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1 Introduction

In this study, we apply iterative methods to find a
multiple root α of multiplicity m > 1, i.e. f (j)(α) = 0,
j = 0, 1, ....m− 1 and f (m)(α) 6= 0, of a nonlinear equa-
tion f(x) = 0, where f(x) be the continuously differ-
entiable real or complex function. Modified Newton
method [1] is an important and basic method for finding
multiple roots

xk+1 = xk −m
f(xk)

f ′(xk)
, (1)

which converges quadratically and requires the knowl-
edge of multiplicity m of root α.
In order to improve the order of convergence of (1),
several higher-order methods have been proposed in
the literature with known multiplicity m, for exam-
ple, [2–28]. On the other hand, if multiplicity m is
not known explicitly, Traub [29] suggested a simple
transformation:

F (x) =



f(x)

f ′(x)
if f(x) 6= 0 ,

0 if f(x) = 0,

(2)

to find a multiple root of f(x) = 0, thereby reducing the
task of finding a multiple root to that of solving a simple
root of the transformed equation F (x) = 0. Thus any
iterative method can be used to preserve the original or-
der of convergence. However, with this transformation,
we get second order transformed Newton method given
by

xk+1 = xk −
f(xk)f ′(xk)

f ′(xk)2 − f(xk)f ′′(xk)
, (3)

which requires the use of f ′(x) and f ′′(x). In order to
avoid the calculations of these derivatives, King [30]
proposed the secant method, with unknown multiplicity
for finding multiple roots of nonlinear equation, which
used another transformation:

F (x) =
−f2(x)

f(x− f(x))− f(x)
. (4)

The secant method thus obtained has order of conver-
gence 1.618.
Using the same transformation (4), Iyengar and Jain
[31] developed two iterative methods of order three and
four for finding multiple roots of nonlinear equations.
The third order method is given as:

xk+1 = xk − l1 − l2, (5)

where

l1 =
F (xk)

G(xk)
, l2 =

F (xk − l1)

G(xk)
,

G(xk) =
F (xk + βF (xk))− F (xk)

βF (xk)
. (6)

and fourth order method is expressed as:

xk+1 = xk − l1 − l2 − l3, (7)

where l1 and l2 are as defined in (6) and

l3 =
F (xk − l1 − l2)

G(xk)
.
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With the same transformation (4), Wu and Fu [32]
developed a quadratically convergent iterative method
for multiple roots given as:

xk+1 = xk −
F 2(xk)

p.F 2(xk) + F (xk)− F (xk − F (xk))
, (8)

where p ∈ R, |p| <∞.
Wu et. al. [33] suggested another transformation:

F (x) =



sign(f(x))f(x)|f(x)|1/m

sign(f(x+ sign(f(x))|f(x)|1/m)− f(x))f(x)|f(x)|1/m + f(x+ sign(f(x))|f(x)|1/m)− f(x)
if f(x) 6= 0 ,

0 if f(x) = 0,

and proposed a quadratically convergent method by
applying this transformation to modified Steffensen’s
method [34,35].

Parida and Gupta [36] proposed another transforma-
tion:

F (x) =



f2(x)

sign(f(x+ f(x))− f(x))f2(x) + f(x+ f(x))− f(x)
if f(x) 6= 0,

0 if f(x) = 0,

and obtained a quadratically convergent iterative
method given as:

xk+1 = xk −
F 2(xk)

p.F 2(xk) + F (xk)− F (xk − F (xk))
, (9)

where the parameter p should be chosen such that the
denominator is largest in magnitude.
Yun [37] also suggested another transformation for find-
ing multiple root α ∈ (a, b) of f(x) = 0 given as:

F (x) =
εf2(x)

f(x+ εf(x))− f(x)
,

where ε is such that max
a ≤ x ≤ b

|εf(x)| = δ. Using

this transformation, Yun proposed a quadratically
convergent iterative method as follows:

xk+1 = xk −
2(xk − xk−1)F (xk)

F (2xk − xk−1)− F (xk−1)
. (10)

