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ABSTRACT: Mohand and Sumudu transforms are very useful integral transforms for solving many advanced problems of engineering 

and sciences like heat conduction problems, vibrating beams problems, population growth and decay problems, electric circuit problems 

etc. In this article, we present a comparative study of two integral transforms namely Mohand and Sumudu transforms. In application 
section, we solve some systems of differential equations using both the transforms. Results show that Mohand and Sumudu transforms 

are closely connected.  
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1.INTRODUCTION: In modern time, integral transforms (Laplace transform [1], Fourier transform [1], Hankel transform [1], 

Mellin transform [1], Z-transform [1], Wavelet transform [1], Mahgoub transform [2], Kamal transform [3],   Elzaki transform [4], 

Aboodh transform [5], Mohand transform [6], Sumudu transform [7], Hermite transform [1] etc.) have very useful role in 

mathematics, physics, chemistry, social science, biology, radio physics, astronomy, nuclear science, electrical  and mechanical 

engineering for solving the advanced problems of  these fields.  

Belgacem and Karaballi [8] gave a paper on Sumudu transform fundamental properties investigations and applications. A 
note on the Sumudu transforms and differential equations was given by Eltayeb and Kilicman [9]. Aggarwal and Chaudhary [10] 

discussed a comparative study of Mohand and Laplace transforms. A comparative study of Mohand and Kamal transforms was given 

by Aggarwal et al. [11].  

Many scholars [12-38] used these transforms and solve the problems of differential equations, partial differential equations, 

integral equations, integro-differential equations, partial integro-differential equations, delay differential equations and population 

growth and decay problems. Aggarwal et al. [39] used Mohand transform and solved population growth and decay problems. 

Aggarwal et al. [40] defined Mohand transform of Bessel’s functions. Kumar et al. [41] solved linear Volterra integral equations of 

first kind using Mohand transform. 

 Kumar et al. [42] used Mohand transform and solved the mechanics and electrical circuit problems. Solution of linear 

Volterra integral equations of second kind using Mohand transform was given by Aggarwal et al. [43]. Aggarwal and Chauhan [44] 

gave a comparative study of Mohand and Aboodh transforms. A comparative study of Mohand and Elzaki transforms was given by 
Aggarwal et al. [45]. 

 In this paper, we concentrate mainly on the comparative study of Mohand and Sumudu transforms and we solve some 

systems of differential equations using these transforms. 

 

2. DEFINITION OF MOHAND AND SUMUDU TRANSFORMS: 

 

2.1 Definition of Mohand transforms: 

In year 2017, Mohand and Mahgoub [6] defined “Mohand transform’’ of the function 𝐹(𝑡) for 𝑡 ≥ 0 as  

𝑀{𝐹(𝑡)} = 𝜈2∫ 𝐹(𝑡)𝑒−𝜈𝑡𝑑𝑡
∞

0

= 𝑅(𝑣), 𝑘1 ≤ 𝑣 ≤ 𝑘2 

where the operator 𝑀 is called the Mohand transform operator. 

 

2.2 Definition of Sumudu transforms: 

The Sumudu transform of the function 𝐹(𝑡) for all 𝑡 ≥ 0 is defined as [7]: 

𝑆{𝐹(𝑡)} =
1

𝑣
∫ 𝐹(𝑡)𝑒−𝑡/𝑣𝑑𝑡
∞

0
= 𝑇(𝑣), 0 < 𝑘1 ≤ 𝑣 ≤ 𝑘2,where the operator 𝑆 is called the Sumudu transform operator. 

The Mohand and Sumudu transforms of the function 𝐹(𝑡) for 𝑡 ≥ 0 exist if 𝐹(𝑡) is piecewise continuous and of exponential 

order. These conditions are only sufficient conditions for the existence of Mohand and Sumudu transforms of the function 𝐹(𝑡).  
 

3. PROPERTIES OF MOHAND AND SUMUDU TRANSFORMS: In this section, we present the linearity property, change of 
scale property, first shifting theorem, convolution theorem of Mohand and Aboodh transforms. 

