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I. INTRODUCTION 

 

            The graphs considered here are finite, undirected, without loops and multiple edges. Let 𝐺 = (𝑉, 𝐸) be a connected graph 

with a vertex set 𝑉(𝐺) and an edge set 𝐸(𝐺). The degree 𝑑𝐺(𝑣) of a vertex 𝑣 is the number of vertices adjacent to 𝑣. The edge 

connecting vertices 𝑢 and 𝑣 will be denoted by 𝑢𝑣. The degree 𝑑𝐺(𝑒) denote the degree of an edge 𝑒 = 𝑢𝑣 in 𝐺, which is defined 

as 𝑑𝐺(𝑒) = 𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 2. For further notation and terminology, we refer to [4]. Chemical graph theory is a branch of 

mathematical chemistry and has an important effect on the development of the chemical sciences, see[2]. A molecular graph of a 

chemical graph is a simple graph related to the structure of a chemical compound where its vertices correspond to an atom of the 

molecule and its edges correspond to the bonds between the atoms. A topological index is a numerical parameter mathematically 

derived from the graph structures. Topological indices are useful for establishing correlation between the structure of a molecular 

compound and its physico--chemical properties. Numerous topological indices have been considered in Theoretical Chemistry 

and have found applications, especially in 𝑄𝑆𝑃𝑅/𝑄𝑆𝐴𝑅 research. Vuki𝑐̆evi𝑐′ et. al. observed that many topological indices are 

simply defined as the sum of individual bond contributions, see[21]. Here they have introduced a class of discrete adriatic indices 

to study other possible significant topological indices of this form. There exists bond additive descriptors, i.e, descriptors that can 

be presented as the sum of edge contributions, some important descriptors are defined in this way: Randic index[17], Zagreb 

index [20], Wiener index [3], .... These concepts give a new class of descriptors that will be called as Adriatic descriptors. More 

precisely, three classes of adriatic descriptors are defined:  

 

(𝑖)extended adriatic descriptors 

(𝑖𝑖)variable adriatic descriptors 

(𝑖𝑖𝑖)discrete adriatic descriptors. 

 

The most restrictive class of these descriptors is the discrete adriatic descriptors. Inverse sum indeg index is one among 

all these adriatic indices. The inverse sum indeg index [21] of a graph 𝐺 is defined as  

𝐼𝑆𝐼(𝐺) = ∑

𝑢𝑣∈𝐸(𝐺)

[
𝑑𝐺(𝑢) ⋅ 𝑑𝐺(𝑣)

𝑑𝐺(𝑢) + 𝑑𝐺(𝑣)
] 

This index was also studied in[7,8,18,21]. Motivated by the definition of inverse sum indeg index and its applications, Kulli 

introduced the first multiplicative inverse sum indeg index [6] of a graph 𝐺. The multiplicative inverse sum indeg index of a 

graph 𝐺 is defined as  

 𝐼𝑆𝐼𝐼𝐼(𝐺) = ∏𝑢𝑣∈𝐸(𝐺) [
𝑑𝐺(𝑢)⋅𝑑𝐺(𝑣)

𝑑𝐺(𝑢)+𝑑𝐺(𝑣)
] . (1.1) 

 The first and second multiplicative Zagreb indices of a graph 𝐺 are defined as  

 𝐼𝐼1(𝐺) = ∏𝑢∈𝑉(𝐺) 𝑑𝐺(𝑢)2, 𝐼𝐼2(𝐺) = ∏𝑢,𝑣∈𝐸(𝐺) 𝑑𝐺(𝑢) ⋅ 𝑑𝐺(𝑣). 

These indices were introduced by Todeshine[20] et al. and were studied. Eliasi[1] et al. proposed a new multiplicative version of 

the first Zagreb index as  

 𝐼𝐼1
∗(𝐺) = ∏𝑢,𝑣∈𝐸(𝐺) [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣)]. 

The first and second multiplicative hyper--Zagreb indices of a graph 𝐺 are defined as  

 𝐻𝐼𝐼1(𝐺) = ∏𝑢,𝑣∈𝐸(𝐺) [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣)]2, 

 

 𝐻𝐼𝐼2(𝐺) = ∏𝑢,𝑣∈𝐸(𝐺) [𝑑𝐺(𝑢) ⋅ 𝑑𝐺(𝑣)]2. 

These indices were introduced by Kulli in [11]. The best known and widely used topological index is the product connectivity 

index or Randi𝑐′ index, introduced by Randi𝑐′ in [17] and is defined as  
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 𝒳(𝐺) = ∑𝑢𝑣∈𝐸(𝐺)
1

√𝑑𝐺(𝑢)⋅𝑑𝐺(𝑣)
. 

Motivated by the definition of the product connectivity index and its wide applications, Kulli in [9] introduced the multiplicative 

sum connectivity index, multiplicative product connectivity index, multiplicative atom bond connectivity index and multiplicative 

geomertic arithmetic index of a graph as follows: The multiplicative sum connectivity index of a graph 𝐺 is defined as  

 𝑋𝐼𝐼(𝐺) = ∏𝑢,𝑣∈𝐸(𝐺)
1

√𝑑𝐺(𝑢)+𝑑𝐺(𝑣)
. (1.2) 

The multiplicative product connectivity index of a graph 𝐺 is defined as  

 𝒳𝐼𝐼(𝐺) = ∏𝑢,𝑣∈𝐸(𝐺)
1

√𝑑𝐺(𝑢)⋅𝑑𝐺(𝑣)
. (1.3) 

The multiplicative atom bond connectivity index of a graph 𝐺 is defined as  

 𝐴𝐵𝐶𝐼𝐼(𝐺) = ∏𝑢𝑣∈𝐸(𝐺) √
𝑑𝐺(𝑢)+𝑑𝐺(𝑣)−2

𝑑𝐺(𝑢)⋅𝑑𝐺(𝑣)
. (1.4) 

