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Abstract: 

This paper presents the development of an automated water level detection system using machine learning (ML) algorithms, with 

MATLAB serving as the primary platform for data analysis and model training. The system integrates ultrasonic sensors and an 

Arduino microcontroller to capture real-time water level data. The acquired data is then processed and fed into machine learning 

models, including Decision Trees, Support Vector Machines (SVM), and Neural Networks, to predict water levels and automate 

water pump operation. Simulations in MATLAB reveal that Neural Networks provide the highest accuracy (96%) but require 

longer training times, while Decision Trees offer faster response times with moderate accuracy. SVM, particularly with the RBF 

kernel, strikes a balance between performance and computational efficiency. The research highlights the potential of machine 

learning to enhance water management by improving accuracy, reducing manual intervention, and ensuring efficient resource 

usage. 

Keywords: 

Water level detection, Machine learning, MATLAB, Decision Trees, Support Vector Machines, Neural Networks, Water 

management, Automation, Ultrasonic sensors, Real-time monitoring 

1. Introduction: 

Water level monitoring plays a crucial role in managing water resources across various applications, including reservoirs, tanks, 

and distribution systems. In reservoirs, accurate monitoring is essential for flood control, irrigation management, and maintaining 

adequate water supply levels. In water tanks, continuous level monitoring helps prevent overflows and ensures sufficient storage, 

while in distribution systems, it aids in efficient water distribution and leak detection [1]. As urbanization and industrialization 

grow, the need for reliable water level detection becomes more critical to conserve water, reduce wastage, and manage water-

related risks like flooding and shortages. Traditional water level detection methods include the use of ultrasonic sensors, float 

switches, and capacitive sensors [2]. While these methods are widely used, they are not without limitations. Ultrasonic sensors, 

for example, can be affected by environmental factors such as temperature, humidity, and surface disturbances, which reduce 

their accuracy. Float sensors are mechanical and may suffer from wear and tear, leading to faulty readings or breakdowns. In 

addition, many traditional systems require manual data collection and monitoring, which can be time-consuming and prone to 

human error. As a result, there is a growing interest in more advanced and automated techniques to address these limitations.  

Machine Learning (ML) offers a promising solution to enhance water level detection by leveraging historical sensor data and 

identifying patterns that improve the accuracy and reliability of predictions [3]. ML algorithms can process complex datasets, 

accommodate real-time changes, and learn from sensor outputs to create more robust detection systems. The application of ML 

in this field can automate water level detection, offering a significant improvement over traditional methods by predicting water 

levels more accurately and enabling real-time monitoring. As technology advances, the integration of ML with sensor networks 

and data processing platforms, such as MATLAB, can revolutionize water management [4].  

The motivation behind developing an automatic water level detection system stems from the need to reduce the manual effort  

involved in monitoring water levels in various applications. Currently, many water management systems still rely on manual 

inspection or rudimentary monitoring techniques that are not scalable or efficient for large-scale implementations [5]. Manual 

monitoring can be labor-intensive, time-consuming, and prone to human error, particularly when large volumes of water or 

multiple storage systems are involved. Moreover, in cases where water levels fluctuate rapidly, relying on periodic checks may 

not provide timely information to prevent overflows, shortages, or other related issues. By leveraging sensor data and integrating 

it with machine learning algorithms, water level detection systems can be automated, ensuring continuous and accurate 

monitoring with minimal human intervention [6]. Sensor networks can gather real-time data, which can then be processed and 

analyzed using machine learning techniques to make more informed decisions. The automation of this process ensures that 

abnormal conditions, such as sudden water level changes, are detected quickly, allowing for timely interventions. Additionally, 

machine learning models can be trained to account for environmental factors that may affect the sensors, improving the overall 

reliability and precision of the system [7]. 

In this context, machine learning offers the potential to not only automate water level detection but also enhance the overall 

efficiency of water resource management. By processing large amounts of sensor data, machine learning models can predict 

future water levels, identify trends, and even suggest optimal water usage patterns. This capability is especially valuable in areas 

experiencing water scarcity or in systems where consistent water distribution is critical [8]. Thus, the application of machine 
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learning in water level detection aligns with the broader goal of achieving sustainable water management practices and reducing 

the dependency on manual labor. The primary objective of this research is to develop an automatic water level detection system 

using machine learning techniques, with MATLAB serving as the platform for data processing, model development, and system 

deployment. The system aims to provide a more accurate, efficient, and reliable alternative to traditional water level detection 

methods by leveraging the power of machine learning to analyze sensor data [9]. Specifically, the research focuses on collecting 

real-time data from water level sensors, preprocessing the data, and training machine learning models to detect and predict water 

levels based on various environmental and operational factors. Using MATLAB as the core platform offers several advantages 

in terms of data handling, algorithm development, and system integration. MATLAB provides powerful tools for signal 

processing, data visualization, and machine learning, making it an ideal environment for this project. The objective includes 

designing a system that can automatically adapt to new data, improve prediction accuracy over time, and operate in real-time to 

detect water level changes in different environments. This involves testing various machine learning algorithms, such as decision 

trees, support vector machines (SVM), and neural networks, to determine which is most suitable for water level detection [10]. 

