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Abstract: Lane detection, overall trajectory estimation and reliable navigation in an unknown environment are the key 

challenges of autonomous driving. This paper compares two machine learning based approaches; SVM and MLP, for lane 

trajectory detection. Key focus is on estimating the scope and applicability of an offline trajectory learning model for real time 

steering control. The actual indoor navigation is carried out to compare the performance of SVM and MLP algorithms and verify 

the reliability of navigation for unknown trajectories. Single Raspberry Pi camera has been used for trajectory sensing and path 

planning. Several real indoor tests are implemented to assess the performance. Results indicate that SVM provides way better 

accuracy estimation of trajectory curving, therefore the steering angle as compared to an MLP model. Major contribution of this 

experimentation is the reliability and the study of images captured from low cost Pi-camera and confirming the scope of using it 

for in-house robotic navigation. 

IndexTerms - Autonomous navigation, machine learning, image classification, neural networks, camera, robotics. 

I. INTRODUCTION 

   Significant improvements in the last decade have greatly advanced self-driving car technology. This fairly new technology will 

have profound global impacts that could bring about improvements in the overall efficiency, convenience, and safety of our 

roadways and transportation systems. Including countries like UK and USA, several Asian countries like India, China, Japan, 

Korea and Singapore,  are making significant contributions to the field. Although these countries are at different stages of building a 

fully autonomous vehicle system, more research and effort is needed for the advancement of these technologies so that they can be 

reliable enough on a large scale for real life practical applications. The tech giant Google has developed a fake city, Castle, a 100 

acre area in the California desert which consists of only roads, driveways and intersections. The main goal is to recreate situations,  

the robot cars are likely to encounter in real-life environments. Google engineers use different elements like signs, cones, 

mannequins, and even other cars, to devise scenarios that challenge the driver-less cars to respond as human drivers would. Main 

contribution of this work is to create a scaled down version of an autonomous self-driving environment to evaluate the driving 

reliability through paths with randomly varying curvatures, while trajectory sensing is done by a low cost camera. Motivation is to 

replicate proto type robotics navigation or toy car in lab scenario. If the toy car detects any obstacles it should change its path or 

stop in case an object is in front of the car and be able to decide whether to stop or move depending on some other admiring 

support. Major contribution of this experimentation is the consistency study of trajectory estimation accuracy for images capture 

from a low-cost Pi-camera, so that an off-line trained model can then be used for real time control the steering of motors. Our 

expected outcome is to have such features incorporated in our system which can as well help to overcome obstacles.  

    The analysis and literature survey for inculcating the concepts used in the experimentation and the major methods used by other 

authors and their work have been presented in Section II. Section III and Section IV is an overview of the methodologies 

implemented in the paper where the various steps involved in the experimentation and setup have been noted down. Section V talks 

about the two techniques, Support Vector Machine and Multi-layered Perceptron being used in this project for autonomous driving. 

The comparison of all parameters and their performance is recorded along with the observations recorded during the course of this 

project. The various methods and tuning of parameters and their results are mentioned in these sections. 

 

II. LITERATURE REVIEW 

   Autonomous driving systems and self-driving cars have been under development for the past few decades. There are various 

methods and implementations of such autonomous vehicles which vary from one another. Every method of implementation has 

certain advantages and disadvantages. These methods will vary as per the user requirement, environment, hardware limitations, 

processing accuracy and so forth. In autonomous driving systems, the main components include sensor technology, processing unit, 

driving controller and some feedback mechanism. The major emphasis in this set up is kept on the sensing methods which includes 

a single low-resolution camera system. 