The multiplicative geomertic--arithmetic index of a graph 𝐺 is defined as  

 𝐺𝐴𝐼𝐼(𝐺) = ∏𝑢,𝑣∈𝐸(𝐺) [
2√𝑑𝐺(𝑢)⋅𝑑𝐺(𝑣)

𝑑𝐺(𝑢)+𝑑𝐺(𝑣)
] . (1.5) 

Motivated by the definition of multiplicative geomertic--arithmetic index in [9] Kulli introduced new multiplicative arithmetic--

geometric index in [10].The multiplicative arithmetic--geometric index of a graph 𝐺 is defined as  

 𝐴𝐺𝐼𝐼(𝐺) = ∏𝑢,𝑣∈𝐸(𝐺) [
𝑑𝐺(𝑢)+𝑑𝐺(𝑣)

2√𝑑𝐺(𝑢)⋅𝑑𝐺(𝑣)
] . (1.6) 

 Many other multiplicative topological indices are studied in[6,9,10,11,12]. A fixed correlation architecture is characterized by a 

graph, with vertices corresponding to processing nodes and edges representing communication links. A network is a fixed 

interconnection architecture. Interrelationship between networks are ignominiously hard to compare in abstract terms. 

Researchers in parallel processing are thus persuaded to offer new or enhance interconnection networks, claiming the advantage 

and for better performance [5]. Some interconnection network topologies are designed and some taken from nature. For example 

hyper cubes, complete binary tree, butterfly are some of the designed architecture[5]. See Figure(1).  

                        
 

                                 Figure1: Designed Architecture 

                               
                                 Figure2: Natural Architecture    

 

Honeycomb, hexagonal network and 4 × 4 grid networks resemble to atomic or molecular lattice structures and we call them 

natural architectures. See Figure(2). The silicates are the largest, the most interesting and the most complicated class of minerals 

so far. Silicates are obtained by fusing metal oxides or metal carbonates with sand. Necessarily all the silicates contain 𝑆𝑖𝑂4 

tetrahedra. In chemistry, the corner vertices of 𝑆𝑖𝑂4 tetrahedra mean oxygen ions and the central vertex mean the silicon ions. In 

graph theory, we refer to corner vertices as oxygen nodes and the central vertex as silicon node. See Figure (3).  

                                             
 Figure3: 𝑆𝑖𝑂4 tetrahedra where the corner vertices represent oxygen ions and the central vertex the silicon ion.   

Minerals are obtained by successively fusing oxygen nodes of two tetrahedra of different silicates, different types of silicate 

structure arise from the ways in which these tetrahedra are arranged. A few networks such as hexagonal, honeycomb, rhombus, 

oxide, dominating and many more networks resemble to atomic or molecular lattice structure. These networks are widely used in 

computer graphics, cellular phone base station, image processing, and in chemistry as the representation of benzenoid hydrocarbons 

and carbon hexagons of Carbon Nanotubes. These networks have very interesting topological properties which have been studied in 

different aspects in [5,7,13,14,15,16,22]. In this paper, we compute some multiplicative topological indices such as multiplicative 

inverse sum indeg index [𝐼𝑆𝐼𝐼𝐼(𝐺)], multiplicative sum connectivity index [𝑋𝐼𝐼(𝐺)], multiplicative product connectivity index 

[𝒳𝐼𝐼(𝐺)], multiplicative atom bond connectivity index [𝐴𝐵𝐶𝐼𝐼(𝐺)], multiplicative geomertic-- arithmetic index [𝐺𝐴𝐼𝐼(𝐺)] and 
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multiplicative arithmetic--geomertic index [𝐴𝐺𝐼𝐼(𝐺)] of networks such as rhombus silicate network[14], chain silicate 

network[15], silicate network[15], honeycomb network[19] and dominating silicate network[22]. 

II. RHOMBUS SILICATE NETWORKS [𝑹𝑯𝑺𝑳𝒏] 

                Silicates are obtained by fusing metal oxides or metal carbonates with sand. In this section, we consider a family of 

rhombus silicate networks. This network is symbolized by 𝑅𝐻𝑆𝐿𝑛. A 3--dimensional rhombus silicate network is depicted in 

Figure (4). 

 

 
Figure 4: A 3--dimensional rhombus silicate network. 

  

                  The order and size of rhombus silicate network 𝑅𝐻𝑆𝐿𝑛 is 5𝑛2 + 2𝑛 and 12𝑛2. In 𝑅𝐻𝑆𝐿𝑛, by algebraic method, there 

are three types of edges based on the degree of end vertices. The partition of the edge set of 𝑅𝐻𝑆𝐿𝑛 is as follows:  

 𝐸33 = {𝑢𝑣 ∈ 𝐸(𝑅𝐻𝑆𝐿𝑛): 𝑑𝑅𝐻𝑆𝐿𝑛
(𝑢) = 3 = 𝑑𝑅𝐻𝑆𝐿𝑛

(𝑣)}, |𝐸33| = 4𝑛 + 2 

 

 𝐸36 = {𝑢𝑣 ∈ 𝐸(𝑅𝐻𝑆𝐿𝑛): 𝑑𝑅𝐻𝑆𝐿𝑛
(𝑢) = 3, 𝑑𝑅𝐻𝑆𝐿𝑛

(𝑣) = 6}, |𝐸36| = 6𝑛2 + 4𝑛 − 4 

 

 𝐸66 = {𝑢𝑣 ∈ 𝐸(𝑅𝐻𝑆𝐿𝑛): 𝑑𝑅𝐻𝑆𝐿𝑛
(𝑢) = 6 = 𝑑𝑅𝐻𝑆𝐿𝑛

(𝑣)}, |𝐸66| = 6𝑛2 − 8𝑛 + 2. 