3.1 Linearity property of Mohand and Sumudu transforms: 

 

a. Linearity property of Mohand transforms [10-11, 39-40, 43]: If Mohand transform of functions  𝐹1(𝑡)  and 

𝐹2(𝑡)are𝑅1(𝑣)and 𝑅2(𝑣) respectively then Mohand transform of [𝑎𝐹1(𝑡) + 𝑏𝐹2(𝑡)] is given by 

http://www.jetir.org/


© 2019 JETIR March 2019, Volume 6, Issue 3                                                          www.jetir.org  (ISSN-2349-5162) 

JETIR1903277 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 146 
 

 [𝑎𝑅1(𝑣) + 𝑏𝑅2(𝑣)], where 𝑎, 𝑏 are arbitrary constants. 
 

b. Linearity property of Sumudu transforms [8]: If Sumudu transform of functions  𝐹1(𝑡)  and 𝐹2(𝑡)are  𝑇1(𝑣)and 𝑇2(𝑣) 
respectively then Sumudu transform of [𝑎𝐹1(𝑡) + 𝑏𝐹2(𝑡)] is given by 

 [𝑎𝑇1(𝑣) + 𝑏𝑇2(𝑣)], where 𝑎, 𝑏 are arbitrary constants. 

 

3.2 Change of scale property of Mohand and Aboodh transforms: 

a. Change of scale property of Mohand transforms [10-11, 40, 43]:  If Mohand transform of function 𝐹(𝑡) is 𝑅(𝑣) 

then Mohand transform of function 𝐹(𝑎𝑡)is given by 𝑎𝑅 (
𝑣

𝑎
). 

 

b. Change of scale property of Sumudu transforms [8]:  If Sumudu transform of function 𝐹(𝑡) is 𝑇(𝑣) then Sumudu 

transform of function 𝐹(𝑎𝑡)is given by 𝑇(𝑎𝑣). 

3.3 Shifting property of Mohand and Aboodh transforms:  

a. Shifting property of Mohand transforms [10-11, 43]:  If Mohand transform of function 𝐹(𝑡) is 𝑅(𝑣)  then Mohand 

transform of function 𝑒𝑎𝑡𝐹(𝑡)is given by [
𝜈2

(𝑣−𝑎)2
]𝑅(𝑣 − 𝑎). 

 

b. Shifting property of Sumudu transforms[8]: If Sumudu transform of function 𝐹(𝑡) is 𝑇(𝑣)  then Sumudu transform of 

function 𝑒𝑎𝑡𝐹(𝑡)is given by [
1

1−𝑎𝑣
] 𝑇 (

𝑣

1−𝑎𝑣
) . 

 

 
3.4 Convolution theorem for Mohand and Aboodh transforms: 

 

a. Convolution theorem for Mohand transforms [10-11, 41, 43]: If Mohand transform of functions  𝐹1(𝑡)  and 

𝐹2(𝑡)are 𝑅1(𝑣)and 𝑅2(𝑣) respectively then Mohand transform of their convolution 𝐹1(𝑡) ∗ 𝐹2(𝑡) is given by  

𝑀 {𝐹1(𝑡) ∗ 𝐹2(𝑡)} = (
1

𝑣2
)𝑀{𝐹1(𝑡)}𝑀{𝐹2(𝑡)} 

⇒ 𝑀{𝐹1(𝑡) ∗ 𝐹2(𝑡)} = (
1

𝑣2
)𝑅1(𝑣)𝑅2(𝑣), where 𝐹1(𝑡) ∗ 𝐹2(𝑡) is defined by 

𝐹1(𝑡) ∗ 𝐹2(𝑡) = ∫ 𝐹1(𝑡 − 𝑥)
𝑡

0

𝐹2(𝑥)𝑑𝑥 = ∫ 𝐹1(𝑥)
𝑡

0

𝐹2(𝑡 − 𝑥)𝑑𝑥 

 

b. Convolution theorem for Sumudu transforms[8]: If Sumudu transform of functions 𝐹1(𝑡) and 𝐹2(𝑡)are 𝑇1(𝑣)and 𝑇2(𝑣) 
respectively then Sumudu transform of their convolution 𝐹1(𝑡) ∗ 𝐹2(𝑡) is given by  

