𝑊) + (𝐴 + 𝐵𝑚(𝑡))𝑚(𝑡)𝑌𝑥(𝑉, 𝑊) + 𝐶𝑌3𝑥(𝑉, 𝑊) = 0                                                   (12) 

  

with the condition  𝐴 +  2𝐵𝑚(𝑡) =  0 and 𝐵a(t)2 =  −6𝐶. The Eq.11 and Eq.12 constitutes the bilinear form of 
the df Gardner equation, which can be expressed in form of Hirota’s operators under the transformation 𝑉 =

𝑙𝑛
𝐹

𝐺
, 𝑊 = 𝑙𝑛𝐹𝐺  as 

𝐷𝑥
2𝐹𝐺 = 0 

                    [𝐷𝑡 + (𝐴 + 𝐵𝑚(𝑡))𝑚(𝑡)𝐷𝑥 + 𝐶𝐷𝑥
3]𝐹𝐺 = 0                                                             (13) 

 
Assuming that (𝑉′, 𝑊′) and (𝑉, 𝑊) are two different solutions of the Eq.11 and Eq.12, then we will consider the 
following: 

𝐸1 = 𝑌2𝑥(𝑉′, 𝑊′) − 𝑌2𝑥(𝑉, 𝑊) = 0                                                                                    (14) 

 

𝐸2 = 𝑌𝑡(𝑉′, 𝑊′) − 𝑌𝑡(𝑉, 𝑊) + 𝑝(𝑡)(𝑌𝑥(𝑉′, 𝑊′) − 𝑌𝑥(𝑉, 𝑊)) + 𝐶(𝑌3𝑥(𝑉′, 𝑊′) − 𝑌3𝑥(𝑉, 𝑊)) = 0 

                                                                                                                                                                                                           (15) 

where  𝑝(𝑡)  =  (𝐴 + 𝐵𝑚(𝑡))𝑚(𝑡).  

Introduce  new variables 
 
 

                                     𝑉1 = 𝑙𝑛
𝐺′

𝐺
,   𝑉2 = 𝑙𝑛

𝐹′

𝐹
,   𝑉3 = 𝑙𝑛

𝐺′

𝐹
 , 𝑉4 = 𝑙𝑛

𝐹′

𝐺
 

http://www.jetir.org/


© 2019 JETIR January 2019, Volume 6, Issue 1                                                             www.jetir.org (ISSN-2349-5162)   

 

 

JETIR1901I53 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 411 

 

  

𝑊1 = 𝑙𝑛𝐺′𝐺,  𝑊2 = 𝑙𝑛𝐹′𝐹, 𝑊3 = 𝑙𝑛𝐺′𝐹,    𝑊4 = 𝑙𝑛𝐹′𝐺             (16) 

Decoupling Eq. 14 as 

𝑌𝑥(𝑉4, 𝑊4) = 𝑐1𝑒𝑉1−𝑉2 ,         𝑌𝑥(𝑉3, 𝑊3) = 𝑐2𝑒𝑉2−𝑉1                                                         (17) 

Where c1, c2 are arbitrary constants and also decoupling Eq. 15 provides 

𝑌𝑡(𝑉1, 𝑊1) + 𝑝(𝑡)𝑌𝑥(𝑉1, 𝑊1) + 3𝑐1𝑐2𝑌𝑥(𝑉1, 𝑊1) + 𝐶𝑌3𝑥(𝑉1, 𝑊1) = 0   (18) 

 

𝑌𝑡(𝑉2, 𝑊2) + 𝑝(𝑡)𝑌𝑥(𝑉2, 𝑊2) + 3𝑐1𝑐2𝑌𝑥(𝑉2, 𝑊2) + 𝐶𝑌3𝑥(𝑉2, 𝑊2) = 0   (19) 

The Eq.17,  Eq.18 and Eq.19 constitute the bilinear Backlund’s Transformation for the damped force Gardner 
equation. One can express these in Hirota’s operators as 