2.1. Lane Detection and Recognition 

     In the paper presented by Truong et al., we see that the system comprises of a single monocular camera for providing input 

images in lane detection and recognition [1]. This camera is the sole input of the autonomous driving system and hence requires 

further processing of input data. The input video from this camera is used only to detect the road lanes and hence serves as the 

basis for an autonomous driving system [1]. This paper talks about a lane and road detection algorithm which provides a robust and 
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accurate  algorithm for detection as well as road recognition. First, the road image is enhanced using some conventional image 

processing techniques. In the enhanced image, possible lane marking pixels are detected using Canny operator. Next, apply parallel 

thinning algorithm into edge map to obtain skeleton image. Detected lane marking pixels after taking skeleton process, then, are 

utilized to select control points for NUBS interpolation to construct left and right road lanes. In that case, the right and left lanes to 

be detected are well separated, which means that each lane can be considered as separated from the other (unlike most of previous 

works which have lane models of a uniform width) [1]. They have used vector-lane-concept to select and correct these control 

points, overcome noise problem to get more robust result of road lane boundaries. Finally, a simple mathematical model to 

estimate left lane and right curvature for autonomous vehicle system. This method functioned well even in the presence of noise, 

however did not see any kind of neuro or fuzzy logic to control the operation of the car. The problem with such a method is that it 

is requires high computations for processing and recognition of data. This could be fatal in real time scenarios where decisions 

have to be made in milliseconds. 

 

2.2. Neural Networks and Machine Learning in autonomous systems 

        Neural computing can achieve massive parallelism and very high computation speeds. The main approach of our project is the 

use of artificial neural networks for simplifying complicated tasks such as recognition and classification which is not possible with 

traditional methods. The next approach adopted by Mariusz Bojarski et al., makes use of the convolution neural computing for their 

autonomous vehicle system. The system developed, DAVE-2 is an autonomous vehicular system which has a much better 

performance as compared to the previous adopted method [2]. The system automatically learns internal representations of the 

necessary processing steps such as detecting useful road features with only the human steering angle as the training signal. They 

never explicitly trained it to detect, for example, the outline of roads. Their end-to-end system optimizes all processing steps 

simultaneously. This system consists of three cameras for collection of data on the road. This video is captured simultaneously with 

the steering angle applied by the human driver. This steering command and video data is captured in the Controller Area Network 

(CAN) [2]. The steering command is represented as 1/r where r is the turning radius in meters. We use 1/r instead of r to prevent a 

singularity when driving straight (the turning radius for driving straight is infinity. 1/r smoothly transitions through zero from left 

turns (negative values) to right turns (positive values). This model is trained with human steering command and during testing 

phase, only a single center camera is used for vision and the network computed steering command is given to the driver controller. A 

small amount of training data from less than a hundred hours of driving was sufficient to train the car to operate in diverse 

conditions, on highways, local and residential roads in sunny, cloudy, and rainy conditions. The CNN is able to learn meaningful 

road features from a very sparse training signal (steering alone). The main hardware requirement of this method of computing or 

image processing task is the use of Graphics Processing Unit (GPU) [2]. Fig.2 shows us the overview of the implementation in 

the paper by Mariusz Bojarski et al. 

 

 

 

 

2.3. SVM for robotic navigation 

Konstantinos Charalampous et al. [3] have used maximum margin notion to constructs a global 3D metric map of the 

environment and then unrolling planer path finding on the corresponding 2D map.  However Global path planning (GPP) operates 

in high level and are only suitable for finding shortest path to a goal by avoiding dead ends. In [25] authors have used SVM 

(Support Vector Machine) for wheel chair navigation by using EEG signals. EEG being prone to noise and a multidimensional 

signal is likely to fail under real environment. In the paper by Yuanqing Lin and et al, for SVM training they had approximately 

1000 classes, each class containing more than 1000 images on an average. [22] In spite of having such a large number of input 

images for each class they managed to obtain an overall accuracy of 71.8 % for their large-scale image classification system. In a 
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paper by Kuo-Ho Su et al., an autonomous wheeled agent is implemented using SVM for path planning. An autonomous agent is 

placed in a room full of obstacles and a camera is placed overviewing the entire area. The camera then uses the image to plot a 

path for the autonomous agent to travel from one point to another. A Gaussian SVM is used to smoothen the path and provide 

reliable navigation. [22]. 