𝑆{𝐹1(𝑡) ∗ 𝐹2(𝑡)} = 𝑣𝑆{𝐹1(𝑡)}𝑆{𝐹2(𝑡)} 
⇒ 𝑆{𝐹1(𝑡) ∗ 𝐹2(𝑡)} = 𝑣 𝑇1(𝑣)𝑇2(𝑣), where 𝐹1(𝑡) ∗ 𝐹2(𝑡) is defined by 

 𝐹1(𝑡) ∗ 𝐹2(𝑡) = ∫ 𝐹1(𝑡 − 𝑥)
𝑡

0
𝐹2(𝑥)𝑑𝑥 = ∫ 𝐹1(𝑥)

𝑡

0
𝐹2(𝑡 − 𝑥)𝑑𝑥 

 

4. MOHAND AND SUMUDU TRANSFORMS OF THE DERIVATIVES OF THE FUNCTION 𝑭(𝒕): 
 

4.1 Mohand transforms of the derivatives of the function 𝑭(𝒕) [10-11, 41-43]: 

If 𝑀{𝐹(𝑡)} = 𝑅(𝑣) then  

a) 𝑀{𝐹 ′(𝑡)} = 𝑣𝑅(𝑣) − 𝑣2𝐹(0) 
b) 𝑀{𝐹 ′′(𝑡)} = 𝑣2𝑅(𝑣) − 𝑣3𝐹(0) − 𝑣2𝐹′(0) 
c) 𝑀{𝐹(𝑛)(𝑡)} = 𝑣𝑛𝑅(𝑣) − 𝑣𝑛+1𝐹(0) − 𝑣𝑛𝐹′(0) −⋯…− 𝑣2𝐹(𝑛−1)(0) 

 

4.2 Sumudu transforms of the derivatives of the function 𝑭(𝒕)[8]: 

If 𝑆{𝐹(𝑡)} = 𝑇(𝑣)then  

a) 𝑆{𝐹 ′(𝑡)} =
𝑇(𝑣)

𝑣
−

𝐹(0)

𝑣
 

b) 𝑆{𝐹 ′′(𝑡)} =
𝑇(𝑣)

𝑣2
−

𝐹(0)

𝑣2
−

𝐹′(0)

𝑣
 

c) 𝑆{𝐹(𝑛)(𝑡)} =
𝑇(𝑣)

𝑣𝑛
−

𝐹(0)

𝑣𝑛
−

𝐹′(0)

𝑣𝑛−1
−⋯…−

𝐹(𝑛−1)(0)

𝑣
 

 

5. MOHAND AND SUMUDU TRANSFORMS OF INTEGRAL OF A FUNCTION 𝑭(𝒕): 
 

5.1 Mohand transforms of integral of a function  𝑭(𝒕) [10]: 

If 𝑀{𝐹(𝑡)} = 𝑅(𝑣) then 𝑀 {∫ 𝐹(𝑡)𝑑𝑡
𝑡

0
} =

1

𝑣
𝑅(𝑣). 
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5.2 Sumudu transforms of integral of a function  𝑭(𝒕) [8]: 

If 𝑆{𝐹(𝑡)} = 𝑇(𝑣) then  𝑆 {∫ 𝐹(𝑡)𝑑𝑡
𝑡

0
} = 𝑣𝑇(𝑣).  

 

6. MOHAND AND SUMUDU TRANSFORMS OF FREQUENTLY USED FUNCTIONS [7-11, 39-43]: 

 

Table: 1 

S.N. 𝐹(𝑡) 𝑀{𝐹(𝑡)} = 𝑅(𝑣) 𝑆{𝐹(𝑡)} = 𝑇(𝑣) 

1. 1 𝑣 1 

2. 𝑡 1 𝑣 

3. 𝑡2 2!