In recent years, various higher order transformation
methods have been developed and analyzed. Li et.
al. [38] used the transformation (2) and proposed a
fifth-order iterative method for multiple roots of the
nonlinear equation f(x) = 0, which is given as,



wk = xk −
F (xk)

g(xk)
,

zk = wk −
F (wk)F (xk)

F (xk + F (xk))− F (xk)
,

xk+1 = zk −
F (zk)

F [zk, wk] + F [zk, xk, xk](zk − wk)
,

(11)

where F [., .] and F [., ., .] are divided differences of F of
order one and two respectively and

g(xk) =
F (xk + F (xk))− F (xk)

F (xk)
, (12)

More recently, Sharma et al. [39] developed and ana-
lyzed a transformation method of sixth order for find-
ing multiple roots of nonlinear equations with unknown
multiplicity m :

wk = xk −
F (xk)

g(xk)
,

zk = wk −
F (wk)

g(xk)
,

xk+1 = zk −
F (zk)

G(xk, wk, zk)
,

(13)
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where F (xk), g(xk) are given by (2) and (12) respec-
tively
and

G(xk, wk, zk) =
F [xk, zk]F [wk, zk]

F [xk, wk]
(14)

Inspired by the ongoing work in this direction, we
here propose a novel modification of Newton method
based on the transformation (2). The proposed method
is composed of three steps per iteration and is of seventh
order convergence, without requiring the use of second
derivative.
The paper is organized as follows. In section 2, a
seventh-order method for multiple roots, with unknown
multiplicity m is proposed and its convergence behav-
ior is discussed. In section 3, a comparison of basins of
attraction is provided to illustrate the convergence be-
havior of the proposed schemes in complex plane. Con-
cluding remarks are given in section 4.

2 The Method and its Conver-
gence analysis

We here use the transformation (2) and consider the
following iteration scheme:

yk = xk −
F (xk)

F ′(xk)
,

zk = yk −
F (yk)

F ′(yk)
,

xk+1 = zk −
F (zk)

F ′(zk)
,

(15)

where F (x) is given in (2).
In order to avoid evaluation of first derivatives, we ap-
proximate function F ′(x) and F ′(y(x)) by using Eq.
(12) and further approximate F ′(y(x)) and F ′(z(x)) by
using Forward difference operator and Lagrange Inter-
polation respectively as given below:

F ′(wk) ≈ F (wk + F (wk))− F (wk)

F (wk)
= H(wk). (16)

F ′(zk) ≈ F [xk, zk]+F [yk, zk]−F [xk, yk] = φ(xk, yk, zk),
(17)

where F [., .] denotes the first order divided difference.
(See [40] for the detailed discussion of 17). Replacing
the approximations from (12), (16) and (17) in (15),
the proposed scheme in the final form is given as:


yk = xk −

F (xk)

g(xk)
,

zk = yk −
F (yk)

H(yk)
,

xk+1 = zk −
F (zk)

φ(xk, yk, zk)
.

(18)

The mathematical proof for the order of convergence of
this scheme (18) is given in following theorem.
Theorem 1. Let F ∈ C2(I) (I ⊆ R→ R) has a simple
root r ∈ I, where I is an open interval. If the initial
point x0 is sufficiently close to r, then the iterative
method defined by (18) has seventh order convergence.

Proof. Since α is a multiple root of f(x) = 0 with mul-
tiplicity m, so we can write f(x) as

f(x) = (x− α)mh(x), (19)

where h(x) is a continuous function with h(α) 6= 0.
According to (19), we have

f ′(x) = m(x− α)m−1h(x) + (x− α)mh′(x). (20)

Dividing (19) by (20), we get

F (x) =
f(x)

f ′(x)
=

(x− α)h(x)

mh(x) + (x− α)h′(x)
. (21)