                   Now in the following theorem, we compute multiplicative inverse sum indeg index [𝐼𝑆𝐼𝐼𝐼(𝐺)], multiplicative sum 

connectivity index [𝑋𝐼𝐼(𝐺)], multiplicative product connectivity index [𝒳𝐼𝐼(𝐺)], multiplicative atom bond connectivity index 

[𝐴𝐵𝐶𝐼𝐼(𝐺)], multiplicative geomertic-- arithmetic index [𝐺𝐴𝐼𝐼(𝐺)] and multiplicative arithmetic--geomertic index [𝐴𝐺𝐼𝐼(𝐺)] of 

𝑅𝐻𝑆𝐿𝑛.  

  

Theorem 2.1.  Considering the rhombus silicate network 𝑅𝐻𝑆𝐿𝑛. Then  

 𝐼𝑆𝐼𝐼𝐼(𝑅𝐻𝑆𝐿𝑛) = 26𝑛2−2 × 36𝑛2−4𝑛+2 

 

 𝑋𝐼𝐼(𝑅𝐻𝑆𝐿𝑛) = (√6)−4𝑛−2 × 34−6𝑛2−4𝑛 × (√12)8𝑛−6𝑛2−2 

 

 𝒳𝐼𝐼(𝑅𝐻𝑆𝐿𝑛) = 3−6𝑛2−8𝑛+2 × (√2)
−6𝑛2−4𝑛+4

× 68𝑛−6𝑛2−2 

 

 𝐴𝐵𝐶𝐼𝐼(𝑅𝐻𝑆𝐿𝑛) = 212𝑛−6𝑛2
× 3−12𝑛2

× (√
7

2
)

6𝑛2+4𝑛−4

× (√10)
6𝑛2−8𝑛+2

 

 

 𝐺𝐴𝐼𝐼(𝑅𝐻𝑆𝐿𝑛) = (
2√2

3
)

6𝑛2+4𝑛−4

 

 

 𝐴𝐺𝐼𝐼(𝑅𝐻𝑆𝐿𝑛) = (
3

2√2
)

6𝑛2+4𝑛−4

. 

  

  

Proof. Here let 𝐺1 be the rhombus silicate network. By using definitions, we have  

 

𝐼𝑆𝐼𝐼𝐼(𝐺1)     =     ∏𝑢𝑣∈𝐸(𝐺1) [
𝑑𝐺1(𝑢)⋅𝑑𝐺1(𝑣)

𝑑𝐺1(𝑢)+𝑑𝐺1(𝑣)
]

    =     (
3⋅3

3+3
)

|𝐸33|

× (
3⋅6

3+6
)

|𝐸36|

× (
6⋅6

6+6
)

|𝐸66|

    =     26𝑛2−2 × 36𝑛2−4𝑛+2.
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𝑋𝐼𝐼(𝐺1)     =     ∏𝑢,𝑣∈𝐸(𝐺1)
1

√𝑑𝐺1(𝑢)+𝑑𝐺1(𝑣)

    =     (
1

√3+3
)

|𝐸33|

× (
1

√3+6
)

|𝐸36|

× (
1

√6+6
)

|𝐸66|

    =     (√6)−4𝑛−2 × 3−6𝑛2−4𝑛+4 × (√12)8𝑛−6𝑛2−2.

 

  

 

𝒳𝐼𝐼(𝐺1)     =     ∏𝑢,𝑣∈𝐸(𝐺1)
1

√𝑑𝐺1(𝑢)⋅𝑑𝐺1(𝑣)

    =     (
1

√3⋅3
)

|𝐸33|

× (
1

√3⋅6
)

|𝐸36|

× (
1

√6⋅6
)

|𝐸66|

    =     3−6𝑛2−8𝑛+2 × (√2)
−6𝑛2−4𝑛+4

× 68𝑛−6𝑛2−2.

 

  

 

𝐴𝐵𝐶𝐼𝐼(𝐺1)     =     ∏𝑢,𝑣∈𝐸(𝐺1) √
𝑑𝐺1(𝑢)+𝑑𝐺1(𝑣)−2

𝑑𝐺1(𝑢)⋅𝑑𝐺1(𝑣)

    =     (√
3+3−2

3⋅3
)

|𝐸33|

× (√
3+6−2

3⋅6
)

|𝐸36|

× (√
6+6−2

6⋅6
)

|𝐸66|

    =     212𝑛−6𝑛2
× 3−12𝑛2

× (√
7

2
)

6𝑛2+4𝑛−4

× (√10)
6𝑛2−8𝑛+2

 

  

 

𝐺𝐴𝐼𝐼(𝐺1)     =     ∏𝑢,𝑣∈𝐸(𝐺1) [
2√𝑑𝐺1(𝑢)⋅𝑑𝐺1(𝑣)

𝑑𝐺1(𝑢)+𝑑𝐺1(𝑣)
]

    =     (
2√3⋅3

3+3
)

|𝐸33|

× (
2√3⋅6

3+6
)

|𝐸36|

× (
2√6⋅6

6+6
)

|𝐸66|

    =     (
2√2

3
)

6𝑛2+4𝑛−4

.

 

  

 

𝐴𝐺𝐼𝐼(𝐺1)     =     ∏𝑢,𝑣∈𝐸(𝐺1) [
𝑑𝐺1(𝑢)+𝑑𝐺1(𝑣)

2√𝑑𝐺1(𝑢)⋅𝑑𝐺1(𝑣)
]

    =     (
3+3

2√3⋅3
)

|𝐸33|

× (
3+6

2√3⋅6
)

|𝐸36|

× (
6+6

2√6⋅6
)

|𝐸66|

    =     (
3

2√2
)

6𝑛2+4𝑛−4

.

 

  

 

III. CHAIN SILICATE NETWORKS [𝑪𝑺𝒏] 

                 We now consider, a family of chain silicate networks. The chain silicate network is denoted by 𝐶𝑆𝑛 and is obtained by 

arranging n--tetrahedral linearly. A chain silicate network 𝐶𝑆𝑛 is depicted in Figure (5). 

 

 
Figure 5:  Chain silicate network. 