𝑣
 

2! 𝑣2 

4. 𝑡𝑛 , 𝑛 ∈ 𝑁 𝑛!

𝑣𝑛−1
 

𝑛! 𝑣𝑛  

5. 𝑡𝑛 , 𝑛 > −1 Γ(𝑛 + 1)

𝑣𝑛−1
 

Γ(𝑛 + 1)𝑣𝑛 

6. 𝑒𝑎𝑡 𝑣2

𝑣 − 𝑎
 

1

1 − 𝑎𝑣
 

7. 𝑠𝑖𝑛𝑎𝑡 𝑎𝑣2

(𝑣2 + 𝑎2)
 

𝑎𝑣

1 + 𝑎2𝑣2
 

8. 𝑐𝑜𝑠𝑎𝑡 𝑣3

(𝑣2 + 𝑎2)
 

1

1 + 𝑎2𝑣2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎𝑣2

(𝑣2 − 𝑎2)
 

𝑎𝑣

1 − 𝑎2𝑣2
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 𝑣3

(𝑣2 − 𝑎2)
 

1

1 − 𝑎2𝑣2
 

11. 𝐽0(𝑡) 𝑣2

√(1 + 𝑣2)
 

1

√(1 + 𝑣2)
 

12. 𝐽1(𝑡) 
𝑣2 −

𝑣3

√(1 + 𝑣2)
 

1

𝑣
−

1

𝑣√(1 + 𝑣2)
 

 

 
7. INVERSE MOHAND AND SUMUDU TRANSFORMS: 

 

7.1 Inverse Mohand transforms [10-11, 39, 43]: If 𝑅(𝑣)is the Mohand transform of 𝐹(𝑡)then 𝐹(𝑡)is called the inverse Mohand 

transform of 𝑅(𝑣)and in mathematical terms, it can be expressed as 

𝐹(𝑡) = 𝑀−1{𝑅(𝑣)}, where 𝑀−1 is an operator and it is called as inverse Mohand transform operator. 

 

7.2 Inverse Sumudu transforms: If 𝑇(𝑣) is the Sumudu transforms of 𝐹(𝑡) then 𝐹(𝑡)  is called the inverse Sumudu transform 

of 𝑇(𝑣)and in mathematical terms, it can be expressed as 

𝐹(𝑡) = 𝑆−1{𝐾(𝑣)}, where 𝑆−1 is an operator and it is called as inverse Sumudu transform operator. 
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8. INVERSE MOHAND AND SUMUDU TRANSFORMS OF FREQUENTLY USED FUNCTIONS [10-11, 39-40]: 

 

Table: 2 

S.N. 𝑅(𝑣) 𝐹(𝑡) = 𝑀−1{𝑅(𝑣)} = 𝑆−1{𝑇(𝑣)} 𝑇(𝑣) 

1. 𝑣 1 1 

2. 1 𝑡 𝑣 

3. 1

𝑣
 

𝑡2

2
 

𝑣2 

4. 1

𝑣𝑛−1
, 𝑛𝜖𝑁 

𝑡𝑛

𝑛!
 

𝑣𝑛 , 𝑛𝜖𝑁 

5. 1

𝑣𝑛−1
, 𝑛 > −1 

𝑡𝑛

Γ(𝑛 + 1)
 

𝑣𝑛 , 𝑛 > −1 

6. 𝑣2

𝑣 − 𝑎
 

𝑒𝑎𝑡 1

1 − 𝑎𝑣
 

7. 𝑣2

(𝑣2 + 𝑎2)
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

𝑣

1 + 𝑎2𝑣2
 

8. 𝑣3

(𝑣2 + 𝑎2)
 