Consequently, the problem of finding multiple roots of
f(x) = 0 can be reduced to equivalent problem of find-
ing simple root of F (x) = 0.
Let ek = xk − α be the error in the iterate xk. Using
Taylor series expansion, we get

h(xk) = h(α)[1 +A1ek +A2e
2
k +A3e

3
k +A4e

4
k +A5e

5
k

+A6e
6
k +A7e

7
k +O(e8k)], (22)

h′(xk) = h(α)[A1 + 2A2ek + 3A3e
2
k + 4A4e

3
k + 5A5e

4
k

+6A6e
5
k + 7A7e

6
k +O(e7k)], (23)

where

Ak =
h(k)(α)

k!h(α)
, k = 1, 2, . . . (24)

Using (21), (22) and (23) and simplifying, we get

F (xk) = B1ek +B2e
2
k +B3e

3
k +B4e

4
k +B5e

5
k +B6e

6
k

+O(e7k), (25)

where

B1 =
1

m
, B2 = −A1

m2
, B3 =

(m+ 1)A2
1 − 2mA2

m3
,

B4 =
−(m+ 1)2A3

1 + (3m2 + 4m)A1A2 − 3m2A3

m4
,

B5 =
1

m5

[
(m+ 1)3A4

1 + (−4m3 − 10m2 − 6m)A2
1A2

+(2m3 + 4m2)A2
2 + (4m3 + 6m2)A1A3 − 4m3A4

]
,

B6 =
1

m6

[
− (m+ 1)4A5

1 + (m+ 1)2(8 + 5m)A3
1A2

−(5m4 + 14m3 + 9m2)A2
1A3 − (5m4 + 16m3

+12m2)A1A
2
2 + (5m4 + 8m3)A1A4

+(5m4 + 12m3)A2A3 − 5m4A5

]
.
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Substituting (25) in (12) and using Taylor series expan-
sion of F (xk) and F (xk + F (xk)) , we get

g(xk) =
1

m
+ C1ek + C2e

2
k + C3e

3
k + C4e

4
k + C5e

5
k

+C6e
6
k +O(e7k), (26)