The end goal is to create a robust and scalable solution that can be implemented across various water management systems, from 

small water tanks to large reservoirs. The proposed system will not only automate the detection process but also ensure that water 

levels are monitored continuously, with alerts triggered for unusual or critical conditions. By developing this system, the research 

contributes to reducing water wastage, preventing overflows, and ensuring efficient water management. The successful 

deployment of the system will highlight the potential of machine learning and MATLAB in solving real-world water management 

challenges. 

2. Literature survey: 

Traditional water level detection methods primarily rely on hardware-based solutions such as float sensors, ultrasonic sensors, 

and capacitive probes [11]. Float sensors are mechanical devices that operate by moving up or down with the water level, 

triggering electrical contacts to signal changes. Ultrasonic sensors use sound waves to measure the distance between the sensor 

and the water surface, providing an estimation of the water level. Capacitive sensors measure changes in capacitance as the water 

level changes, which is converted into corresponding electrical signals. These methods are often implemented in various settings, 

such as water tanks, reservoirs, and flood monitoring systems, and they offer relatively low-cost solutions for basic water level 

detection [12]. However, these conventional systems face several accuracy and reliability issues. Float sensors, for instance, are 

prone to mechanical wear and tear over time, especially in harsh environments, which can lead to false readings or complete 

failure [13]. Ultrasonic sensors, while offering better accuracy, can be affected by environmental conditions such as temperature 

variations, humidity, and surface disturbances (e.g., waves or bubbles). Additionally, capacitive sensors may suffer from 

interference caused by contamination or changes in the surrounding materials. Another key limitation is that these systems 

typically require manual data collection or infrequent automated monitoring, which may not provide real-time or predictive 

insights. These factors highlight the need for more advanced, robust, and automated systems, prompting the integration of 

machine learning with sensor technology for improved performance [14]. 

Machine learning (ML) has emerged as a transformative tool in water resource management, offering advanced capabilities for 

analyzing large datasets, identifying patterns, and making predictive decisions [3]. In the field of hydrology, ML algorithms have 

been applied to predict rainfall, streamflow, and groundwater levels, aiding in flood control, drought management, and water 

distribution planning. ML models have also been used in water quality monitoring, where sensor data is processed to detect 

contaminants or changes in water chemistry [15]. By leveraging historical data, ML can optimize water treatment processes and 

alert operators to potential issues before they become critical. The adaptability of machine learning makes it an attractive solution 

for water-related challenges that are inherently complex and dynamic [16]. 

Several machine learning algorithms are commonly employed in water resource management, each with unique strengths. Support 

Vector Machines (SVM) are effective for classification tasks, such as identifying water quality categories, while Decision Trees 

offer a transparent and interpretable way to predict outcomes based on input variables like water level or flow rate [17]. Neural 

Networks, particularly deep learning models, excel in capturing non-linear relationships and are frequently used in time-series 

predictions, such as forecasting future water levels based on historical data. These algorithms, when properly trained, can 

significantly improve the accuracy and responsiveness of water management systems, making them indispensable for real-time 

monitoring and long-term planning. Integrating these techniques into platforms like MATLAB can enhance system performance 

by enabling real-time data processing and rapid deployment [18].  

Despite the growing application of machine learning in water management, there are still significant gaps in research, particularly 

concerning real-time water level detection. Many studies have focused on water quality monitoring or long-term hydrological 

predictions, but relatively few address the immediate, dynamic nature of water level detection. Most existing solutions rely on 

traditional hardware-based methods, with limited integration of machine learning for continuous, automated monitoring. Even 

where machine learning has been applied, the emphasis has often been on offline data analysis, meaning the potential for real-

time decision-making has not been fully realized. Moreover, the use of machine learning in detecting critical water levels, such 

as those in flood-prone areas or industrial storage tanks, remains underexplored. Another research gap lies in the integration of 

sensor networks with machine learning in MATLAB environments. MATLAB is a powerful platform for data analysis, 

simulation, and model development, but there has been limited exploration of its use in real-time water level detection. Although 

MATLAB offers comprehensive machine learning toolboxes and data visualization features, most existing studies either focus 

on general-purpose applications or use other programming environments for water resource management. This presents an 
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opportunity for research to bridge the gap by developing robust, real-time water level detection systems that leverage MATLAB's 

capabilities. By doing so, researchers can create more adaptable, efficient, and scalable solutions, addressing the limitations of 

traditional methods and advancing the field of water management. 