𝑐𝑜𝑠𝑎𝑡 1

1 + 𝑎2𝑣2
 

9. 𝑣2

(𝑣2 − 𝑎2)
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

𝑣

1 − 𝑎2𝑣2
 

10. 𝑣3

(𝑣2 − 𝑎2)
 

𝑐𝑜𝑠ℎ𝑎𝑡 1

1 − 𝑎2𝑣2
 

11. 𝑣2

√(1 + 𝑣2)
 

𝐽0(𝑡) 1

√(1 + 𝑣2)
 

12. 
𝑣2 −

𝑣3

√(1 + 𝑣2)
 

𝐽1(𝑡) 1

𝑣
−

1

𝑣√(1 + 𝑣2)
 

 

 
9. APPLICATIONS OF MOHAND AND SUMUDU TRANSFORMS FOR SOLVING SYSTEM OF DIFFERENTIAL 

EQUATIONS:  

In this section some numerical applications are give to solve the systems of differential equations using Mohand and Sumudu 

transforms. 

 

9.1 Consider a system of linear ordinary differential equations  

𝑑2𝑥

𝑑𝑡2
+ 3𝑥 − 2𝑦 = 0

𝑑2𝑥

𝑑𝑡2
+
𝑑2𝑦

𝑑𝑡2
− 3𝑥 + 5𝑦 = 0}

 

 
                                                                                                                                                     (1) 

with 𝑥(0) = 0, 𝑦(0) = 0, 𝑥′(0) = 3, 𝑦′(0) = 2                                                                                                                                      (2)  
 

Solution using Mohand transforms: 

 

Taking Mohand transform of “Eq. (1)”, we have 

𝑀{
𝑑2𝑥

𝑑𝑡2
} + 3𝑀{𝑥} − 2𝑀{𝑦} = 0

𝑀{
𝑑2𝑥

𝑑𝑡2
} +𝑀{

𝑑2𝑦

𝑑𝑡2
} − 3𝑀{𝑥} + 5𝑀{𝑦} = 0

}
 
 

 
 

                                                                                                                    (3) 

Now using the property, Mohand transform of the derivatives of the function, in “Eq. (3)”, we have 

𝑣2𝑀{𝑥} − 𝑣3𝑥(0) − 𝑣2𝑥′(0) + 3𝑀{𝑥} − 2𝑀{𝑦} = 0

𝑣2𝑀{𝑥} − 𝑣3𝑥(0) − 𝑣2𝑥′(0) + 𝑣2𝑀{𝑦} − 𝑣3𝑦(0) − 𝑣2𝑦′(0) − 3𝑀{𝑥} + 5𝑀{𝑦} = 0
}                                          (4) 

Using “Eq. (2)” in “Eq. (4)”, we have 

(𝑣2 + 3)𝑀{𝑥} − 2𝑀{𝑦} = 3𝑣2

(𝑣2 − 3)𝑀{𝑥} + (𝑣2 + 5)𝑀{𝑦} = 5𝑣2
}                                                                                                                                (5) 

Solving the “Eq. (5)” for 𝑀{𝑥} and 𝑀{𝑦}, we have 
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𝑀{𝑥} =
11

4
[

𝑣2

(𝑣2 + 1)
] +

1

4
[

𝑣2

(𝑣2 + 9)
]

𝑀{𝑦} =
11

4
[

𝑣2

(𝑣2 + 1)
] −

3

4
[

𝑣2

(𝑣2 + 9)
]
}
 
 

 
 

                                                                                                                                (6)  

Now taking inverse Mohand transform of “Eq. (6)”, we have 

𝑥 =
11

4
𝑠𝑖𝑛𝑡 +

1

12
𝑠𝑖𝑛3𝑡

𝑦 =
11

4
𝑠𝑖𝑛𝑡 −

1

4
𝑠𝑖𝑛3𝑡

}                                                                                                                                                          (7) 

which is the required solution of “Eq. (1)” with “Eq. (2)”. 