where

C1 = − (2m+ 1)A1

m3
,

C2 =
(3m3 + 6m2 + 5m+ 1)A2

1 − 2m(3m2 + 3m+ 1)A2

m5
,

C3 =
1

m7

[
(2m+ 1)(2m4 + 6m3 + 9m2 + 6m+ 1)A3

1

−m(6m3 + 14m2 + 15m+ 4)A1A2 + 3m2(2m2

+2m+ 1)A3

]
,

C4 =
1

m9

[
(5m7 + 25m6 + 65m5 + 100m4 + 90m3

+45m2 + 11m+ 1)A4
1 −m(20m6 + 90m5

+203m4 + 252m3 + 165m2 + 52m+ 6)A2
1A2

+m2(20m5 + 70m4 + 121m3 + 104m2 + 43m

+6)A1A3 + 2m2(5m5 + 20m4 + 36m3 + 29m2

+11m+ 2)A2
2 − 4m3(5m4 + 10m3 + 10m2

+5m+ 1)A4

]
,

C5 =
1

m11

[
− (m+ 1)2(6m7 + 27m6 + 76m5 + 120m4

+110m3 + 53m2 + 12m+ 1)A5
1 +m(30m8

+183m7 + 585m6 + 1137m5 + 1365m4 + 1000m3

+424m2 + 93m+ 8)A3
1A2 −m2(30m7 + 159m6

+435m5 + 693m4 + 651m3 + 348m2 + 92m+ 9)A2
1A3

−m2(30m7 + 171m6 + 488m5 + 791m4 + 726m3

+373m2 + 104m+ 12)A1A
2
2 +m3(30m6 + 147m5

+334m4 + 375m3 + 228m2 + 77m+ 12)A2A3

+m3(30m6 + 123m5 + 264m4 + 315m3 + 210m2

+69m+ 8)A1A4 − 5m4(6m5 + 15m4 + 20m3

+15m2 + 6m+ 1)A5

]
,

C6 =
1

m13

[
(m+ 1)2(7m9 + 42m8 + 154m7 + 350m6

+511m5 + 476m4 + 272m3 + 89m2 + 15m+ 1)A6
1

−m(42m10 + 322m9 + 1328m8 + 3498m7 + 6115m6

+7186m5 + 5627m4 + 2846m3 + 875m2 + 146m

+10)A4
1A2 +m2(42m9 + 294m8 + 1092m7 + 2526m6

+3775m5 + 3676m4 + 2273m3 + 832m2 + 159m

+12)A3
1A3 +m2(63m9 + 462m8 + 1776m7 + 4212m6

+6342m5 + 6112m4 + 3717m3 + 1377m2

+282m+ 24)A2
1A

2
2 −m3(84m8 + 560m7 + 1888m6

+3728m5 + 4447m4 + 3248m3 + 1437m2 + 356m

+36)A1A2A3 −m3(42m8 + 252m7 + 804m6

+1560m5 + 1909m4 + 1456m3 + 641m2 + 142m

+12)A2
1A4 − 2m3(7m8 + 49m7 + 173m6 + 355m5 + 423m4

+299m3 + 129m2 + 32m+ 4)A3
2

+m4(42m7 + 196m6 + 500m5 + 760m4 + 701m3

+372m2 + 101m+ 10)A1A5 + 2m4(21m7 + 119m6

+325m5 + 473m4 + 403m3 + 205m2 + 59m

+8)A2A4 + 3m4(7m7 + 42m6 + 116m5 + 164m4

+135m3 + 70m2 + 22m+ 3)A2
3 − 6m5(7m6

+21m5 + 35m4 + 35m3 + 21m2 + 7m+ 1)A6

]
.

Using (25) and (26) in first substep of (18), we obtain

ẽk = wk−α = D2e
2
k+D3e

3
k+D4e

4
k+D5e

5
k+D6e

6
k+O(e7k),

(27)
where

D2 = − (m+ 1)A1

m2
,

D3 =
(2m2 + 3m+ 2)A2

1 − (4m2 + 6m+ 2)A2

m3
,

D4 =
1

m4

(
− (3m3 + 5m2 + 6m+ 3)A3

1 + (9m3 + 16m2

+16m+ 5)A1A2 − (9m3 + 18m2 + 12m+ 3)A3

)
,

D5 =
2

m5

[
(2m4 + 3m3 + 5m2 + 5m+ 2)A4

1

−(8m4 + 13m3 + 19m2 + 15m+ 4)A2
1A2

+(4m4 + 6m3 + 6m2 +m− 1)A2
2 + (8m4

+17m3 + 23m2 + 16m+ 5)A1A3

−(8m4 + 20m3 + 20m2 + 10m+ 2)A4

]
,

D6 =
1

m6

[
− (5m5 + 5m4 + 11m3 + 18m2 + 15m+ 5)A5

1

+(25m5 + 28m4 + 52m3 + 71m2

+46m+ 10)A3
1A2

−(25m5 + 27m4 + 36m3 + 29m2 − 2m− 9)A1A
2
2

−(25m5 + 42m4 + 72m3 + 85m2

+58m+ 20)A2
1A3 + (25m5 + 63m4 + 108m3 + 115m2

+70m+ 17)A1A4 + (25m5 + 33m4 + 28m3

−3m2 − 18m− 7)A2A3 − (25m5 + 75m4 + 100m3

+75m2 + 30m+ 5)A5

]
.

Further in (21), using (27) and the Taylor series expan-
sion of h(wk) and h′(wk) about α, we get