 

III. RASPBERRY PI CAMERA AND VIDEO STREAMING 

     The design for any good system is the scalability factor so that it can be downsized to a local region or upgraded for a major 

operation. The Autonomous driving system proposed in our project is a scaled down model of a remote control car. To suit the 

requirements at such a small scale and operating in a confined local environment, high end systems would be redundant and quite 

expensive. The proposed system would include a scaled down version of a car, with a Raspberry Pi Model 3 as the on board system 

controller. The Raspberry Pi will acquire data from the sensors on the car with the help of Pi Camera which will be the visual 

sensor of this system. The Pi Camera is a very lightweight and versatile camera module and would go on board the model car. In the 

paper proposed by Rupali Ikhankar et al., a robot makes use of the Raspberry Pi and Pi Camera for localization and navigation 

within an environment. The images captured from the Pi Camera are overlaid together to form a continuous video stream and helps 

in faster processing of the video. The usual video format of recording of the Pi Camera is the H.264 format encoding which is 

usually has a bit rate of 17 Mbps. This data is streamed over a local wireless network to another device such as a laptop or another 

client. Similarly, Valeriu Manuel et al., designed a system where the Raspberry Pi platform    as an add-on to a classic TV set in 

order to transform it into an internet enabled device [5]. The Raspberry Pi is used to control the local storage, display and speaker, 

and is able     to communicate with a server in order to control the play and update the local content with the data received from the 

server [5]. The chosen communication solution was TCP because of the file size, the need to transfer files correctly and low 

processor computational power (that would be necessary in the case of an alternate UDP implementation). This solution is easy to 

implement, upgrade and allows for personalized advertisements. 

 

IV.DESIGN AND EXPERIMENTAL SETUP 

4.1. Experimental Setup 

 A Raspberry Pi board attached with a Pi camera module and a sensor is used to collect input data. Two client pro- grams run on 

Raspberry Pi for streaming colour video data to the computer via local Wi-Fi connection. A multi thread TCP server program runs 

on the computer to receive streamed image frames and data from the Raspberry Pi. Image frames are captured and acts as visual 

sensor for the car. This data is then sent to the processing unit which handle tasks like object detection and neural network training. 

Once this data has been processed, it then predicts the command that has to be given to the car for navigation (forward, left, right). 

The car unit is controlled via the Raspberry Pi which performs steering operations of the car like moving forward, stopping, turning 

left and tuning right. The project implementation will consist of three stages. Fig. 2 shows us the block diagram of the setup used 

for the training phase and later for the autonomous driving where the Raspberry Pi will make decisions based on input data. 

 
 

 
Fig. 2. Overview of the autonomous vehicle operation 

 

4.2  Acquiring training set  

       The Raspberry Pi camera module mounted on top of the car captures the images required for the training and the 
autonomous navigation of the car. The camera module is attached to a piece of cardboard which was not sturdy and would change 
the angle of inclination of the camera. A slight shift in the angle of inclination would cause the model trained on the previous set 
of images to perform very poorly due to the mismatch between the current viewport and the earlier viewport. We fixed this issue 
by mounting the camera on a sturdy stand and ensured that the camera would be centered thus, providing a very broad view. The 
training phase of the project involves supervised learning where the target directions will be provided by human input. The car is 
placed on our test track which will be used for all training purposes and later for autonomous navigation. The program which is 
run on the Raspberry Pi is used to control the motors, acting as a remote control with the keyboard keys as the human input for 
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acquiring the target direction. Along with this, images are captured by Raspberry Pi camera and stored along with the direction 
vector. All the images captured during this training process need to be segregated manually in their respective folders based on 
the images, these folders include data for forward, idle, left and right.  

 

4.3  Training and testing phase 

       In this paper, we will be comparing two different methods for image classification and autonomous driving. Support Vector 
Machine model and Multi Layered Perceptron model have been used for this purpose. The different advantages and 
disadvantages of both models have been analyzed and results stated accordingly in the later sections. Both these models take 
input from the Raspberry Pi camera. The camera position provides a stabilized set of images, but a large area of the new image 
set would contain information irrelevant for the navigation of the car. Since portions of the road necessary for the next navigation 
action would be almost entirely in the lower half of the image, we used this as inputs to the model for training and prediction. The 
collected images along with their respective class, are used to start training the model. We split the image horizontally and 
convert the lower half into an array where the color layers flatten into a single gray scale layer. The color information does not 
provide additional information to identify features and hence the images are converted into gray scale. We resize the array 
according to the dimensions specified in the configuration file and flatten it. The flattened array for each image serves as input to 
the neural network, and its corresponding class label value is the expected output. This optimization is done by the scipy and 
sklearn libraries of Python. This optimization program generates a pickle file which contains the array of minimized error values 
and network parameters which will be later used in the testing and validation phase. As optimization and learning of neural 
networks is computationally done with the help of Graphical Processing Unit (GPU), the training is not done on the Raspberry Pi 
but instead done on a laptop with a dedicated GPU and CUDA cores. Fig. 3 is the basic architecture for a neural approach to the 
task of self-driving. 
 
