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Abstract: In the present investigation, the MHD couette flow of an electrically conducting fluid through a channel with highly 

permeable bed, has been considered in the presence of buoyancy and magneto-electric forces. The effect of the buoyancy force, 

permeability of porous medium, load parameter, magnetic field, on the velocity distribution, temperature field, skin-friction, flux 

and rate of heat transfer are discussed. 

 

IndexTerms - MHD  oscillatory flow, Temperature field, Skin friction, Load parameter, Porous medium etc. 

 

I. INTRODUCTION:  

Flow through porous media are very much prevalent in nature and therefore the study of flows through porous media has 

become of principal interest in many scientific and engineering applications e.g. in the field of agricultural engineering to study 

the underground water resources, seepage of water in riverbeds. The effect of magnetic field on the flow of a electrically 

conducting viscous fluid has received considerable attention due to its wide range of engineering, geophysical, astrophysical 

applictions. MHD channel flows have been studied extensively, including their heat transfer aspect. An excellent review of 

existing theoretical and experimental work on these subjects can be found in the recent books and monographs by Bejan[1], 

Cebeci[3], Chauhan and Vyas[4], Ingham and Pop[8], Jothimani and Anjalidevi[9], Kaviany[10], Nield and Bejan[14], Pop 

and Ingham[15] and Singh and Gholami[16]. 

Buoyancy driven convective heat transfer is of interest in relation to the underground spread of pollutants, solar power 

collectors, geothermal energy systems and others. In past, most of investigations have not been taken into account the effect of 

buoyance forces since the problems were on horizontal flows. 

It was assumed that the buoyancy forces are almost negligible in horizontal flows, but some authors have shown that in the 

case of horizontal flow of liquids with low Prandtl number (Pr), the buoyancy forces cannot be neglected as they significantly 

affect the flow field. The buoyancy layer flows for such fluids have been discussed by Bejan and Khair [2]. Gholami and Singh 

[7] analysed the problem of simultaneous heat and mass transfer with the entire range of buoyancy ratio for most practical 

chemical species in dilute solutions and aqueous solutions. Yan and Chang [17] have investigated numerically the laminar 

mixed convective flow in the channel and simultaneous influence of the combined buoyancy effects of the thermal and mass 

diffusion for an air-water system. Garander et al.[6] proposed an analytic solution to the governing equation of MHD to be 

used model the effect of a transverse magnetic field on natural convection. When the fluid is electrically conduction and 

exposed to a magnetic field the Lorentz force is also active and interacts with the buoyancy force in governing the flow and 

temperature fields. Employment of an external magnetic field has increasing application in material manufacturing industry as 

a control mechanism since the Lorentz force suppresses the convection currents by reducing the velocities. Study and through 

understanding of the momentum and heat transfer in such a process is important for the better control and quality of the 

manufactured products. The MHD heat transfer in two phase flow with fluid in one phase being electrically conducting was 

studied by Lohrasbi and Sahai [12]. The problem of MHD heat transfer for short circuit case in a two-phase flow have 

discussed by Malashetty and Leena [13]. Firat et al. [5] observed the Lateral load estimation from visco-plastic mud flow. 
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In such cases, fluid flows through two zones. In zone I, there is no porous media i.e. in free fluid region, here fluid flow freely 

governed by Navier-Stokes equation. In another zone the fluid flows through the pores of a permeable solid and in most of the 

cases of high system, the flow is governed by Brinkman equation. In the light of discussion made by Kim and Russel [11] a 

modified set of boundary condition is applied at the fluid porous medium interface. 

  

 

1.1 Formulation of the problem: 
  The geometry under consideration (shown in Figure given below), consists of two horizontal parallel walls at 

distance h apart.  The upper wall is rigid and moving with a uniform velocity ‘U
0

’ while the lower wall is a stationary porous bed 

of finite thickness ‘a’ with an impermeable bottom. The axis of x is taken along the porous interface and y axis is normal to it. 

The flow regime is divided into two zones: I- the free fluid region                  (0 ≤ y ≥ h) and II-porous region  (-a ≤ y ≥ 0). 

 

Zone-I

Zone-II

B0

x-axis

Figure

y = -a

y = 0

y =  h

y-axis

 
  Laminar and fully developed Couette flow of a viscous electrically conducting fluid between two horizontal 

parallel walls has been considered along the direction of x-axis in the presence of a constant magnetic field of strength B
0

 applied 

in the direction of y-axis. Since the horizontal plates are taken to be of infinite length, therefore all the physical variables are 

dependent on y only and we assume the velocity [u(y), 0, 0] in the zone I as well as in the zone II. For this model it is assumed 

that the fluid satisfies the Boussinesq approximation, i.e. the fluctuations in density occur principally as a result of thermal rather 

than pressure variations. The flow in zone I and II are driven in x-direction by a common pressure gradient xpP  ; the 

bouyance force and axial temperature gradient xT  and by the shear produced due to the motion of the upper plate. 

  With a parallel flow approximation, we can take the temperature field as the sum of a linearly varying 

longitudinal part and an unknown transe distribution for the present model as- 

   yNTT x  0      ............. (1) 

(a)  Fluid motion: For zone I (Free fluid region): 
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For zone II (Porous region) 
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The boundary conditions are  

    

at 
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Solving eqn. (3) with the help of equations (1) and (4), we obtain the pressure distribution as 

     xFdyyNxyygp  0
   .............            (7) 

Introducing the following non-dimensional quantities 
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Using non-dimensional quantities after eliminating pressure with the help of equation (7), the equations (2) and (5) become, 
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and the boundary conditions (6) become 
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Here asterisks are dropped for convenience. 

Solving equations (9) and (10) under the boundary conditions (11), we get the velocity distribution. 
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The skin friction at the porous interface is given by 
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The skin friction at the bottom is given by 
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The volume flux in the channel (free fluid region) is given by 
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The boundary conditions are 

 at   IxI TNThy  : ,  for all x ; 
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Using equation (1), the energy equations (17) and (18) becomes 
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The boundary condition (19) becomes: 
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We obtain the temperature distribution after solving equations (23) & (24) under the corresponding boundary 

conditions (25) 
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The rate of heat transfer at the porous interface is given by 
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  Results and Discussion 
  Table shows the numerical values of the skin friction at the fluid porous medium interface and the volume flux 

of the fluid in the channel for various values of parameters. It is observed that skin friction decreases with increase in G, M, K
0
 

and R
e
 and volume flux increases slightly with increase in K0 and decreases with increase in G, M and R

e
. 

 

 

Table-1: Skin-friction and flux for U0=5.0, 1=0.8 and a=0.5 

 

M K0 G Re Skin friction 

0










y
dy

du
 Q (Volume flux) 

1 0.5 5 1 3.9869 1.8929 

1 0.5 10 1 3.4407 1.6850 

1 0.5 -10 1 5.6255 2.5167 

1 0.5 -5 1 5.0793 2.3088 

1 0.5 0 1 4.5331 2.1008 

2 0.5 10 1 1.2621 1.3734 

4 0.5 +10 1 0.1735 0.7935 

2 0.5 -10 1 2.4640 1.8888 

4 0.5 -10 1 0.5679 1.0627 

2 1 10 1 1.2577 1.3739 

4 1 -10 1 0.5657 1.0027 

1 0.5 5 0 4.3680 2.0573 

4 0.5 10 0 0.3929 1.0784 

4 0.5 10 0.5 0.2298 0.9038 

4 0.5 10 0.25 0.2898 0.9798 

4 0.5 10 0.75 0.1944 0.8432 
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