    

Chain silicate network 𝐶𝑆𝑛 has |𝑉(𝐶𝑆𝑛)| = 3𝑛 + 1 and |𝐸(𝐶𝑆𝑛)| = 6𝑛. By algebraic method, In 𝐶𝑆𝑛 there are three types of 

edges based on the degree of end vertices. The partition of the edge set of 𝐶𝑆𝑛 is as follows:  

 𝐸33 = {𝑢𝑣 ∈ 𝐸(𝐶𝑆𝑛): 𝑑𝐶𝑆𝑛
(𝑢) = 3 = 𝑑𝐶𝑆𝑛

(𝑣)}, |𝐸33| = 𝑛 + 4 

 

 𝐸36 = {𝑢𝑣 ∈ 𝐸(𝐶𝑆𝑛): 𝑑𝐶𝑆𝑛
(𝑢) = 3, 𝑑𝐶𝑆𝑛

(𝑣) = 6}, |𝐸36| = 4𝑛 − 2 

 

 𝐸66 = {𝑢𝑣 ∈ 𝐸(𝐶𝑆𝑛): 𝑑𝐶𝑆𝑛
(𝑢) = 6 = 𝑑𝐶𝑆𝑛

(𝑣)}, |𝐸66| = 𝑛 − 2. 

We now compute multiplicative inverse sum indeg index [𝐼𝑆𝐼𝐼𝐼(𝐺)], multiplicative sum connectivity index [𝑋𝐼𝐼(𝐺)], 
multiplicative product connectivity index [𝒳𝐼𝐼(𝐺)], multiplicative atom bond connectivity index [𝐴𝐵𝐶𝐼𝐼(𝐺)], multiplicative 
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geomertic-- arithmetic index [𝐺𝐴𝐼𝐼(𝐺)] and multiplicative arithmetic--geomertic index [𝐴𝐺𝐼𝐼(𝐺)] of chain silicate network 𝐶𝑆𝑛. 

   

 Theorem 3.1.  For the chain silicate network 𝐶𝑆𝑛, we have  

 𝐼𝑆𝐼𝐼𝐼(𝐶𝑆𝑛) = 23𝑛−6 × 32𝑛+2 
 

 𝑋𝐼𝐼(𝐶𝑆𝑛) = (√6)−𝑛−4 × 32−4𝑛 × (√12)2−𝑛 

 

 𝒳𝐼𝐼(𝐶𝑆𝑛) = 3−5𝑛−2 × (√2)
2−4𝑛

× 62−𝑛 

 

 𝐴𝐵𝐶𝐼𝐼(𝐶𝑆𝑛) = 26 × 3−6𝑛 × (√
7

2
)

4𝑛−2

× (√10)
𝑛−2

 

 

 𝐺𝐴𝐼𝐼(𝐶𝑆𝑛) = (
√8

3
)

4𝑛−2

 

 

 𝐴𝐺𝐼𝐼𝐶𝑆𝑛) = (
3

√8
)

4𝑛−2

. 

   

Proof. Here let 𝐺2 be the chain silicate network 𝐶𝑆𝑛. From Equations (1.1) to (1.6) , we compute  

 

𝐼𝑆𝐼𝐼𝐼(𝐺2)     =     ∏𝑢𝑣∈𝐸(𝐺2) [
𝑑𝐺2(𝑢)⋅𝑑𝐺2(𝑣)

𝑑𝐺2(𝑢)+𝑑𝐺2(𝑣)
]

    =     (
3⋅3

3+3
)

|𝐸33|

× (
3⋅6

3+6
)

|𝐸36|

× (
6⋅6

6+6
)

|𝐸66|

    =     23𝑛−6 × 32𝑛+2.

 

  

 

𝑋𝐼𝐼(𝐺2)     =     ∏𝑢,𝑣∈𝐸(𝐺2)
1

√𝑑𝐺2(𝑢)+𝑑𝐺2(𝑣)

    =     (
1

√3+3
)

|𝐸33|

× (
1

√3+6
)

|𝐸36|

× (
1

√6+6
)

|𝐸66|

    =     (√6)−𝑛−4 × 32−4𝑛 × (√12)2−𝑛 .

 

  

 

𝒳𝐼𝐼(𝐺2)     =     ∏𝑢,𝑣∈𝐸(𝐺2)
1

√𝑑𝐺2(𝑢)⋅𝑑𝐺2(𝑣)

    =     (
1

√3⋅3
)

|𝐸33|

× (
1

√3⋅6
)

|𝐸36|

× (
1

√6⋅6
)

|𝐸66|

    =     3−5𝑛−2 × (√2)
2−4𝑛

× 6𝑛−2.

 

  

 

𝐴𝐵𝐶𝐼𝐼(𝐺2)     =     ∏𝑢,𝑣∈𝐸(𝐺2) √
𝑑𝐺2(𝑢)+𝑑𝐺2(𝑣)−2

𝑑𝐺2(𝑢)⋅𝑑𝐺2(𝑣)

    =     (√
3+3−2

3⋅3
)

|𝐸33|

× (√
3+6−2

3⋅6
)

|𝐸36|

× (√
6+6−2

6⋅6
)

|𝐸66|

    =     26 × 3−6𝑛 × (√
7

2
)

4𝑛−2

× (√10)
𝑛−2

 

  

 

𝐺𝐴𝐼𝐼(𝐺2)     =     ∏𝑢,𝑣∈𝐸(𝐺2) [
2√𝑑𝐺2(𝑢)⋅𝑑𝐺2(𝑣)

𝑑𝐺2(𝑢)+𝑑𝐺2(𝑣)
]

    =     (
2√3⋅3

3+3
)

|𝐸33|

× (
2√3⋅6

3+6
)

|𝐸36|

× (
2√6⋅6

6+6
)

|𝐸66|

    =     (
√8

3
)

4𝑛−2

.