 

 

 
 

Fig. 3. Neural Network architecture implemented for self-driving 

4.4  Autonomous navigation using trained parameters 

 The model generated is used for autonomous navigation. The lower half of the images captured by the Pi Camera are again used 

as input to the model where the lower half of the images are considered as input nodes and the trained model file is used along with 

the input images for autonomous navigation [3]. The accuracy of the prediction and driving will depend on the training data given to 

it and varies with the conditions during the prediction or validation phase. 

 

4.5. SVM for navigation  

       Support Vector Machine (SVM) is a class of machine learning method developed by Vapnik et al. in the early 1990s.  SVM 

transforms a nonlinear separable problem into a linear separable problem with different kernel functions and then attempts to find 

the separating hyperplane that maximizes the margin between the samples from two classes. SVM finds the optimized hyperplane 

by simultaneously minimizing the risk and maximizing the margin between the hyperplane and support vectors. Mathematical 

representation of SVM is as follows: 

  {
𝑚𝑖𝑛 𝑓 (𝑊)

1

2
‖𝑊‖2 + 𝐶 ∑𝑁

𝑖 𝜉𝑖

𝑠𝑡 = 𝑦𝑖[𝑊. 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏] + 𝜉𝑖 ≥ 1    𝑖 = 1,2, . . . 𝑁
      (4.1) 

where W is the weight vector and b is the bias, both of which are optimized by the training process. The regulating parameter C is 

a penalty factor, which can balance the model complexity and tolerable risk. In addition, i ’s are positive parameters called 

slack variables, which represent the distance between the misclassified sample and the optimal hyperplane. Function 
),( ji xxK

 

is the kernel function. The commonly used optimization method of SVM classifier is cross-validation accompanied with grid-

search. In our implementation, a 10-fold cross-validation is adopted to enhance the performance of the proposed SVM classifier. 
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In this experimentation radial basis function is used as the kernel along with one-vs-all classification. SVM performs well in most 

of the scenarios because of its high generalization performance without the need to add a prior knowledge, even when the 

dimension of the input space is very high. During testing phase, given a pattern vector to an SVM model, the result will be a 

measure of the distance of the pattern vector from the hyper plane constructed as a decision boundary between this class and rest 

of the classes. A positive value represents that the pattern belongs to the target class and vice versa [19]. In our case, this can be 

used to classify our predefined four classes required for navigation (Forward, Left, Right, Idle). Another advantage of SVM is its 

ability to handle large scale data efficiently 

 

4.6 Autonomous wheeled agent and car control unit 

 The main focus of providing a self-driving car requires some sort of a model which will demonstrate the functioning of an 

actual vehicle. It will be able to drive on linear and curvilinear paths, by having some sort of speed control to handle steering and 

smooth driving. This is achieved by using two motors each of 150 rpm which work along with the IC L293D [10]. Fig 4 shows the 

image of our self-driving bot. The basic construction of the bot is done using a chassis and two wheels. The Raspberry Pi which is 

powered by the power bank and the Pi camera both are placed on top of the chassis. The two wheels are both connected to a 150 

rpm DC motor. which are powered by a rechargeable battery fixed at the back of the bot. IC L293D is used for direction and speed 

control of the bot [10]. 

 

V.  EXPERIMENTAL RESULTS 

5.1. Creation of dataset for comparison and analysis 

      In Table 1, the dataset which has been created by taking a small subset of images captured by the Raspberry Pi wheeled agent. 