 

Solution using Sumudu transforms: 

 

Taking Sumudu transform of “Eq. (1)”, we have 

𝑆 {
𝑑2𝑥

𝑑𝑡2
} + 3𝑆{𝑥} − 2𝑆{𝑦} = 0

𝑆 {
𝑑2𝑥

𝑑𝑡2
} + 𝑆 {

𝑑2𝑦

𝑑𝑡2
} − 3𝑆{𝑥} + 5𝑆{𝑦} = 0

}
 
 

 
 

                                                                                                                       (8) 

Now using the property, Sumudu transform of the derivatives of the function, in “Eq. (8)”, we have 
1

𝑣2
𝑆{𝑥} −

𝑥(0)

𝑣2
−
𝑥′(0)

𝑣
+ 3𝑆{𝑥} − 2𝑆{𝑦} = 0

1

𝑣2
𝑆{𝑥} −

𝑥(0)

𝑣2
−
𝑥′(0)

𝑣
+
1

𝑣2
𝑆{𝑦} −

𝑦(0)

𝑣2
−
𝑦′(0)

𝑣
− 3𝑆{𝑥} + 5𝑆{𝑦} = 0

}                                                            (9) 

Using “Eq. (2)” in “Eq. (9)”, we have 

(
1

𝑣2
+ 3)𝑆{𝑥} − 2𝑆{𝑦} =

3

𝑣

(
1

𝑣2
− 3)𝑆{𝑥} + (

1

𝑣2
+ 5)𝑆{𝑦} =

5

𝑣

}                                                                                                                               (10) 

Solving the “Eq. (10)” for 𝑆{𝑥} and 𝑆{𝑦}, we have 

𝑆{𝑥} =
11

4
[

𝑣

1 + 𝑣2
] +

1

4
[

𝑣

1 + 9𝑣2
]

𝑆{𝑦} =
11

4
[

𝑣

1 + 𝑣2
] −

3

4
[

𝑣

1 + 9𝑣2
]

}                                                                                                                                   (11)  

Now taking inverse Sumudu transform of “Eq. (11)”, we have 

𝑥 =
11

4
𝑠𝑖𝑛𝑡 +

1

12
𝑠𝑖𝑛3𝑡

𝑦 =
11

4
𝑠𝑖𝑛𝑡 −

1

4
𝑠𝑖𝑛3𝑡

}                                                                                                                                                     (12) 

which is the required solution of “Eq. (1)” with “Eq. (2)”. 

 

9.2 Consider a system of linear ordinary differential equations  
𝑑𝑥

𝑑𝑡
+ 𝑦 = 2𝑐𝑜𝑠𝑡

𝑥 +
𝑑𝑦

𝑑𝑡
= 0

}                                                                                                                                                                  (13) 

with 𝑥(0) = 0, 𝑦(0) = 1                                                                                                                                                                          (14)  
 

Solution using Mohand transforms: 

 

Taking Mohand transform of “Eq. (13)”, we have 

𝑀 {
𝑑𝑥

𝑑𝑡
} +𝑀{𝑦} = 2𝑀{𝑐𝑜𝑠𝑡}

𝑀{𝑥} + 𝑀 {
𝑑𝑦

𝑑𝑡
} = 0

}                                                                                                                                         (15) 

Now using the property, Mohand transform of the derivatives of the function, in “Eq. (15)”, we have  

𝑣𝑀{𝑥} − 𝑣2𝑥(0) +𝑀{𝑦} =
2𝑣3

(𝑣2 + 1)

𝑀{𝑥} + 𝑣𝑀{𝑦} − 𝑣2𝑦(0) = 0

}                                                                                                                         (16) 

Using “Eq. (14)” in “Eq. (16)”, we have 
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𝑣𝑀{𝑥} +𝑀{𝑦} =
2𝑣3

(𝑣2 + 1)

𝑀{𝑥} + 𝑣𝑀{𝑦} = 𝑣2
}                                                                                                                                          (17) 

Solving the “Eq. (17)” for 𝑀{𝑥}and 𝑀{𝑦}, we have 

𝑀{𝑥} = [
𝑣2

(𝑣2 + 1)
]

𝑀{𝑦} = [
𝑣3

(𝑣2 + 1)
]
}
 
 

 
 

                                                                                                                                                         (18)  

Now taking inverse Mohand transform of “Eq.  (18)”, we have 
𝑥 = 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

}                                                                                                                                                                              (19) 

which is the required solution of “Eq. (13)” with “Eq. (14)”. 