 

  

 

𝐴𝐺𝐼𝐼(𝐺2)     =     ∏𝑢,𝑣∈𝐸(𝐺2) [
𝑑𝐺2(𝑢)+𝑑𝐺2(𝑣)

2√𝑑𝐺2(𝑢)⋅𝑑𝐺2(𝑣)
]

    =     (
3+3

2√3⋅3
)

|𝐸33|

× (
3+6

2√3⋅6
)

|𝐸36|

× (
6+6

2√6⋅6
)

|𝐸66|

    =     (
3

√8
)

4𝑛−2

.
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IV. SILICATE NETWORKS [𝑺𝑳𝒏] 

Silicate networks are obtained by fusing metal oxide or metal carbonates with sand. A silicate network is denoted by 𝑆𝐿𝑛, where 

𝑛 is the number of hexagons between the centre and boundary of 𝑆𝐿𝑛. A silicate network 𝑆𝐿𝑛 is depicted in Figure (6). 

 

 
Figure 6: Silicate network 

    

Silicate network 𝑆𝐿𝑛 has |𝑉(𝑆𝐿𝑛)| = 15𝑛2 + 3𝑛 and |𝐸(𝑆𝐿𝑛)| = 36𝑛2. By algebraic method, there are three types of 

edges based on the degree of end vertices. The partition of the edge set of 𝑆𝐿𝑛 is as follows:  

 𝐸33 = {𝑢𝑣 ∈ 𝐸(𝑆𝐿𝑛): 𝑑𝑆𝐿𝑛
(𝑢) = 3 = 𝑑𝑆𝐿𝑛

(𝑣)}, |𝐸33| = 6𝑛 

 

 𝐸36 = {𝑢𝑣 ∈ 𝐸(𝑆𝐿𝑛): 𝑑𝑆𝐿𝑛
(𝑢) = 3, 𝑑𝑆𝐿𝑛

(𝑣) = 6}, |𝐸36| = 18𝑛2 + 6𝑛 

 

 𝐸66 = {𝑢𝑣 ∈ 𝐸(𝑆𝐿𝑛): 𝑑𝑆𝐿𝑛
(𝑢) = 6 = 𝑑𝑆𝐿𝑛

(𝑣)}, |𝐸66| = 18𝑛2 − 12𝑛. 

We now compute multiplicative inverse sum indeg index [𝐼𝑆𝐼𝐼𝐼(𝐺)], multiplicative sum connectivity index [𝑋𝐼𝐼(𝐺)], 
multiplicative product connectivity index [𝒳𝐼𝐼(𝐺)], multiplicative atom bond connectivity index [𝐴𝐵𝐶𝐼𝐼(𝐺)], multiplicative 

geomertic-- arithmetic index [𝐺𝐴𝐼𝐼(𝐺)] and multiplicative arithmetic--geomertic index [𝐴𝐺𝐼𝐼(𝐺)] of chain silicate network 𝑆𝐿𝑛.  

  

Theorem 4.1.  For the silicate network 𝑆𝐿𝑛, we have  

 𝐼𝑆𝐼𝐼𝐼(𝑆𝐿𝑛) = 318𝑛2−6𝑛 × 218𝑛2
 

 

 𝑋𝐼𝐼(𝑆𝐿𝑛) = (√6)−6𝑛 × 3−18𝑛2−6𝑛 × (√12)12𝑛−18𝑛2
 

 

 𝒳𝐼𝐼(𝑆𝐿𝑛) = 3−36𝑛2
× (√2)

−18𝑛2−6𝑛
× 212𝑛−18𝑛2

 

 

 𝐴𝐵𝐶𝐼𝐼(𝑆𝐿𝑛) = 2−18𝑛2+18𝑛 × 3−36𝑛2
× (√

7

2
)

18𝑛2+6𝑛

× (√10)
18𝑛2−12𝑛

 

 

 𝐺𝐴𝐼𝐼(𝑆𝐿𝑛) = (√8)
18𝑛2+6𝑛

× 3−18𝑛2−6𝑛 

 

 𝐴𝐺𝐼𝐼(𝑆𝐿𝑛) = (√8)
−18𝑛2−6𝑛

× 318𝑛2+6𝑛. 
  

  

Proof. Here let 𝐺3 be the silicate network 𝑆𝐿𝑛. By making use of definitions and edge partitiion of silicate network 𝑆𝐿𝑛, 

we compute  

 

𝐼𝑆𝐼𝐼𝐼(𝐺3)     =     ∏𝑢𝑣∈𝐸(𝐺3) [
𝑑𝐺3(𝑢)⋅𝑑𝐺3(𝑣)

𝑑𝐺3(𝑢)+𝑑𝐺3(𝑣)
]

    =     (
3⋅3

3+3
)

|𝐸33|

× (
3⋅6

3+6
)

|𝐸36|

× (
6⋅6

6+6
)

|𝐸66|

    =     318𝑛2−6𝑛 × 218𝑛2
.
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𝑋𝐼𝐼(𝐺3)     =     ∏𝑢,𝑣∈𝐸(𝐺3)
1

√𝑑𝐺3(𝑢)+𝑑𝐺3(𝑣)

    =     (
1

√3+3
)

|𝐸33|

× (
1

√3+6
)

|𝐸36|

× (
1

√6+6
)

|𝐸66|

    =     (√6)−6𝑛 × 3−18𝑛2−6𝑛 × (√12)12𝑛−18𝑛2
.

 

  

 

𝒳𝐼𝐼(𝐺3)     =     ∏𝑢,𝑣∈𝐸(𝐺3)
1

√𝑑𝐺3(𝑢)⋅𝑑𝐺3(𝑣)

    =     (
1

√3⋅3
)

|𝐸33|

× (
1

√3⋅6
)

|𝐸36|

× (
1

√6⋅6
)

|𝐸66|

    =     3−36𝑛2
× (√2)

−18𝑛2−6𝑛
× 212𝑛−18𝑛2

.

