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Abstract:  We have seen that all rational numbers, can be represented as finite simple continued fractions. The 

main reason of interest of continued fractions, however, is in their application to the representation of irrational 

numbers.   In this article, we shall show that every irrational number can be expressed as an infinite continued 

fraction 
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2.  Infinite continued fraction 

To expand an irrational number, we need infinite continued fractions; for example 

√2 + 1 = 2 + (√2 − 1) = 2 +
1

√2 + 1
= 2 +

1

2 +
1

√2 + 1

 

 

= 2 +
1

2 +
1

2 +
1

√2 + 1

= 2 +
1

2 +
1

2 +
1

2 +
1
⋱

 

The expression of √2 + 1 as a continued fraction uncovers a remarkable elegance and regularity, as opposed to 

its decimal representation, which does not show any regularity. 

 

Definition 1: Let (𝑎𝑛)𝑛=0
∞  be a sequence of real numbers, all positive except possibly a0.  Infinite continued 

fraction is denoted by [a0; a1, a2, … ].  The infinite continued fraction is said to converge if the limit 

lim
𝑛→∞

[𝑎0; 𝑎1, 𝑎2, … , 𝑎𝑛]  exists, and in that case the limit is also denoted by [a0; a1, a2, … ].   

 We know that, [a0; a1, a2,…,an] = 𝐶𝑛, the above limit can be written as  lim
𝑛→∞

[𝑎0; 𝑎1, 𝑎2, … , 𝑎𝑛] = lim
𝑛→∞

𝐶𝑛. 

Let us now existence of the above limit.  By Theorem 3, we have C 0 < C 2 < … < C 2i <  … < C 2j+i < … < C 3 < 

C 1.  Because the even-numbered convergents C2n form monotonically increasing sequence and bounded above 

by C1, they will converge to a limit α that is greater than each C2n.  Similarly, odd numbered convergents C2n+1 

are monotonically decreasing and bounded below by C0 and hence converges to α’ that is less than each C2n+1.  

Let us prove α = α’.  We have 

𝑝2𝑛+1𝑞2𝑛 − 𝑝2𝑛𝑞2𝑛+1 = (−1)2𝑛 = 1. 

Consider,  

𝛼’ –  𝛼 <  𝐶2𝑛+1  − 𝐶2𝑛 =   
𝑝2𝑛+1

𝑞2𝑛+1
−

𝑝2𝑛

𝑞2𝑛
=

1

𝑞2𝑛𝑞2𝑛+1
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  and hence  

0 ≤ |𝛼’ –  𝛼| <  
1

𝑞2𝑛𝑞2𝑛+1
<

1

𝑞2𝑛
2 . 

Since the qi increases as i becomes large, 
1

𝑞2𝑛
2 → 0 as 𝑛 → ∞.  Hence α = α’. 

Theorem 1:  The value of any infinite continued fraction is an irrational number. 

Proof:  Let us suppose that x denotes the value of the infinite continued fraction [a0; a1, a2, … ]; that is, x is the 

limit of the sequence of convergents 

𝐶𝑛 = [𝑎0; 𝑎1, 𝑎2, … , 𝑎𝑛] =
𝑝𝑛

𝑞𝑛
. 

Because x lies strictly between the successive convergents Cn and Cn+1 , we have  

0 < |𝑥 − 𝐶𝑛| < | 𝐶𝑛+1 −  𝐶𝑛| =  |
𝑝𝑛+1

𝑞𝑛+1
−

𝑝𝑛

𝑞𝑛
| =

1

𝑞𝑛𝑞𝑛+1
. 

With the view to obtaining a contradiction, assume that x is a rational number, say, x = a / b, where a and b > 0 

are integers.  Then  

 

|
𝑎

𝑏
−

𝑝𝑛

𝑞𝑛
| <

1

𝑞𝑛𝑞𝑛+1
 

and so, 

|𝑎𝑞𝑛 − 𝑏𝑝𝑛| <
𝑏

𝑞𝑛+1
. 

As qi increase without bounds as i increases, we can chose n so large that b < qn+1 and hence 

0 < |𝑎𝑞𝑛 − 𝑏𝑝𝑛| < 1. 

This shows that there is a positive integer between 0 and 1, which is a contradiction. 

The converse of the above theorem is also true. 

Theorem 2:  Every irrational number has a unique representation as an infinite continued fraction. 

