

Synthesis And Characterisation of newly Synthesized Isoxazoline

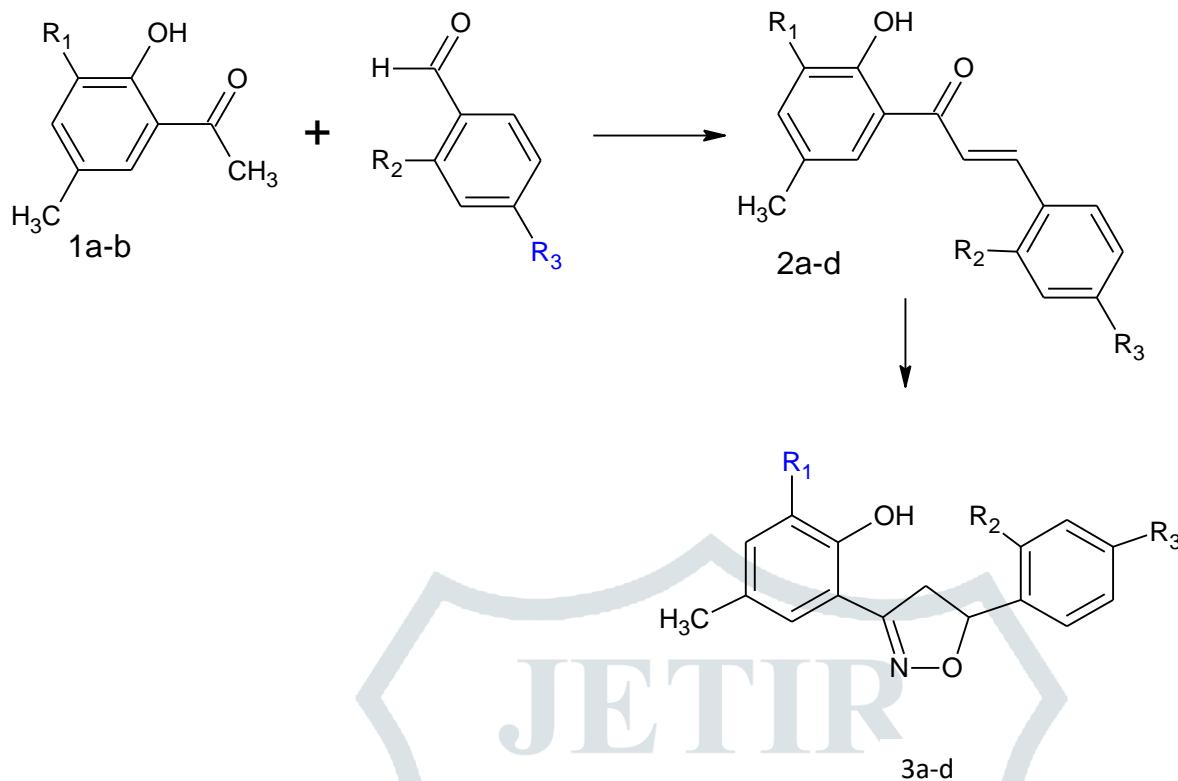
S.M.Rathore ,V.V.Parhate and M.M.Rathore

Department of Chemistry,Vidya Bharati College,C.K.Naidu Road,Camp,Amravati-444601,Maharastra,India.

Abstract:

A new series of bromo and nitro substituted isoxazolines (3a-d) were synthesized by reacting bromo and nitro substituted chalcones (2a-d) with hydroxyl amine hydrochloride respectively. All these compounds were characterized by means of their UV,IR,¹H NMR, spectroscopic data and elemental analysis.

Keywords: Chalcones,Isoxazolines


INTRODUCTION:

The dihydroderivatives of isoxazole (a) are known as isoxazolines. A heterocyclic compound is one which possesses a cyclic structure with at least two different kinds of atoms in the ring. Compounds incorporating heterocyclic ring systems continue to attract considerable interest due to the wide range of biological activities. Amongst them five membered heterocyclic compounds occupy a unique place in the realm of natural and synthetic organic chemistry. Five membered heterocycles like isoxazoline have found wide applications pharmaceutical and agrochemical agents.

Experimental

General procedure for synthesis of chalcones (2a-d)

A mixture of substituted acetophenones (0.01 mole) and substituted benzaldehyde (0.01 mole) was stirred in ethanol (15 ml) and to this solution 10% potassium hydroxide added gradually with constant stirring. The reaction mixture was kept overnight at room temperature and then it was poured into crushed ice and acidified with dil. HCl. The product precipitates out was filtered washed with NaHCO₃ solution and crystallized from ethanol Scheme 1

General procedure for synthesis of isoxazolines (3a-d)

Bromo and nitro substituted chalcone (2a-d) (0.01 mol) and hydroxyl amine hydrochloride (0.02 mol) was refluxed in ethanol (20 ml) and piperidine (0.5 ml) for about 1.5 hrs. After cooling; the reaction mixture was acidified with HCl. The solid product thus separated was filtered, washed first with sodium bicarbonate solution (10%) and then with water. Finally it was crystallized from ethanol to get isoxazolines (3a-d). Physical and analytical data of compounds are given in table 1.

Physical and analytical data of compounds (2a-d,3a-d).

table 1.