3. Methodology: 

 

The automatic water level control system was developed by integrating key components such as sensors, a microcontroller, 

display units, and a water pump. The system operates based on water’s electrical conductivity, where copper sensors detect water 

levels in a tank. When water touches the sensor, it conducts voltage, which is processed by a comparator. This comparator 

compares the sensor's voltage with a preset resistance to produce a HIGH or LOW output, sent to the microcontroller. The 

microcontroller controls the water pump based on these inputs, and the system's status is displayed on an LCD screen. The pump 

activates when the water level is low and deactivates when the tank is full. Various I/O ports are configured on the microcontroller 

to interface with the sensor and the pump. Software simulations were created using Tinkercad and Proteus to design and test the 

circuits before real-world implementation. Tinkercad facilitated creating the system's virtual model and testing it under different 

conditions, such as triggering the pump at 30% or 60% water levels. Proteus provided a more detailed simulation environment, 

enabling the creation of PCB layouts and testing Arduino C code, which controlled the pump based on water levels. The protious 

software simulation is shown in Fig.1. and Fig.2. when motor is turned ON Simulation when the Tank is 20% or below and pump 

is OFF simulation when water is 100% in tank. 

 
Fig. 1. Motor is turned ON Simulation when the Tank is 20% or below 

 
Fig.2. Pump is OFF simulation when water is 100% in tank. 

 

4. Data Acquisition: 

The system captures real-time water levels through ultrasonic sensors, and this data is processed by the Arduino microcontroller. 

The Arduino sends the processed data to a serial monitor, where it can be exported as CSV files for further analysis. Tools like 

CoolTerm were used to retrieve and store serial input/output data, allowing for continuous real-time data collection on water 

usage. 

The acquired data includes parameters like: 

1. Water level percentage over time. 

2. Water inflow rate, calculated by measuring the time taken to fill the tank. 

3. Water outflow rate, indicating consumption. 

4. Total water consumption and peak usage intervals. 

A Python script was used to visualize the data through graphs, illustrating the relationship between water level percentages and 

time, while also computing metrics like daily water consumption. This data is essential for training ML models to predict future 

water consumption patterns and automate more sophisticated water management behaviors. 
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5. Results: 

To design a water level detection process using machine learning, a data set is required which is obtained through the simulation 

designed in protious software under different different condition. MATLAB was used to simulate the automated water level 

control system. Various machine learning models, including Decision Trees, SVMs, and Neural Networks, were implemented 

within MATLAB for analyzing real-time water level data. The environment was configured with standard MATLAB libraries, 

specifically focused on data import (CSV), machine learning (Statistics and Machine Learning Toolbox), and real-time plotting 

(MATLAB’s plotting functions). The different conditions are given in Table.1. 

Table.1. Different conditions of water level and motor 

 

 

Water Level Condition 

Motor Condition 

Operation Type 

 

Automatic 

Manual 

Without Push button With Push-button 

At 0% Level ON OFF ON 

Rises from 0% to 99% ON OFF ON 

At 100% Level OFF OFF OFF 

Drops from 99% to 30% OFF OFF ON 

At 30% ON OFF ON 

Drops from 29% to 0% ON OFF ON 

 

The acquired data set is provided to the machine learning models and the acquired results are shown in Table.2. 

Table.2. Comparison of Model 1 (Decision Tree), Model 2 (SVM), and Model 3 (Neural Networks)  

Metric Model 1: Decision Tree Model 2: SVM Model 3: Neural Networks 

Training Accuracy 94% 
85% (Linear), 91% 

(Polynomial), 93% (RBF) 
96% 

Testing Accuracy 89% 
85% (Linear), 91% 

(Polynomial), 93% (RBF) 
94% 

Error Rate 

(Misclassification) 
11% 7% (RBF Kernel) 5% 

Confusion Matrix (True 

Positives) 
90% 92% (RBF Kernel) 94% 

Confusion Matrix (False 

Positives) 
10% 8% (RBF Kernel) 6% 

Precision Moderate High (0.92 with RBF) Very High 

Recall Moderate High (0.88 with RBF) Very High 

Pros 
Fast training, low 

complexity 

Effective with non-linear 

data (RBF Kernel) 

Highest accuracy, captures 

complex relationships 

Cons Overfitting on large datasets 
Slower with polynomial and 

RBF kernels 

Long training time, high 

computation load 

Training Time Fast (15 seconds) 
Moderate (40 seconds for 

RBF Kernel) 
Slow (150 seconds) 

System Response Time 15 ms 
30 ms (Linear Kernel), 40 

ms (RBF Kernel) 
50 ms 

Convergence Immediate Varies by kernel After 40 epochs 

Real-Time Performance 
Fast but less accurate for 

fluctuating water levels 

Moderate; better with non-

linear kernels 

Most accurate in real-time 

predictions 

 

Conclusion: 

In conclusion, the comparison of the three models—Decision Tree, SVM, and Neural Networks—reveals key insights into their 

performance and applicability for an automated water level detection system. The Decision Tree model offers fast training and 

response times, making it suitable for applications that prioritize speed over high accuracy. However, its higher error rate and 

susceptibility to overfitting make it less ideal for fluctuating water levels. SVM, particularly with the RBF kernel, strikes a balance 

between accuracy and computational efficiency, showing strong performance in handling non-linear relationships but requiring 

more time for training and real-time processing. Neural Networks, while providing the highest accuracy and lowest error rate, 

demand the longest training and response times, making them the best choice for complex, real-time applications where precision 

is paramount, though at the cost of higher computational resources. Each model has its strengths and trade-offs, and the optimal 

choice depends on the specific requirements of speed, accuracy, and computational capacity for the water management system. 
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