Proof:  Let x0 be an arbitrary irrational number.   Let us find the sequence of integers a0, a1, a2, … as follows:  

Let  

 1

1
[ ] and 0  


k k k

k k

a x x k
x a

  (1) 

It is evident that xk+1 is irrational whenever xk is irrational.  Since x0 is irrational all xk are irrational by induction.  

Thus,  

 0 [ ] 1    k k k kx a x x   (2) 

and hence 

 1

1
1  


k

k k

x
x a

  (3) 

so that the integers ak+1=[xk+1] ≥ 1 for all k ≥ 0.  Thus, we have a sequence of integers a0, a1, a2, …, all positive 

except perhaps for a0. 
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Now, (3) can be written as 

1

1
, 0.



  k k

k

x a k
x

 

Through successive substitutions, we obtain 

0

1

0

1

2

1

1

1

 

 



kx a
x

a

a
x

 

0

1

2

3

0 1 2 1

1

1

1

[ ; , , , ]

 





 n

a

a

a
x

a a a x
 

for every positive integer n.  Now, we have to prove that the infinite simple continued fraction [a0, a1, a2, …] 

indeed converges to x0. 

 Let n be a fixed positive integer.  Then, 

1 1
0 0 1 2 1

1 1

[ ; , , , ]  


 


 



n n n
n

n n n

x p p
x a a a x

x q q
 

where   n
n

n

C
p

q
 is the nth convergent of 0 0 1 2[ ; , , ]x a a a .  Hence,  

𝑥0 − 𝐶𝑛 =
𝑥𝑛+1𝑝𝑛 + 𝑝𝑛−1

𝑥𝑛+1𝑞𝑛 + 𝑞𝑛−1
−

𝑝𝑛

𝑞𝑛
 

=
−(𝑝𝑛𝑞𝑛−1 − 𝑝𝑛−1𝑞𝑛)

(𝑥𝑛+1𝑞𝑛 + 𝑞𝑛−1)𝑞𝑛
 

=
−(−1)𝑛−1

(𝑥𝑛+1𝑞𝑛 + 𝑞𝑛−1)𝑞𝑛
 

From (2), we have xn+1 > an+1 and therefore 

0

1 1 1 1 1

1 1 1

( ) ( )    

   
 

n

n n n n n n n n n n

x C
x q q q a q q q q q

 

Because qk increases without bounds as k increases, 
1

1
0 as .



 
n n

n
q q

  Hence 

0 0 1 2

lim [ ; , , ].   nx C a a an
 

Example 1:  Consider the irrational number 
0 23x .  The successive irrational numbers xk (and hence ak) 

can be computed as follows: 
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 

 

 

 

0 0

1 1

0 0

2 2

1 1

3 3

2 2

4 4

3 3

23 4 23 4 [ 23 4 4

1 1 23 4 23 3
1 1

7 723 4

1 7 23 3 23 3
3 3

2 223 3

1 2 23 3 23 4
1 1

7 723 3

1 7
23 4 8 ( 23 4) 8

23 4

      
 

 
     

 

 
     

 

 
     

 

       
 

x a

x a
x x

x a
x x

x a
x x

x a
x x

 

Because x5 = x1, also x6 = x2, x7 = x3, x8 = x4; then we get x9 = x5 = x1, and so on, which means that the block of 

integers 1, 3, 1, 8 repeats indefinitely.  We find that the continued fraction expansion of 23  is periodic with 

the form 

23 [4;1, 3, 1, 8, 1, 3, 1, 8, ]

[4;1, 3, 1, 8]




 

Now, we prove that the representation of an irrational number as an infinite continued fraction is unique in the 

following theorem.  

Theorem 3:  If the two infinite simple continued fractions 
0 1 2[ ; , , ]a a a  and 0 1 2[ ; , , ]b b b   represent the same 

irrational number x, then ak = bk for k = 0, 1, 2, 3, … 

Proof:  Suppose that x = 0 1 2[ ; , , ]a a a .  Then, 0 0 1 0

1

1
andC a C a

a
    we have from Theorem 4 of Chapter 15,

0 0 0

1

1
so that [ ]a x a a x

a
    . Note that 

0 1 2 0

1 2 3

1
[ ; , , ]

[ ; , , ]
 a a a a

a a a
 

Suppose that 0 1 2[ ; , , ]a a a  = 0 1 2[ ; , , ]b b b  then clearly, a0 = b0 = [x] and that  

0 0

1 2 3 1 2 3

1 1

[ ; , , ] [ ; , , ]
  a b

a a a b b b
 

so that  

1 2 3[ ; , , ]a a a
 = 1 2 3[ ; , , ]b b b

 