 

  

 

𝐴𝐵𝐶𝐼𝐼(𝐺3)     =     ∏𝑢,𝑣∈𝐸(𝐺3) √
𝑑𝐺3(𝑢)+𝑑𝐺3(𝑣)−2

𝑑𝐺3(𝑢)⋅𝑑𝐺3(𝑣)

    =     (√
3+3−2

3⋅3
)

|𝐸33|

× (√
3+6−2

3⋅6
)

|𝐸36|

× (√
6+6−2

6⋅6
)

|𝐸66|

    =     2−18𝑛2+18𝑛 × 3−36𝑛2
× (√

7

2
)

18𝑛2+6𝑛

× (√10)
18𝑛2−12𝑛

.

 

  

 

𝐺𝐴𝐼𝐼(𝐺3)     =     ∏𝑢,𝑣∈𝐸(𝐺3) [
2√𝑑𝐺3(𝑢)⋅𝑑𝐺3(𝑣)

𝑑𝐺3(𝑢)+𝑑𝐺3(𝑣)
]

    =     (
2√3⋅3

3+3
)

|𝐸33|

× (
2√3⋅6

3+6
)

|𝐸36|

× (
2√6⋅6

6+6
)

|𝐸66|

    =     (√8)
18𝑛2+6𝑛

× 3−18𝑛2−6𝑛 .

 

  

 

𝐴𝐺𝐼𝐼(𝐺3)     =     ∏𝑢,𝑣∈𝐸(𝐺3) [
𝑑𝐺3(𝑢)+𝑑𝐺3(𝑣)

2√𝑑𝐺3(𝑢)⋅𝑑𝐺3(𝑣)
]

    =     (
3+3

2√3⋅3
)

|𝐸33|

× (
3+6

2√3⋅6
)

|𝐸36|

× (
6+6

2√6⋅6
)

|𝐸66|

    =     (√8)
−18𝑛2−6𝑛

× 318𝑛2+6𝑛 .

 

 

 

V. HONEYCOMB NETWORK [𝑯𝑪𝒏] 

             Recursively using hexagonal tiling in a particular pattern, honeycomb networks are formed. These networks are useful in 

chemistry and also in computer graphics. A honeycomb network of dimensional 𝑛 is denoted by 𝐻𝐶𝑛 where 𝑛 is the number of 

hexagons between central and boundary hexagon. A honeycomb network of dimension four is shown in Figure (7). 

 
Figure7:  Honeycomb network of dimension 4. 

Honeycomb network has |𝑉(𝐻𝐶𝑛)| = 6𝑛2 and 𝐸(𝐻𝐶𝑛) = 9𝑛2 − 3𝑛. The partition of the edge set of 𝐻𝐶𝑛 is as follows:  

 𝐸22 = {𝑢𝑣 ∈ 𝐸(𝐻𝐶𝑛): 𝑑𝐻𝐶𝑛
(𝑢) = 2 = 𝑑𝐻𝐶𝑛

(𝑣)}, |𝐸22| = 6 
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 𝐸23 = {𝑢𝑣 ∈ 𝐸(𝐻𝐶𝑛): 𝑑𝐻𝐶𝑛
(𝑢) = 2, 𝑑𝐻𝐶𝑛

(𝑣) = 4}, |𝐸23| = 12𝑛 − 12 

 

 𝐸33 = {𝑢𝑣 ∈ 𝐸(𝐻𝐶𝑛): 𝑑𝐻𝐶𝑛
(𝑢) = 3 = 𝑑𝐻𝐶𝑛

(𝑣)}, |𝐸33| = 9𝑛2 − 15𝑛 + 6. 

We obtain now multiplicative inverse sum indeg index [𝐼𝑆𝐼𝐼𝐼(𝐺)], multiplicative sum connectivity index [𝑋𝐼𝐼(𝐺)], multiplicative 

product connectivity index [𝒳𝐼𝐼(𝐺)], multiplicative atom bond connectivity index [𝐴𝐵𝐶𝐼𝐼(𝐺)], multiplicative geomertic-- 

arithmetic index [𝐺𝐴𝐼𝐼(𝐺)] and multiplicative arithmetic--geomertic index [𝐴𝐺𝐼𝐼(𝐺)] of honeycomb network 𝐻𝐶𝑛.  

  

Theorem 5.1. Consider the honeycomb network 𝐻𝐶𝑛. Then  

 𝐼𝑆𝐼𝐼𝐼(𝐻𝐶𝑛) = 2−9𝑛2+27𝑛−18 × 39𝑛2−3𝑛−6 × 512−12𝑛 

 

 𝑋𝐼𝐼(𝐻𝐶𝑛) = 2−6 × (√5)
12−12𝑛

× (√6)
15𝑛−9𝑛2−6

 

 

 𝒳𝐼𝐼(𝐻𝐶𝑛) = 2−6 × 315𝑛−9𝑛2−6 × (√6)
12−12𝑛

 

 

 𝐴𝐵𝐶𝐼𝐼(𝐻𝐶𝑛) = (√2)
6−12𝑛

× (
2

3
)

9𝑛2−15𝑛+6

 

 

 𝐺𝐴𝐼𝐼(𝐻𝐶𝑛) = (
2√6

5
)

12𝑛−12

 

 

 𝐴𝐺𝐼𝐼(𝐻𝐶𝑛) = (
5

2√6
)

12𝑛−12

. 

  

  

Proof. Here let 𝐺4 be the honeycomb network 𝐻𝐶𝑛. From Equations (1.1) to (1.2) and the edge partition of 𝐻𝐶𝑛, we compute  

 

𝐼𝑆𝐼𝐼𝐼(𝐺4)     =     ∏𝑢𝑣∈𝐸(𝐺4) [
𝑑𝐺4(𝑢)⋅𝑑𝐺4(𝑣)

𝑑𝐺4(𝑢)+𝑑𝐺4(𝑣)
]

    =     (
2⋅2

2+2
)

|𝐸22|

× (
2⋅3

2+3
)

|𝐸23|

× (
3⋅3

3+3
)

|𝐸33|

    =     2−9𝑛2+27𝑛−18 × 39𝑛2−3𝑛−6 × 512−12𝑛.