  

                                                           𝐷𝑥𝐹′𝐺 = 𝑐1𝐹𝐺                                              (20) 

                                                                                          𝐷𝑥𝐹𝐺′ = 𝑐2𝐹′𝐺                                        (21) 

           [𝐷𝑡 + (𝑝(𝑡) + 3𝑐1𝑐2)𝐷𝑥 + 𝐶𝐷𝑥
3]𝐹′𝐹 = 0                                                       (22) 

       [Dt + (p(t) + 3c1c2)Dx + CDx
3]G′G = 0                                                    (𝟐𝟑) 

 

 

4. Infinite conservation law for the damped force Gardner equation 
With the help of  𝑉 = 𝑉1 − 𝑉3 = 𝑉4 − 𝑉2, eliminating V3 and V4 from the Eq.17 and combining them, we get 

 

                                                    𝑉1,𝑥 − 𝑉2𝑥 + V1,x
2 − 𝑉𝑥

2 = c1𝑐2                                          (24) 

  

Setting 𝑐1 = 𝑐2 = 𝜖 and putting     𝑉1,𝑥 = ∑ 𝐼𝑛𝜖−𝑛 + 𝜖∞
𝑛=1       in Eq.24 yields 

 

        .∑ ∑ 𝐼𝑘𝐼𝑛−𝑘𝜖−𝑛 + ∑ 𝐼𝑛,𝑥
∞
𝑛=1 𝜖−𝑛 +𝑛−1

𝑘=1
∞
𝑛=1 ∑ 𝐼𝑛+1

∞
𝑛=1 𝜖−𝑛 + 2𝐼1 − 𝑉2𝑥 − 𝑉𝑥

2 = 0        (25) 

 

After collecting the coefficients of different power of  ϵ, we have a recursion relation for the conserved densities 
In 

  

𝐼1 =
1

2
(

𝐻𝑥

𝑠0𝑒−𝐿𝑡
+ (

𝐻 − 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡

𝑠0𝑒−𝐿𝑡 )

2

) 

  

           𝐼2 = −
1

2
(

𝐻2𝑥

𝑠0𝑒−𝐿𝑡
+ 2 (

𝐻 − 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡

𝑠0𝑒−𝐿𝑡 )

1
𝐻𝑥

𝑠0𝑒−𝐿𝑡
) 

                                                                                                       …… 

         𝐼𝑛 = ∑ 𝐼𝑘𝐼𝑛−𝑘 + 𝐼𝑛,𝑥 + 𝐼𝑛+1

𝑛−1

𝑘=1

                                                                                 (26) 

 

where n=2, 3, 4, ···. 

Again combining Eq.18 and Eq.19, we get 
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(𝑉2 − 𝑉1)𝑡 + (𝑝(𝑡) + 3𝑐1𝑐2𝐶)(𝑉2 − 𝑉1)𝑥 + 𝐶(𝑌3𝑥(𝑉2, 𝑊2) − 𝑌3𝑥(𝑉1, 𝑊1)) = 0     (27) 

 

Here on simplification, it could be expressed as                                                                                                                   

𝜕

𝜕𝑡
(𝑉1 − 𝑉)𝑥 +

𝜕

𝜕𝑥
[𝑝(𝑡)(𝑉1 − 𝑉)𝑥 + 𝐶(6𝑐1𝑐2𝑉1,𝑥 + 2𝑉𝑥

3 − 2𝑉1,𝑥
3 + 𝑉1,3𝑥 − 𝑉3𝑥)] = 0         (28) 

                                                                                                                                                                                                                                          

Setting  𝑐1 = 𝑐2 = 𝜖  and Eq. 28  provides  

 