Now assume that ak = bk and that 1 2 3 1 2 3[ ; , , ] [ ; , , ]k k k k k ka a a b b b      .  Using the same argument, we see that 

ak+1 = bk+1, and  

1 1

2 3 2 3

1 1

[ ; , ] [ ; , ]
 

   

  k k

k k k k

a b
a a b b

 

which implies 

2 3 2 3[ ; , ] [ ; , ]   k k k ka a b b
 

Hence by induction, we see that ak = bk for k = 0, 1, 2, … 
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Theorem 4:  If x is an irrational number, then there are infinitely many rational numbers p / q such that  

 
2

1
 

p
x

q q
  (4) 

Proof:  Let pk / qk be the kth convergent of the continued fraction of x.  Then, by Theorem 2, we know that  

12

1

1 1
[ 



   k
k k

k k k k

p
x q q

q q q q
 

Hence  

2

1
 k

k k

p
x

q q
. 

Consequently, the convergents of x, pk / qk ,  k = 1, 2, … are infinitely many rational numbers which satisfy (4). 

3.  Rational approximation to irrational numbers 

 The following theorem and corollary shows that the convergents of the simple infinite continued fraction 

of an irrational numbers x are the best rational approximation to x. 

Theorem 5:  Let pn / qn be the nth convergent of the continued fraction representing the irrational number x.  If 

a and b are integers, with 1 ≤ b < qn+1, then  

  n nq x p bx a
 

Proof:  Consider the system of equations 

1

1

 

 





 

 

n n

n n

p p a

q q b
 

Then, the solutions of the above system of equations are given by  

1

1 1

1

( 1) ( )

( 1) ( )







 



  

  

n

n n

n

n n

aq bp

bp aq  

Note that 0.    For, if 0  , then 1 1 1 1( ) and, because gcd( , ) 1n n n naq bp p q     , 1 |nq b or 1nb q  , which is 

a contradiction to our hypothesis. 

If 0  , then andn na p b q    and hence n n n nbx a q x p q x p     , which is the required 

result.  So, assume 0.   

 If 0,   then the equation 1n nq b q    implies that 0 and  therefore 0.nq      If 0,  then 

1 1 1 which implies  and therefore 0; this makes 0.n n n nb q b q q b q             Hence,  and   must 

have opposite signs. By Theorem 4 of Chapter 15, since x lies between n

n

p

q
 and 1

1

n

n

p

q





, 

1 1and          n n n nq x p q x p
 

will have opposite signs.  This implies  

   1 1and            n n n nq x p q x p
 

must have the same sign and therefore  
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   1 1 1 1            n n n n n n n nq x p q x p q x p q x p
 

Now, consider  

   

1 1

1 1

1 1

( ) ( )   

 

 



 

 

 

    

   

   

 

 

n n n n

n n n n

n n n n

n n

n n

bx a q q x p p

q x p q x p

q x p q x p

q x p

q x p
  

which is the desired inequality. 

Corollary 1:  If 1 ≤ b ≤ qn, the rational number a / b satisfies 

  n

n

p a
x x

q b
  

Proof:  Suppose 

  n

n

p a
x x

q b
 

then 

      n
n n n

n

p a
q x p q x b x bx a

q b
 

which is a contradiction to Theorem 5. 

Theorem 6:  Let x be an arbitrary irrational number.  If the rational number a / b where b ≥ 1 and gcd(a, b) = 

1, satisfies 

2

1

2
 

a
x

b b   

then a / b is one of the convergents pn / qn in the continued fraction representation of x. 

Proof:  Assume that a / b is not a convergent of x.  Since the sequence qn is an increasing sequence, there exists 

a unique integer n for which qn ≤ b < qn+1.  For this n, the last lemma gives the first inequality in the chain 

1

2
     n n

a
q x p bx a b x

b b   

which may be written as  

1

2
 n

n n

p
x

q bq
  

Since, a / b ≠ pn / qn, bpn – aqn is a nonzero integer, and hence 1 ≤ |bpn – aqn|.   

Now, consider 

2

1 1 1

2 2


        n n n n

n n n n n

bp aq p a p a
x x

bq bq q b q b bq b
  

Since, nq b , 
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2 2 2 2

1 1 1 1 1
.

2 2 2 2nbq b b b b
     

Therefore 

2

1 1 1 1
.n

n n

q b
bq b q b

      

But this is a contradiction to the fact that qn ≤ b.  This completes the proof. 
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