We have taken images from three different tracks. Since there are four directions of movement for the wheeled agent, there are four 

output classes, namely Forward, Left, Right and Idle. For the purpose of analysis, we have made a dataset of about 1230 images, 

with 100 images per direction. By doing so, the network will not be biased towards any direction and ensures proper training of the 

network. The three tracks also ensure generalisation of the network so that it can perform well in presence of a new environment. 

The database contains 100 images per direction for every track. Hence, there are 300 images for each direction of the entire 

database. The three datasets used for comparison of algorithm accuracy contain unbiased data and have almost equal number of 

images for all directions. The datasets are split into training and testing sets in a 70-30 split. The training set consists of 861 image 

samples whereas the test set consisted of 369 image samples. The test images are exclusively selected for testing which is unseen 

data and the performance of the model is evaluated based on this data. The test analysis and training are done using Python’s scikit-

learn and scipy packages run on Spyder on a system with NVIDIA 940MX GPU 4GBDDR5.  

     

 

 

 

Table 1 

Datasets used for comparison and target direction                                                           

Track 1  110 Forward, 80 Idle, 106 Left, 118 Right 

Track 2  103 Forward, 125 Idle, 100 Left, 80 Right 

 

Fig. 4. Autonomous wheeled agent 
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The sample images which form the dataset for image classification and also serve as the input to the classification models are 

shown in Fig. 5. Panel (a) is the image for identification of the forward class. Subsequently, Panel (b), Panel (c) and Panel (d) are 

the images for identification of left, right and idle classes respectively. The three tracks that were created for training and test 

purposes are shown in Fig. 6. The track in Fig. 6. (a), has a straight path with smooth left turns and moderate left and right turns in 

the middle. Similarly, the track in Fig. 6. (b), has a straight path followed with sharp left turns as contrast to the smooth left turns 

in Fig. 6. (a). The track shown in Fig. 6. (c) consists only of smooth left and right turns with no straight path or edges. The three 

tracks are made in order to reduce the model being too biased to a certain direction with each track having its own peculiarities. 

Also, multiple tracks ensure generalization of the model and it will able to classify new data with good accuracy. The inset circle 

in Fig. 6. (a) correspond to the forward and left directions shown in Fig. 5. (a) and Fig. 5. (b) respectively. The inset circle in Fig. 

6. (b) corresponds to the idle position shown in Fig. 5. (d) The inset circle in Fig. 6. (c) corresponds to the right direction shown in 

Fig. 5. (c). 

 

 

Track 3  90 Forward, 99 Idle, 99 Left, 104 Right 

(a) 
(b) 

(c) 
(d) 

Fig. 5. Sample images captured from the Raspberry Pi 

camera during image acquisition 
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5.2   Comparison of SVM and MLP 

5.2.1  Evaluation Metrics: The performance of the algorithms is measured by the various parameters such as 

precision, recall and f1-score. Precision is the ratio of the correctly predicted positive observations to the 

total predicted positive observations. 

                                             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐
        (5.1) 

where c is the class label, TP is considered true positive and FP is considered the false positive sample. Recall is the ratio of 

correctly predicted positive observations to all the observations in the actual class. 

                                                                         𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐
                       (5.2) 

where c is the class label and FN, the false negative sample. f1-score is another metric which is the weighted average of precision 

and recall. Usually, it is much more useful than normal accuracy measures where the ratio of correctly predicted observations to the 

total observations are taken into account. Micro-average will aggregate the contributions of all classes to compute the average 

metric. A confusion matrix is also used to determine the correctly predicted samples of a particular class for a particular model.   

                                                                     𝑀𝑖𝑐𝑟𝑜 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
∑ 𝑇𝑃𝑐

∑ 𝑇𝑃𝑐+∑ 𝐹𝑁𝑐
        (5.3) 

 

5.2.2 Performance of Multi-layered Perceptron on test dataset 

         The hidden layer size can be changed but we give it a value of around 60 for our model. The learning rate (α )  is 

initialized to be 0.1 for training purposes. The values of learning rate and the hidden layer size should be chosen carefully to 

prevent the network from overfitting/underfitting the data. The network will underfit for large values of lambda and small values of 

the hidden layer size. Similarly, lower values of lambda and large values of the hidden layer size cause the network to overfit the 

data and will start incorporating noise into the model. We have experimented with various values of lambda and found that values 

between 0 and 0.1 are adequate in most cases. The rule of the thumb for the number of nodes in the hidden layer is that they are 

usually between the size of the input layer and the size of the output layer. The multi-layered perceptron is the most straightforward 

way for implementing neural networks. As stated earlier, the two parameters of learning rate and hidden layer size are tuned in 

order to optimize the training and distinguish the various classes for prediction. The experimental test set was subjected to the two 

different algorithms in MLP, i.e. BACKPROP and RPROP. The training was carried out for 200 iterations and the testing accuracy 

is shown in the Table II below. 