 

Solution using Sumudu transforms: 

 

Taking Sumudu transform of “Eq. (13)”, we have 

𝑆 {
𝑑𝑥

𝑑𝑡
} + 𝑆{𝑦} = 2𝑆{𝑐𝑜𝑠𝑡}

𝑆{𝑥} + 𝑆 {
𝑑𝑦

𝑑𝑡
} = 0

}                                                                                                                                            (20) 

Now using the property, Sumudu transform of the derivatives of the function, in “Eq. (20)”, we have 
1

𝑣
𝑆{𝑥} −

𝑥(0)

𝑣
+ 𝑆{𝑦} =

2

1 + 𝑣2

𝑆{𝑥} +
1

𝑣
𝑆{𝑦} −

𝑦(0)

𝑣
= 0

}                                                                                                                                 (21) 

Using “Eq. (14)” in “Eq. (21)”, we have 
1

𝑣
𝑆{𝑥} + 𝑆{𝑦} =

2

1 + 𝑣2

𝑆{𝑥} +
1

𝑣
𝑆{𝑦} =

1

𝑣

}                                                                                                                                            (22) 

Solving the “Eq. (22)” for 𝑆{𝑥}and 𝑆{𝑦}, we have 

𝑆{𝑥} = [
𝑣

1 + 𝑣2
]

𝑆{𝑦} = [
1

1 + 𝑣2
]
}                                                                                                                                                           (23)  

Now taking inverse Sumudu transform of “Eq. (23)”, we have 
𝑥 = 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

}                                                                                                                                                                          (24) 

which is the required solution of “Eq. (13)” with “Eq. (14)”.  

 
9.3 Consider a system of linear ordinary differential equations  

𝑑𝑧

𝑑𝑡
+ 𝑥 = 𝑠𝑖𝑛𝑡

𝑑𝑥

𝑑𝑡
− 𝑦 = 𝑒𝑡

𝑑𝑦

𝑑𝑡
+ 𝑧 + 𝑥 = 1}

 
 

 
 

                                                                                                                                                             (25) 

with 𝑥(0) = 1, 𝑦(0) = 1, 𝑧(0) = 0                                                                                                                                                    (26)  
 

Solution using Mohand transforms: 

 

Taking Mohand transform of “Eq. (25)”, we have 

𝑀{
𝑑𝑧

𝑑𝑡
} +𝑀{𝑥} = 𝑀{𝑠𝑖𝑛𝑡}

𝑀 {
𝑑𝑥

𝑑𝑡
} − 𝑀{𝑦} = 𝑀{𝑒𝑡}

𝑀 {
𝑑𝑦

𝑑𝑡
} +𝑀{𝑧} + 𝑀{𝑥} = 𝑀{1}}

 
 

 
 

                                                                                                                               (27) 

Now using the property, Mohand transform of the derivatives of the function, in “Eq. (27)”, we have 
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𝑣𝑀{𝑧} − 𝑣2𝑧(0) +𝑀{𝑥} = [
𝑣2

(𝑣2 + 1)
]

𝑣𝑀{𝑥} − 𝑣2𝑥(0) −𝑀{𝑦} = [
𝑣2

𝑣 − 1
]

𝑣𝑀{𝑦} − 𝑣2𝑦(0) +𝑀{𝑧} +𝑀{𝑥} = 𝑣}
 
 

 
 

                                                                                                                    (28) 

Using “Eq. (26)” in “Eq. (28)”, we have 

𝑣𝑀{𝑧} +𝑀{𝑥} = [
𝑣2

(𝑣2 + 1)
]