𝜕

𝜕𝑡
(∑ 𝐼𝑛𝜖−𝑛∞

𝑛=1 − 𝑉𝑥) +
𝜕

𝜕𝑥
[
𝑝(𝑡)(∑ 𝐼𝑛𝜖−𝑛∞

𝑛=1 − 𝑉𝑥) + 𝐶(−2 ∑ ∑ 𝐼𝑖𝐼𝑗𝐼𝑘𝑖+𝑗+𝑘=𝑛
∞
𝑛=3 𝜖−𝑛)

−6 ∑ ∑ 𝐼𝑘𝐼𝑛+1−𝑘
𝑛
𝑘=1

∞
𝑛=1 𝜖−𝑛 + ∑ 𝐼𝑛,2𝑥𝜖−𝑛∞

𝑛=1 + 2𝑉𝑥
3 − 𝑉3𝑥

]=0 

                 (29) 

 

which  yields an infinite number of conservation laws. 

 

                                              
𝜕

𝜕𝑡
𝑄𝑛 +

𝜕

𝜕𝑥
𝑅𝑛 = 0                                                                              (30) 

 

Here conserved densities Qn  are given by the Eq. 26 and the conserved fluxes Rn  can be expressed as recursion 

relation 

 

𝑄0 =
H − e−Lt ∫ eLt∆(t)dt

s0e−Lt
 

 

𝑅0 = − (𝐴 + 𝐵𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡) (𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡)
𝐻 − 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡

𝑠0𝑒−𝐿𝑡

+ 𝐶 [2 (
𝐻 − 𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡

𝑠0𝑒−𝐿𝑡
)

3

 −
𝐻2𝑥

𝑠0𝑒−𝐿𝑡
]                                                                            

 

   𝑄1 = 𝐼1 

  𝑅1 = (𝐴 + 𝐵𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡) (𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡) 𝐼1 + 𝐶(−6𝐼1
2 + 𝐼1,2𝑥) 

… … … … .. 
 

𝑄𝑛 = 𝐼𝑛 

𝑅𝑛 = (𝐴 + 𝐵𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡) (𝑒−𝐿𝑡 ∫ 𝑒𝐿𝑡∆(𝑡)𝑑𝑡) 𝐼𝑛 + 𝐶 (−2 ∑ 𝐼𝑖𝐼𝑗𝐼𝑘 − 6 ∑ 𝐼𝑘𝐼𝑛+1−𝑘 + 𝐼𝑛,2𝑥

𝑛

𝑘=1𝑖+𝑗+𝑘=𝑛

) 

                                                                                                                                                                  (31) 

with 𝑛 = 3, 4 ,5,···. 
The Eq. 26 and Eq.31 showed the recursion relation for producing infinite number of conservation laws and the 

first conservation law gives exactly the df Gardner equation  i.e.  
𝜕

𝜕𝑡
𝑄0 +

𝜕

𝜕𝑥
𝑅0   gives  the df Gardner equation 

 

                   𝐻𝑡 + 𝐴𝐻𝐻𝑥 + 𝐵𝐻2𝐻𝑥 + 𝐶𝐻𝑥𝑥𝑥 + 𝐿𝐻 = ∆(𝑡)                               (32) 
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5. Conclusion 
We see that many infinite conservation laws of the Gardner equation in present of both damped term and force do 
exist that help to indicate the completely integrability of the equation. The Eq.30 and Eq.31 showed that the 
conserved densities Qn and Rn are local and and obviously they depend on the constant coefficients A, B, C and 
damping coefficients L and external forcing term Λ(t). Here the infinite conservation laws has been obtained 
based on the Bäcklund transformation i.e. Eq.17 and Eq.18.It is noted that Eq.17 provides a riccaty type 
equation and Eq.18 gives a divergence type equation which provides conserved densities and conserved fluxes 
respectively. 
The Bell polynomials play a crucial role in characterization of bilinear Bäcklund transfor- mation and infinite 
conservation laws. Thus it may be assumed that there may be a deep relation of Bell polynomials with integrable 
frameworks of non-linear partial differential equation which remain open like the connection of Bell polynomial 
with symmetries, Hamiltonian function etc. 
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