Compound no.	R ₁	R ₂	R ₃	M.F.	m.p. ⁰ C	Yield %	C %	H %	N %
2a	Br	H	Cl	C ₁₆ H ₁₂ O ₂ BrCl	101	72	53.98	3.01	--
2b	NO ₂	H	Cl	C ₁₆ H ₁₂ O ₄ NCl	115	68	59.95	3.01	4.01
2c	Br	Cl	Cl	C ₁₆ H ₁₁ O ₂ BrCl ₂	82	72	49.01	2.03	--
2d	NO ₂	Cl	Cl	C ₁₆ H ₁₁ O ₄ NCl ₂	102	78	54.02	2.99	3.10
3a	Br	H	Cl	C ₁₆ H ₁₃ BrClNO ₂	120	60	52.01	3.07	3.00
3b	NO ₂	H	Cl	C ₁₆ H ₁₃ ClN ₂ O ₄	135	76	56.9	3.02	8.00

3c	Br	Cl	Cl	C ₁₆ H ₁₂ BrNO ₂ Cl ₂ .	160	70	47.00	2.03	3.02
3d	NO ₂	Cl	Cl	C ₁₆ H ₁₂ Cl ₂ N ₂ O ₄ .	145	80	51.90	3.02	7.01

Results and Discussion

The structure of synthesized compounds (2a-d,3a-d) were confirmed on the basis of spectral and elemental analysis. The IR spectrum of **2a-d** exhibited a band due to -OH str.(3350.88cm⁻¹), >C=O str. (1691.59 cm⁻¹), -C=C- str.(1613.84 cm⁻¹), -Cl str.(1135.52 cm⁻¹),-Br str.(1059cm⁻¹). Further, in ¹H NMR spectrum, the appearance of a signal at δ 2.4 (s,3H,-CH₃), 7.09 to 7.83(m,6H, Ar-H), 7.85(d,1H,-COCH=CH-), 8.2(d,1H,-COCH=CH-), 11.17(s,1H,-OH) confirms the presence of chalcone.

Similarly ,the structure of compounds **3a-d** was confirmed on the basis of spectral and elemental analysis. The IR spectrum of **3a-d** exhibited a band due to H-bonded O-H stretching (3241.21cm⁻¹), aromatic stretching, >C-H (3087.43 cm⁻¹), Aliphatic C-H stretching 2922.35, -C=N- str. (1582.55cm⁻¹), >C-O stretching (1288.00 cm⁻¹) and -C-Br stretching (1102.97 cm⁻¹). Further, in their in ¹H NMR spectrum, the appearance of a signal at δ 2.33 (s,3H,Ar-CH₃); δ 3.5 (d, 2H, Heterocyclic -CH₂-CH-), δ 5.06 (s,1H,-Ar-OH), δ 6.8 (t, 1H, Heterocyclic -CH₂-CH-), δ 7.09-7.54 (m,6H,Ar-H) δ 1.2 (s,1H,-CH), δ 2.5(s,1H,-NH), δ 2.3.3 (s,3H,-CH₃), δ 6.9(d,1H, =C-H), δ 7.3 to 8.3(m,11H, Ar-H), and δ 12.3(s,1H,-OH) confirms the presence isoxazoline.

Acknowledgement

The authors are thankful to Dr.P.R.Rajput ,Principal SSSKR,Innani Mahavidyalaya,Karanja Lad for his help in the preparation of isoxaazolines.The authors are also thankful to the Principal Dr.F.C.Raghuvanshi for providing facilities

REFERENCES

1. Wankhade, B.B., Chincholkar, M.M., *Asian Journal Chem.*, 12(4), 1243, 2000.
2. Patil, K.N., Ph.D. Thesis, Amravati University, 1993.
3. Archana V.K., Shrivastava, Ramesh Chandra and Ashok Kumar, *Indian J. Chem.*, 41B(11) 2325, 2002.
4. Gmail Aziz, G., Nessoir, M.H., Doss, N.L. and Rizk, A.S., *Indian J. Chem.*, 14(B), 286, 1976.
5. Shiv Kumar, B., Nurgud, H.V.G., *Indian J. Hertrochem*, 8, 27, 1998.
6. Paolo Quadrelli, Naiara Vazquez Martinez, Roberto Scrocchi, Antonino Corsaro and Venerando Pistarà, *Scientific World Journal*, 12, 2014.
7. Ravi Kumar G., Sumana, Kotian Y., Narayana, Kangkunam C.S. Vicas, Lokanatha Rai, Ravi Shankar Rai and Byrappa, *JCBPS*; November 2015 – January, 6(1), 128-137, 2016.
8. Raoni S. B. et al, *J. Org. Chem.*, 9, 2387–2394,2013.
9. Patel Ankit J., Patel Manish P., *Indian Journal of Advances in Chemical Science*, 4(4), 409-420, 2016.
10. Tejaskumar Shah and Vikas Desai, *J. Serb. Chem. Soc.*, 72 (5) 443–449, 2007.

11. Hidetoshi Yamamotoa, Sadaka Watanabe, Masayuki Hasegwa, Michihiko Noguchi and Shuji Kanemasa, *J. Chem. Research (S)*, 284-286, 2003.