 

Table 2 

Testing accuracy of backprop and prop for multi-layered perception 

 

 α = 0.01 α = 0.05 α = 0.1 

Hidden layer = BACKPROP 68.56% 65.31% 63.96% 

(a)                 (b) (c) 

Fig. 6 Simulation tracks 
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The algorithms give almost equal accuracy when trained on an unbiased dataset with a slight improvement seen while using 

RPROP. The accuracy results are comparably better with hidden layer size set at 60 neurons and with learning rate set to 0.01. As 

the learning rate increases, the test accuracy takes a degradation. Also, the time taken for training using RPROP is significantly 

less as compared to BACKPROP. The MLP performs better with the Canny edge detection done on the images before giving as 

input to the network. Without Canny edge detection, the test accuracy drops down to 54% and is very poor. The performance 

metrics of the MLP were recorded for various set of parameters but the best possible accuracy was recorded with learning rate at 

0.01 and hidden layer size set to 60. MLP did not perform well when as the images are quite overlapping and the model overfitted 

for noise. As we have seen, MLP does not provide good enough accuracy. The errors seen in the MLP prediction suffers due to 

ambiguous classification of image samples. In Table 3, we see the confusion matrix as observed from the MLP model which give 

us the number of correctly predicted samples from each class. In this Table 4, the direction written vertically in the first column 

are the actual classes while the direction written horizontally is the predicted classes. 

Table 3 

Performance of MLP ( learning rate = 0.01 hidden layer size = 60) 

 

 Precision Recall F1-score Micro Average 

Forward 0.69 0.71 0.70  

                0.73 Left 0.72 0.77 0.74 

Right 0.69 0.62 0.65 

Idle 0.76 0.75 0.76 

Table 4 

Confusion matrix of multilayered perceptron 

 Forward Left Right Idle 

Forward 75 6 7 17 

Left 5 58 11 1 

Right 11 16 54 6 

Idle 18 1 6 77 

5.2.3 Performance of Support Vector Machine on test dataset 

      The SVM is a more versatile option for image classification and regression tasks. However, we are only interested in the 

classification part for now. Machine learning algorithms such as SVM have parameters that can be fine-tuned to control the learning 

process of the classification. Parameter C is to set the amount of regularization which controls the trade-off between the errors on 

training data and the model complexity. A small value for C will generate a simple model with more training errors, while a large 

value will lead to a complicated model with fewer errors. Kernel is to introduce different non linearities into the SVM model by 

applying kernel functions on the input data. Gamma defines how far the influence of a single training example reaches, with low 

values meaning ‘far’ and high values meaning ‘close’. coef0 is an independent parameter used in sigmoid and polynomial kernel 

function. [22]. SVM with properly tuned parameters even outperforms convolutional neural networks in terms of computation cost 

and performance [22]. The parameters for tuning the SVM model are useful in improving the performance. The c parameter is set as 

1.0 whereas we have chosen the Radial Basis Function (RBF) kernel. Gamma value is usually taken as the inverse of number of 

samples, where for this analysis is set to ‘auto’. SVM parameters tuning are also observed along with their score for each tuned 

parameter as seen in Table V. The graph given below in Fig. 6 is the tuning of the various parameters of SVM classification. The 

parameter c is varied from a range 1 to 50, whereas the kernels chosen are Radial Basis function and Polynomial. The gamma values 

are also chosen using scikit-learn and given values, ‘auto’ and ‘scale’. The coefficient ‘coef0’ is significant only for polynomial and 

hence varied between 0 and 1. The analysis is shown below in Fig. 7. As seen from the graph, the RBF kernel with Gamma set to 