𝑣𝑀{𝑥} −𝑀{𝑦} = [
𝑣3

𝑣 − 1
]

𝑣𝑀{𝑦} +𝑀{𝑧} +𝑀{𝑥} = 𝑣 + 𝑣2}
 
 

 
 

                                                                                                                              (29) 

Solving the “Eq. (29)” for 𝑀{𝑥}, 𝑀{𝑦}and 𝑀{𝑧}, we have 

𝑀{𝑥} = [
𝑣2

𝑣 − 1
] + [

𝑣2

(𝑣2 + 1)
]

𝑀{𝑦} = [
𝑣3

(𝑣2 + 1)
]

𝑀{𝑧} = 𝑣 − [
𝑣2

𝑣 − 1
]

}
 
 
 

  
 

                                                                                                                                     (30)  

Now taking inverse Mohand transform of “Eq. (30)”, we have 

𝑥 = 𝑒𝑡 + 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

𝑧 = 1 − 𝑒𝑡
}                                                                                                                                                                   (31) 

which is the required solution of “Eq. (25)” with “Eq. (26)”. 

 

Solution using Sumudu transforms: 

 

Taking Sumudu transform of “Eq. (25)”, we have 

𝑆 {
𝑑𝑧

𝑑𝑡
} + 𝑆{𝑥} = 𝑆{𝑠𝑖𝑛𝑡}

𝑆 {
𝑑𝑥

𝑑𝑡
} − 𝑆{𝑦} = 𝑆{𝑒𝑡}

𝑆 {
𝑑𝑦

𝑑𝑡
} + 𝑆{𝑧} + 𝑆{𝑥} = 𝑆{1}}

 
 

 
 

                                                                                                                                      (32) 

Now using the property, Sumudu transform of the derivatives of the function, in “Eq. (32)”, we have 
1

𝑣
𝑆{𝑧} −

𝑧(0)

𝑣
+ 𝑆{𝑥} = [

𝑣

1 + 𝑣2
]

1

𝑣
𝑆{𝑥} −

𝑥(0)

𝑣
− 𝑆{𝑦} = [

1

1 − 𝑣
]

1

𝑣
𝑆{𝑦} −

𝑦(0)

𝑣
+ 𝑆{𝑧} + 𝑆{𝑥} = 1}

 
 

 
 

                                                                                                                              (33) 

Using “Eq. (26)” in “Eq. (33)”, we have 
1

𝑣
𝑆{𝑧} + 𝑆{𝑥} = [

𝑣

1 + 𝑣2
]

1

𝑣
𝑆{𝑥} − 𝑆{𝑦} = [

1

𝑣(1 − 𝑣)
]

1

𝑣
𝑆{𝑦} + 𝑆{𝑧} + 𝑆{𝑥} = 1 +

1

𝑣}
 
 

 
 

                                                                                                                                       (34) 

Solving the “Eq. (34)” for 𝑆{𝑥}, 𝑆{𝑦} and 𝑆{𝑧}, we have 

𝑆{𝑥} = [
1

1 − 𝑣
] + [

𝑣

1 + 𝑣2
]

𝑆{𝑦} = [
1

1 + 𝑣2
]

     𝑆{𝑧} = 1 − [
1

1 − 𝑣
] }
 
 

 
 

                                                                                                                                                (35)  

Now taking inverse Sumudu transform of “Eq. (35)”, we have 

𝑥 = 𝑒𝑡 + 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

    𝑧 = 1 − 𝑒𝑡
}                                                                                                                                                                         (36) 

which is the required solution of “Eq. (25)” with “Eq. (26)”. 
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10. CONCLUSIONS:  
In this paper, we have successfully discussed the comparative study of Mohand and Sumudu transforms. In application 

section, we solve systems of differential equations comparatively using both Mohand and Sumudu transforms. The given numerical 

applications in application section show that both the transforms (Mohand and Sumudu transforms) are closely connected to each 

other. 
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