F (wk) = H2e
2
k +H3e

3
k +H4e

4
k +H5e

5
k +H6e

6
k +O(e7k),

(28)
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where

H2 =
−(m+ 1)A1

m3
,

H3 =
(2m2 + 3m+ 2)A2

1 − 2(2m2 + 3m+ 1)A2

m4
,

H4 =
1

m6

[
− (3m4 + 5m3 + 7m2 + 5m+ 1)A3

1

+m(9m3 + 16m2 + 16m+ 5)A1A2

−3m(3m3 + 6m2 + 4m+ 1)A3

]
,

H5 =
1

m7

[
2(2m5 + 3m4 + 7m3 + 10m2 + 7m+ 2)A4

1

−2(8m5 + 13m4 + 23m3 + 25m2 + 12m+ 2)A2
1A2

+2m(8m4 + 17m3 + 23m2 + 16m+ 5)A1A3

+2m(4m4 + 6m3 + 6m2 +m− 1)A2
2 − 4m(4m4

+10m3 + 10m2 + 5m+ 1)A4

]
,

H6 =
1

m9

[
− (5m7 + 5m6 + 21m5 + 47m4 + 58m3

+41m2 + 14m+ 1)A5
1 −m(25m6 + 27m5

+52m4 + 77m3 + 50m2 + 15m+ 4)A1A
2
2

+m(25m6 + 28m5 + 86m4 + 171m3

+176m2 + 94m+ 20)A3
1A2

−m(25m6 + 42m5 + 90m4 + 139m3

+118m2 + 50m+ 6)A2
1A3 +m2(25m5

+33m4 + 28m3 − 3m2 − 18m− 7)A2A3

+m2(25m5 + 63m4 + 108m3 + 115m2

+70m+ 17)A1A4 − 5m2(5m5 + 15m4 + 20m3

+15m2 + 6m+ 1)A5

]
.

Now, using (27) and (28) in (16) and simplifying, we
get

H(wk) =
F (wk + F (wk))− F (wk)

F (wk)

= K4e
4
k +K5e

5
k +K6e

6
k +O(e7k), (29)

where

K4 = −A1
3(m+ 1)3

m7
,

K5 =
1

m8

(
2A1

2(m+ 1)2
(
A1

2(2m2 + 3m+ 2
)

−2A2

(
2m2 + 3m+ 1

)))

and

K6 = − 1

m10

[
A1(m+ 1)

((
10m5 + 30m4 + 46m3

+40m2 + 17m+ 2

)
A1

4 − 2A2

(
17m5 + 51m4

+69m3 + 48m2 + 14m+ 1

)
A1

2

+6A3m(m+ 1)2
(

3m2 + 3m+ 1

)
A1

+4A2
2m

(
2m2 + 3m+ 1

)2)]
.

Invocation of (27), (28) and (29) in second substep of
(18) leads to

êk = zk − α = L4e
4
k + L5e

5
k + L6e

6
k +O(e7k), (30)

where

L4 = −A1
3(m+ 1)3

m6
,

L5 =
1

m7

(
2A2

1(m+ 1)2
(
A2

1

(
2m2 + 3m+ 2

)
−2A2

(
2m2 + 3m+ 1

)))
and

L6 = − 1

m9
A1(m+ 1)

[(
10m5 + 30m4 + 46m3

+40m2 + 17m+ 2

)
A4

1

−2A2

(
17m5 + 51m4

+69m3 + 48m2 + 14m+ 1

)
A2

1

+6A3m(m+ 1)2
(

3m2 + 3m+ 1

)
A1

+4A2
2m

(
2m2 + 3m+ 1

)2]
.

Again, using in (21), the Taylor series expansion of h(zk)
and h′(zk) about α, we obtain

F (zk) = M4e
4
k +M5e

5
k +M6e

6
k +O(e7k), (31)

where

M4 = −A1
3(m+ 1)3

m7
,

M5 =
1

m8

(
2A1

2(m+ 1)2
(
A1

2
(
2m2 + 3m+ 2

)
−2A2

(
2m2 + 3m+ 1

)))
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and

M6 = − 1

m10

[
A1(m+ 1)

((
10m5 + 30m4 + 46m3

+40m2 + 17m+ 2
)
A1

4 − 2A2

(
17m5

+51m4 + 69m3

+48m2 + 14m+ 1
)
A1

2

+6A3m(m+ 1)2
(
3m2 + 3m+ 1

)
A1

+4A2
2m
(
2m2 + 3m+ 1

)2)]
.

Employing (29), (30) and (31) in third substep of (18),
and applying computer software like MATHEMATICA
[41], we have

ek+1 = −
A4

1(m+ 1)4
(
A2

1(m+ 1)− 2A2m
)
e7k

m10
+ ek

8.

