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Abstract 

A novel smooth penalty function method is introduced, which eliminates the need for dual and slack implicit 

variables in formulating constrained optimization conditions. This method features new active and loss 

functions that independently and adaptively address the violation of each constraint. By minimizing the 

proposed penalty function unconstrained, a solution to the original optimization problem is achieved. The 

derived constrained optimization conditions rely solely on the primal variable and extend to encompass the 

canonical Karush-Kuhn-Tucker (KKT) conditions within a broader framework. The derivatives of the 

proposed loss functions concerning the constraint functions can be interpreted as Lagrange multipliers of the 

traditional Lagrangian function. Additionally, the method reveals the inclusion of first-order Hessian 

information, contrasting with existing works where classical Lagrange Hessians only incorporate second-order 

derivatives. Finally, numerical examples, including medium-scale stress-constrained topology optimization 

and scenario-based reliability design problems, are provided to illustrate the effectiveness of the proposed 

methodology. 

 

Introduction 

There is a substantial body of research on nonlinear constrained optimization. Numerous methods have been 

developed for constrained optimization, including the interior point method [1,2], Sequential Quadratic 

Programming (SQP) approach [3,4], and the active set method [5]. For a comprehensive overview of 

constrained optimization, see references [6,7]. 

The application of active and loss functions in various constrained optimization and machine learning problems is a 

vibrant area of research. For instance, reference [8] introduces a novel loss formulation for face recognition tasks to 

address the limitations of the least squares loss function. A non-convex loss function aimed at solving regression 

problems through the difference of convex functions programming is presented in [9]. Liu [10] created a truncated 

Huber penalty function to satisfy different smoothing requirements in various graphic applications. Additionally, a 

nonconvex quadratic ε-insensitive loss function is introduced in [11] to enhance the robustness of support vector 

regression methods. Recent advancements in loss functions are discussed in [12], particularly in the context of deep 

learning and computer vision tasks. 

Lagrange multiplier methods are commonly employed to tackle constrained optimization problems. For example, 

within the augmented Lagrangian framework, an exact penalty function is utilized in [13] to analyze the behavior of 

augmented Lagrange multipliers, exploring the relationship between the exactness of the penalty function and the 

existence of these multipliers. In [14], the cost of solving augmented Lagrangian subproblems is reduced, allowing the 

inner loop of the Newton–Raphson method to converge in just two iterations. The iteration complexity of the inexact 

Augmented Lagrangian Method (ALM) is examined in [15] using Nesterov's optimal first-order method. The 

equivalence between an alternating direction multipliers method and an inexact proximal ALM is demonstrated for a 

class of convex programming in [16]. A technique incorporating second-order information to minimize a second-order 

Taylor expansion of the Lagrangian function is reported in [17]. Drawing inspiration from the Lagrange multipliers 
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method, a primal-dual algorithm for solving non-smooth risk-averse optimization problems is developed in [18]. An 

ALM is formulated for the optimality conditions of nonlinear semi-definite programming in [19], while convergence 

analysis of the ALM for conic programming is conducted in [20]. Furthermore, an ALM designed for efficient 

parallelization in solving large-scale non-convex optimization problems is discussed in [21]. Lastly, in [22], the lower-

level optimization formulation in multi-objective optimization problems is replaced by the KKT conditions, with 

Lagrange multipliers expressed as polynomial functions. 

 

The proposed method aims to address the limitations of existing constrained optimization techniques by introducing a 
smooth exact penalty function that eliminates the need for dual and slack implicit variables. This method enhances the 
stability and efficiency of optimization processes while ensuring robust handling of constraints. 

Methodology 

Active Function Design: Introduce a differentiating active function 𝐴𝑖(𝑥) for each constraint 𝑔𝑖(𝑥) ≤ 0, which 
indicates the presence or absence of a constraint. This function will adaptively reflect the constraint's status during 
optimization. 
Loss Function Definition: Define loss functions 𝐿𝑖(𝑥) for each constraint, measuring the violation of constraints: 

𝐿𝑖(𝑥) = 𝑚𝑎𝑥(0, 𝑔𝑖(𝑥)) 

These loss functions will be formulated to ensure differentiability and smoothness. 

Smooth Exact Penalty Function Construction 

Construct the smooth exact penalty function 𝑃(𝑥) as follows: 

𝑃(𝑥) = 𝑓(𝑥) +∑𝜌𝑖𝐿𝑖(𝑥)

𝑚

𝑖=1

 

where: 

1. 𝑓(𝑥) is the original objective function. 

2. 𝜌𝑖 are positive weights assigned to each loss function to control the penalty's strength. 

To enhance smoothness, use a differentiable approximation of the maximum function, such as: 

𝐿𝑖(𝑥) =
1

1 + 𝑒−𝑘𝑔𝑖(𝑥)
 

where 𝑘 is a large constant that controls the smoothness and steepness of the penalty. 

Optimization Procedure 

Unconstrained Minimization: Solve the unconstrained optimization problem: 

𝑚𝑖𝑛
𝑥
𝑃(𝑥) 

This minimization directly addresses the original constrained optimization problem without introducing dual variables 
or slack variables. 
Iterative Updates: Use gradient-based methods to update the primal variable 𝑥 : 

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝛻𝑃(𝑥𝑘) 

where 𝛼 is the step size. 
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Conclusion 

This smooth exact penalty function method offers a robust framework for addressing constrained optimization 
problems. By utilizing differentiable active and loss functions, the approach enhances the stability of optimization 
processes while maintaining flexibility in constraint handling. Future work will focus on extending this methodology to 
more complex optimization scenarios and validating its performance across various applications. 
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