 

  

 

𝑋𝐼𝐼(𝐺4)     =     ∏𝑢,𝑣∈𝐸(𝐺4)
1

√𝑑𝐺4(𝑢)+𝑑𝐺4(𝑣)

    =     (
1

√2+2
)

|𝐸22|

× (
1

√2+3
)

|𝐸23|

× (
1

√3+3
)

|𝐸33|

    =     2−6 × (√5)
12−12𝑛

× (√6)
15𝑛−9𝑛2−6

 

  

 

𝒳𝐼𝐼(𝐺4)     =     ∏𝑢,𝑣∈𝐸(𝐺4)
1

√𝑑𝐺4(𝑢)⋅𝑑𝐺4(𝑣)

    =     (
1

√2⋅2
)

|𝐸22|

× (
1

√2⋅3
)

|𝐸23|

× (
1

√3⋅3
)

|𝐸33|

    =     2−6 × 315𝑛−9𝑛2−6 × (√6)
12−12𝑛

.

 

  

 

𝐴𝐵𝐶𝐼𝐼(𝐺4)     =     ∏𝑢,𝑣∈𝐸(𝐺4) √
𝑑𝐺4(𝑢)+𝑑𝐺4(𝑣)−2

𝑑𝐺4(𝑢)⋅𝑑𝐺4(𝑣)

    =     (√
2+2−2

2⋅2
)

|𝐸22|

× (√
2+3−2

2⋅3
)

|𝐸23|

× (√
3+3−2

3⋅3
)

|𝐸33|

    =     (√2)
6−12𝑛

× (
2

3
)

9𝑛2−15𝑛+6

 

  

 

𝐺𝐴𝐼𝐼(𝐺4)     =     ∏𝑢,𝑣∈𝐸(𝐺4) [
2√𝑑𝐺4(𝑢)⋅𝑑𝐺4(𝑣)

𝑑𝐺4(𝑢)+𝑑𝐺4(𝑣)
]

    =     (
2√2⋅2

2+2
)

|𝐸22|

× (
2√2⋅3

2+3
)

|𝐸23|

× (
2√3⋅3

3+3
)

|𝐸33|

    =     (
2√6

5
)

12𝑛−12

.
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𝐴𝐺𝐼𝐼(𝐺4)     =     ∏𝑢,𝑣∈𝐸(𝐺4) [
𝑑𝐺4(𝑢)+𝑑𝐺4(𝑣)

2√𝑑𝐺4(𝑢)⋅𝑑𝐺4(𝑣)
]

    =     (
2+2

2√2⋅2
)

|𝐸22|

× (
2+3

2√2⋅3
)

|𝐸23|

× (
3+3

2√3⋅3
)

|𝐸33|

    =     (
5

2√6
)

12𝑛−12

.

 

 

VI. DOMINATING SILICATE NETWORK [𝑫𝑺𝑳(𝒏)] 

             Dominating silicate network of dimension 𝑛 is denoted by 𝐷𝑆𝐿(𝑛). A dominating silicate network of dimension two is 

shown in Figure (8). 

 
Figure 8:  Dominating Silicate network of dimension 2 [𝐷𝑆𝐿(2)]. 

 

            The number of vertices and the number of edges of the dominating silicate network is 45𝑛2 − 39𝑛 + 12 and 108𝑛2 +
36 − 108𝑛, respectively. By algebraic method, in 𝐷𝑆𝐿(𝑛), there are four types of edge partitions based on degrees of end vertices 

of each edge. The partition of the edge set of 𝐷𝑆𝐿(𝑛) is as follows:  

 𝐸23 = {𝑢𝑣 ∈ 𝐸(𝐷𝑆𝐿(𝑛)): 𝑑𝐷𝑆𝐿(𝑛)(𝑢) = 2, 𝑑𝐷𝑆𝐿(𝑛)(𝑣)} = 3, |𝐸23| = 12𝑛 − 6 

 

 𝐸26 = {𝑢𝑣 ∈ 𝐸(𝐷𝑆𝐿(𝑛)): 𝑑𝐷𝑆𝐿(𝑛)(𝑢) = 2, 𝑑𝐷𝑆𝐿(𝑛)(𝑣) = 6}, |𝐸26| = 24𝑛 − 12 

 

 𝐸36 = {𝑢𝑣 ∈ 𝐸(𝐷𝑆𝐿(𝑛)): 𝑑𝐷𝑆𝐿(𝑛)(𝑢) = 3, 𝑑𝐷𝑆𝐿(𝑛)(𝑣) = 6}, |𝐸36| = 54𝑛2 − 66𝑛 + 24 

 

 𝐸66 = {𝑢𝑣 ∈ 𝐸(𝐷𝑆𝐿(𝑛)): 𝑑𝐷𝑆𝐿(𝑛)(𝑢) = 6 = 𝑑𝐷𝑆𝐿(𝑛)(𝑣)}, |𝐸66| = 54𝑛2 − 78𝑛 + 30. 

             We obtain now multiplicative inverse sum indeg index [𝐼𝑆𝐼𝐼𝐼(𝐺)], multiplicative sum connectivity index [𝑋𝐼𝐼(𝐺)], 
multiplicative product connectivity index [𝒳𝐼𝐼(𝐺)], multiplicative atom bond connectivity index [𝐴𝐵𝐶𝐼𝐼(𝐺)], multiplicative 

geomertic-- arithmetic index [𝐺𝐴𝐼𝐼(𝐺)] and multiplicative arithmetic--geomertic index [𝐴𝐺𝐼𝐼(𝐺)] of dominating silicate network 

𝐷𝑆𝐿(𝑛).  

