
© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1903707 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 42

Modelling of discrete events using Verilog language

1Dr. T.C. Manjunath, 2Rajashekar M. Koyyeda, 2Satvik M. Kusagur, 2Pavithra G., 2Arunkumar M.

1Prof. & Head, ECE Dept., DSCE, Bangalore, Karnataka,
2Research Scholars, VTU RRC, Belagavi, Karnataka

Extended Abstract : Design is a complex process which can

be thought of as a top down refinement of a specification. The

main aim of this algorithm is to propose a VHDL code generator

for real-time systems. Its importance lies in giving graphical

interface to the designer. Here, a discrete event model for a

digital circuit using VHDL is designed and implemented.

Introduction: VHDL Verilog Hardware Description Language is

a language for describing digital electronic systems. A VHDL is

designed in this paper to fill a number of needs in the

design process. Firstly, it allows description of the structure

of a design, i.e. how it is decomposed into sub-designs, and

how those sub-designs are interconnected. Secondly, it

allows the specification of the function of designs using

familiar programming language forms. Thirdly, as a result,

it allows a design to be simulated before being

manufactured, so that designers can quickly compare

alternatives and test for correctness without the delay and

expense of hardware prototyping.

A digital electronic system is designed as a module with

inputs and/or outputs. The electrical values on the outputs

are some function of the values on the inputs. Figure below

shows an example of this view of a digital system as a

structural description. The module F has two inputs, A and

B, and an output Y. Using VHDL terminology, we call the

module F a design entity, and the inputs and outputs are

called ports. One way of describing the function of a

module is to describe how it is composed of sub-modules.

Each of the sub-modules is an instance of some entity, and

the ports of the instances are connected using signals.

Figure also shows how the entity F might be composed of

instances of entities G, H and I. This kind of description is

called a structural description. Note that each of the entities

G, H and I might also have a structural description.

Describing Behavior: In many cases, it is not appropriate

to describe a module structurally. One such case is a

module which is at the bottom of the hierarchy of some

other structural description. For example, if you are

designing a system using IC packages bought from an IC

shop, you do not need to describe the internal structure of

an IC. In such cases, a description of the function

performed by the module is required, without reference to

its actual internal structure. Such a description is called a

functional or behavioral description. To illustrate this,

suppose that the function of the entity F in figure above is

the exclusive-or function. Then a behavioral description of

F could be the Boolean function:

BA..BAY 

More complex behaviors cannot be described purely as a

function of inputs. In systems with feedback, the outputs are

also a function of time. VHDL solves this problem by

allowing description of behavior in the form of an

executable program.

Discrete Event Time Model : Once the structure and

behavior of a module have been specified, it is possible to

simulate the module by executing its behavioral description.

This is done by simulating the passage of time in discrete

steps. At some simulation time, a module input may be

stimulated by changing the value on an input port. The

module reacts by running the code of its behavioral

description and scheduling new values to be placed on the

signals connected to its output ports at some later simulated

time. This is called scheduling a transaction on that signal.

If the new value is different from the previous value on the

signal, an event occurs, and other modules with input ports

connected to the signal may be activated.

The simulation starts with an initialization phase, and then

proceeds by repeating a two-stage simulation cycle. In the

initialization phase, all signals are given initial values, the

simulation time is set to zero, and each module's behavior

program is executed. This usually results in transactions

being scheduled on output signals for some later time. In

the first stage of a simulation cycle, the simulated time is

advanced to the earliest time at which a transaction has

been scheduled. All transactions scheduled for that time are

executed, and this may cause events to occur on some

signals. In the second stage, all modules which react to

events occurring in the first stage have their behavior

program executed. These programs will usually schedule

further transactions on their output signals. When all of the

behavior programs have finished executing, the simulation

cycle repeats. If there are no more scheduled transactions,

the whole simulation is completed.

The purpose of the simulation is to gather information about

the changes in system state over time. This can be done by

running the simulation under the control of a simulation

monitor. The monitor allows signals and other state

information to be viewed or stored in a trace file for later

analysis. It may also allow interactive stepping of the

simulation process, much like an interactive program

debugger. We start the description of an entity by

specifying its external interface, which includes a

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-

5162)

JETIR1903707 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 43

description of its ports. So, the counter is defined as:

entity count2 is

 generic (prop_delay: Time := 10 ns);

 port (clock: in bit;

q1, q0: out bit);

end count2;