This completes the proof.

We further consider finding the multiplicity of the
root α in the iterative method. If xk is the k-th
iteration computed by an iterative method applied to
F (x), then from (21), we get

F (xk) ≈ (xk − α)h(xk)

mh(xk) + (xk − α)h′(xk)

=
ekh(xk)

mh(xk) + ekh′(xk)
.

Since ek is small, we get F (xk) ≈ ek
m
. Similarly,

F (xk+1) ≈ ek+1

m
. Also ek+1 − ek = xk+1 − xk. Hence,

we
have,

m ≈ xk+1 − xk
F (xk+1)− F (xk)

,

which is approximately the reciprocal of divided dif-
ference of F for successive iterates xk and xk+1. (see
[30,36]).

3 Finding the basins

In this section, we present the comparison of iterative
schemes in the complex plane using basins of attrac-
tion. Cayley [42] was the first who considered New-
ton method for the roots of polynomial with iterations
over the complex numbers. The performance of the pre-
sented seventh order transformation method denoted by
M7 Eq. (18) is compared with some of the existing
transformation methods viz. second order transformed
Newton method (NM2), Eq. (3), Wu and Fu’s second
order method designated as WFM2, Eq.(8) for p = 1,
Iyengar and Jain’s third order and fourth order methods
respectively denoted by IJM3, Eq.(5) and IJM4, Eq.(7)

for β = −7/10. The fifth order method by Li et al.,
Eq.(11) and the sixth order method in [39] given by Eq.
(13) are also considered for comparison written as LM5

and M6 respectively.
To generate the basins, we use MATHEMATICA [41].
We assign the light to dark colors based on the num-
ber of iterations in which the considered initial point z0
converges to a root and we can mark this point with a
color associated to this root. We mark with black, the
points z0 for which the corresponding iterative method
starting in z0 does not reach any root of the polynomial,
with tolerance ε = 10−3 in a maximum of 40 iterations
(see [43–46]).
We have used the considered transformation methods
for the test functions as listed in Table 1.
It is noteworthy that transformed Newton method
(NM2) is not considered in the competition as it in-
volves second order derivative also. This is only used as
a standard measure.

Table 1: Test functions

f(z) all roots

f1(z) = (z2 − 2z)2 0, 2

f2(z) = (z5 + 2z4 + 2z3 + 10z2 + 25z)2 −2, 0, 1,±2i

f3(z) = (z3 − 1)4 −0.5± 0.866025i, 1

f4(z) = (z5 − z)4 0, ±1, ±i

It can be clearly observed from the figures (1-4), that
the proposed method M7, Eq. (18) behaves well in al-
most all the examples.

4 Conclusions

In this work, we have proposed a novel and efficient
transformation method of seventh-order for finding
multiple roots of nonlinear equation f(x) = 0, when
multiplicity m is not known explicitly. The advantage
of the proposed method is that it does not use second
order derivative. The presented numerical experiments
and basins of attraction show the good performance of
the proposed method as compared to other transfor-
mation methods in the literature.
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(a) NM2 (b) WFM2

(c) IJM3 (d) IJM4

(e) LM5 (f) M6

(g) M7

Figure 1: Basins of attraction for f(z) = (z2 − 2z)2,
z ∈ D for various methods.

(a) NM2 (b) WFM2

(c) IJM3 (d) IJM4

(e) LM5 (f) M6

(g) M7

Figure 2: Basins of attraction for f(z) = (z5 + 2z4 +
2z3 + 10z2 + 25z)2, z ∈ D for various methods.
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(a) NM2 (b) WFM2

(c) IJM3 (d) IJM4

(e) LM5 (f) M6

(g) M7

Figure 3: Basins of attraction for f(z) = (z3 − 1)4,
z ∈ D for various methods.

(a) NM2 (b) WFM2

(c) IJM3 (d) IJM4

(e) LM5 (f) M6

(g) M7

Figure 4: Basins of attraction for f(z) = (z5 − z)4,
z ∈ D for various methods.
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