  

 Theorem 6.1.  Let 𝐷𝑆𝐿(𝑛) the dominating silicate network be 𝐺5 here, then  

 𝐼𝑆𝐼𝐼𝐼(𝐷𝑆𝐿(𝑛)) = 254𝑛2−78𝑛+30 × 354𝑛2−42𝑛+12 × 56−12𝑛 

 

 𝑋𝐼𝐼(𝐷𝑆𝐿(𝑛)) = 2−54𝑛2+54𝑛−18 × (√2)
12−24𝑛

× (√3)
78𝑛−54𝑛2−30

× 366𝑛−54𝑛2−24 × (√5)
12𝑛−6

 

 

 𝒳𝐷𝑆𝐿(𝑛) = 2−54𝑛2+54𝑛−18 × (√2)
−54𝑛2+66𝑛−24

× (√3)
12−24𝑛

× 3144𝑛−108𝑛2−54 × (√3)
12−24𝑛

× (√6)
−12𝑛+6

 

 

 𝐴𝐵𝐶𝐼𝐼(𝐷𝑆𝐿(𝑛)) = 3−108𝑛2+144𝑛−54 × (√2)
−108𝑛2+108𝑛−36

× (√5)
−78𝑛+54𝑛2+30

× (√7)
54𝑛2−66𝑛+24

 

 

 𝐺𝐴𝐼𝐼(𝐷𝑆𝐿(𝑛)) = (
√2

3
)

54𝑛2−66𝑛+24

× (
√6

5
)

12𝑛−6

× (√3)
24𝑛−12

× 254𝑛2−78𝑛+30 

 

 𝐴𝐺𝐼𝐼(𝐷𝑆𝐿(𝑛)) = (
√2

3
)

−54𝑛2+66𝑛−24

× (
√6

5
)

−12𝑛+6

× (√3)
−24𝑛+12

× 2−54𝑛2+78𝑛−30. 
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Proof. By using definitions and the edge partition of 𝐷𝑆𝐿(𝑛), we compute  

 

𝐼𝑆𝐼𝐼𝐼(𝐺5)     =     ∏𝑢𝑣∈𝐸(𝐺5) [
𝑑𝐺5(𝑢)⋅𝑑𝐺5(𝑣)

𝑑𝐺5(𝑢)+𝑑𝐺5(𝑣)
]

    =     (
2⋅3

2+3
)

|𝐸23|

× (
2⋅6

2+6
)

|𝐸26|

(
3⋅6

3+6
)

|𝐸36|

× (
6⋅6

6+6
)

|𝐸66|

    =     254𝑛2−78𝑛+30 × 354𝑛2−42𝑛+12 × 56−12𝑛.

 

  

 

𝑋𝐼𝐼(𝐺5)     =     ∏𝑢,𝑣∈𝐸(𝐺5)
1

√𝑑𝐺5(𝑢)+𝑑𝐺5(𝑣)

    =     (
1

√2+3
)

|𝐸23|

× (
1

√2+6
)

|𝐸26|

× (
1

√3+6
)

|𝐸36|

× (
1

√6+6
)

|𝐸66|

    =     2−54𝑛2+54𝑛−18 × (√2)
12−24𝑛

× (√3)
78𝑛−54𝑛2−30

× 366𝑛−54𝑛2−24 × (√5)
12𝑛−6

.

 

  

 

𝒳𝐼𝐼(𝐺5)     =     ∏𝑢,𝑣∈𝐸(𝐺5)
1

√𝑑𝐺5(𝑢)⋅𝑑𝐺5(𝑣)

    =     (
1

√2⋅3
)

|𝐸23|

× (
1

√2⋅6
)

|𝐸26|

× (
1

√3⋅6
)

|𝐸36|

× (
1

√6⋅6
)

|𝐸66|

    =     2−54𝑛2−78𝑛−18 × (√2)
−54𝑛2−66𝑛−24

× (√3)
12−24𝑛

× 3144𝑛−108𝑛2−54 × (√3)
12−24𝑛

× √6
−12𝑛+6

.

 

  

 

𝐴𝐵𝐶𝐼𝐼(𝐺5)     =     ∏𝑢𝑣∈𝐸(𝐺5) √
𝑑𝐺5(𝑢)+𝑑𝐺5(𝑣)−2

𝑑𝐺5(𝑢)⋅𝑑𝐺5(𝑣)

    =     (√
2+3−2

2⋅3
)

|𝐸23|

× (√
2+6−2

2⋅6
)

|𝐸26|

× (√
3+6−2

3⋅6
)

|𝐸36|

× (√
6+6−2

6⋅6
)

|𝐸66|

    =     3−108𝑛2+144𝑛−54 × (√2)
−108𝑛2+108𝑛−36

× (√5)
−78𝑛+54𝑛2+30

× (√7)
54𝑛2−66𝑛+24

 

  

 

𝐺𝐴𝐼𝐼(𝐺5)     =     ∏𝑢,𝑣∈𝐸(𝐺5) [
2√𝑑𝐺5(𝑢)⋅𝑑𝐺5(𝑣)

𝑑𝐺5(𝑢)+𝑑𝐺5(𝑣)
]

    =     (
2√2⋅3

2+3
)

|𝐸23|

× (
2√2⋅6

2+6
)

|𝐸26|

× (
2√3⋅6

3+6
)

|𝐸36|

× (
2√6⋅6

6+6
)

|𝐸66|

    =     (
√2

3
)

54𝑛2−66𝑛+24

× (
√6

5
)

12𝑛−6

× (√3)
24𝑛−12

× 254𝑛2−78𝑛+30.

 

  

 

𝐴𝐺𝐼𝐼(𝐺5)     =     ∏𝑢,𝑣∈𝐸(𝐺5) [
𝑑𝐺5(𝑢)+𝑑𝐺5(𝑣)

2√𝑑𝐺5(𝑢)⋅𝑑𝐺5(𝑣)
]

    =     (
2+3

2√2⋅3
)

|𝐸23|

× (
2+6

2√2⋅6
)

|𝐸26|

× (
3+6

2√3⋅6
)

|𝐸36|

× (
6+6

2√6⋅6
)

|𝐸66|

    =     (
√2

3
)

−54𝑛2+66𝑛−24

× (
√6

5
)

−12𝑛+6

× (√3)
−24𝑛+12

× 2−54𝑛2+78𝑛−30.
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