This specifies that the entity count2 has one input and two

outputs, all of which are bit values, that is, they can take on

the values '0' or '1'. It also defines a generic constant called

prop_delay which can be used to control the operation of

the entity (in this case its propagation delay). If no value is

explicitly given for this value when the entity is used in a

design, the default value of 10 ns will be used. An

implementation of the entity is described in an architecture

body. There may be more than one architecture body

corresponding to a single entity specification, each of which

describes a different view of the entity. The behavioral

description of the counter is written as:

architecture behavior of count2 is

begin

 count_up: process (clock)

 variable coun_value : natural := 0;

 begin

 if clock = '1' then

 count_value:= (count_value + 1) mod 4;

 q0 <= bit'val(count_value mod 2) after prop_delay;

 q1 <= bit'val(count_value / 2) after prop_delay;

 end if;

 end process count_up;

end behavior;

In this description of the counter, the behavior is

implemented by a process called count_up, which is

sensitive to the input clock. A process is a body of code

which is executed whenever any of the signals it is sensitive

to changes value. This process has a variable called

count_value to store the current state of the counter. The

variable is initialized to zero at the start of simulation, and

retains its value between activations of the process. When

the clock input changes from '0' to '1’, the state variable is

incremented, and transactions are scheduled on the two

output ports based on the new value. The assignments use

the generic constant prop_delay to determine how long after

the clock change the transaction should be scheduled. When

control reaches the end of the process body, the process is

suspended until another change occurs on clock. The two-

bit counter is also designed alternatively as a combination

of 2 flops and an inverter, as shown in figure below. This

can be written in VHDL.

In this architecture, two component types are declared,

t_flipflop and inverter, and three internal signals are

declared. Each of the components is then instantiated, and

the ports of the instances are mapped onto signals and ports

of the entity. For example, bit_0 is an instance of the

t_flipflop component, with its ck port connected to the

clock port of the count2 entity, and its q port connected to

the internal signal ff0. The last two signal assignments

update the entity ports whenever the values on the internal

signals change.

References

[1] Ganesh Babu T.R., Ganesh S., Shenbagadevi, “Automatic

detection of glaucoma using fundus image”, European Jour. of
Scientific Res., ISSN 1450-216X, Vol. 59, Issue 1, pp. 22-32,
2011.

[2] Murthi A. and M. Madheswaran, “Enhancement of optic cup to
disc ratio detection in glaucoma diagnosis”, IEEE Int. Conf. on
Comp. Communication & Informatics (ICCCI-12), Coimbatore,
Tamil Nadu, India, pp. 1-5, Jan. 10-12, 2012.

[3] Tan N.M., J. Liu, D.W.K. Wong, F. Yin, J.H. Lim, T.Y. Wong,
“Mixture model-based approach for optic cup segmentation”,
IEEE Annual Int. Conf. on Engg. in Medicine & Biology Society
(EMBC), Buenos Aires, Argentina, pp. 4817 – 4820, 31 Aug-4
Sept. 2010.

[4] Yuji Hatanaka, Atsushi Noudo, Chisako Muramatsu, Akira
Sawada, Takeshi Hara, Tetsuya Yamamoto, Hiroshi Fujita,
“Automatic measurement of cup to disc ratio based on line
profile analysis in retinal images”, 33rd Annual Int. Conf. of the
IEEE Engg. in Medicine & Biology Society, pp. 3387 – 3390,
Boston, MA, USA, 30 Aug.-3 Sept. 2011.

[5] Fengshou Yin, Jiang Liu, Damon Wing Kee Wong, Ngan Meng
Tan, Carol Cheung, Mani Baskaran, Tin Aung, Tien Yin Wong,
“Automated segmentation of optic disc and optic cup in fundus
images for glaucoma diagnosis”, 25th IEEE Int. Symp. on
Comp. Based Medical Systems (CBMS), Rome, Italy, pp. 1-6,
20-22 Jun. 2012.

[6] Sandra Morales, Valery Naranjo, Jesús Angulo, Mariano
Alcañiz, “Automatic detection of optic disc based on PCA and
mathematical morphology”, IEEE Trans. on Medical Imaging,
Vol. 32, Issue 4, pp. 786-796, Apr. 2013.

[7] Jun Cheng, Jiang Liu, Yanwu Xu, Fengshou Yin, Damon Wing
Kee Wong, Ngan-Meng Tan, Dacheng Tao, Ching-Yu Cheng,
Tin Aung, Tien Yin Wong, “Superpixel classification based
optic disc and optic cup segmentation for glaucoma screening”,
IEEE Trans. on Medical Imaging, Vol. 32, Issue 6, pp. 1019-
1032, Jun. 2013.

[8] Aquino, Arturo, Manuel Emilio Gegúndez-Arias, and Diego
Marín, “Detecting the optic disc boundary in digital fundus
images using morphological, edge detection, and feature
extraction techniques”, IEEE Transactions on Medical Imaging,
Vol. 29, Issue 11, pp. 1860-1869, Nov. 2010.

http://www.jetir.org/