30 
RPROP 70.73% 72.36% 70.73% 

Hidden layer = 

50 

BACKPROP 71.54% 70.82% 64.50% 

RPROP 74.80% 74.53% 69.92% 

Hidden layer = 

60 

BACKPROP 73.98% 71.54% 68.56% 

RPROP 75.34% 73.98% 72.09% 

http://www.jetir.org/


© 2019 JETIR  March 2019, Volume 6, Issue 3                                        www.jetir.org  (ISSN-2349-5162) 
 

JETIR1903I42 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 261 

 

Auto and parameter c set to 10 gives us the best score. The use of RBF kernel greatly improves the performance of the classification 

and better class-wise prediction can be seen in Table 5, where the micro-average is observed at 93% accuracy. 

   

Fig. 7 Graph of SVM parameter tuning with performance score 

For SVM, we observed that the model performs better when Canny edge detection is not done on the images before fitting the 

model and we can achieve accuracy far more superior than Multi-layered Perceptron models. SVM is very useful for multi-class 

classification and performs better than most neural network projects which require high-end computational power. In Table 6, the 

confusion matrix as observed with the tuning parameters give us the number of correctly predicted samples from the whole set of 

images. In this table, the direction written vertically in the first column are the actual classes while the direction written horizontally 

is the predicted classes. As we can see, the accuracy has greatly increased using SVM. There are some ambiguities which still exist 

in the track especially for Forward along with Idle classification. Idle class is used on images when the wheeled agent goes off the 

track or comes up against any obstacle and will stop the vehicle. 

Table 5 

Performance of Support Vector Machine (kernel = rbf , gamma = auto , c = 10) 

  

Table 6 

Confusion matrix of Support Vector Machine  

 

 Forward Left Right Idle 

Forward 82 0 5 6 

Left 1 74 2 5 

Right 4 0 88 5 

Idle 17 0 8 72 

 

0.90785

0.94308

0.90514
0.9132

0.93495

0.92411

0.93495

0.90514

0.84823

0.91056

0.89972
0.8943

0.9214
0.9159

0.9024
0.90780.9105

0.9214
0.9159

0.9024

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0 1 0 2 0 3 0 4 0 5 0 6 0

SC
O

R
E

PARAMETER C

Auto,RBF,0 Scale,RBF,0 Scale,Poly,0 Auto,Poly,0.5 Scale,Poly,1

 Precision Recall F1-score Micro Average 

Forward 0.92 0.88 0.90  

 

0.93 

Left 0.99 0.96 0.97 

Right 0.94 0.94 0.97 

Idle 0.88 0.90 0.89 
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The observations recorded for the two methods of MLP and SVM shows that SVM outperforms the MLP for this dataset and accordingly 

the task at hand. The improvement in accuracy in accuracy dwells from the fact that the RBF kernel is used to decide the hyperplane for 

classification. Also, the training time as observed for SVM is greatly minimized as compared to MLP. SVM is computationally faster and hence 

speeds up the process of fitting the data. Fig.8 shows the output of the python code which is run on the Raspberry Pi during training, 

each steering command given through the keyboard to the vehicle is noted by the program and is saved along with the JPEG file 

captured by the Pi camera as explained above. The increase and reduction in speed is also noted and saved. This data will later 

help the vehicle run autonomously through the track. The training images should be able to successfully identify the trajectory 

that has to be followed by predicting the direction in which the wheeled agent will move and reduce the number of 

misclassifications. 

VI. CONCLUSION 

The training of this wheeled agent in this simulated environment will demonstrate the ability of the wheeled agent’s autonomy 

by navigating itself without any human control. The comparison of the two methods, MLP and SVM and their parameters have 

been observed and found that SVM performs better by having far better testing accuracy and subsequently will perform better on 

unseen and untested data, in this case self-driving in a new environment. Also, the wheeled agent should be able to adjust its speed 

accordingly during curved paths so as to avoid going off the track. With proper training and testing, we aim on achieving proper 

navigation and driving which will make the wheeled agent capable for self-driving. 

 

 
 

Fig. 8. Predicted command being generated during the autonomous mode. 
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