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Abstract: Lane detection, overall trajectory estimation and reliable navigation in an unknown environment are the key
challenges of autonomous driving. This paper compares two machine learning based approaches; SVM and MLP, for lane
trajectory detection. Key focus is on estimating the scope and applicability of an offline trajectory learning model for real time
steering control. The actual indoor navigation is carried out to compare the performance of SVM and MLP algorithms and verify
the reliability of navigation for unknown trajectories. Single Raspberry Pi camera has been used for trajectory sensing and path
planning. Several real indoor tests are implemented to assess the performance. Results indicate that SVM provides way better
accuracy estimation of trajectory curving, therefore the steering angle as compared to an MLP model. Major contribution of this
experimentation is the reliability and the study of images captured from low cost Pi-camera and confirming the scope of using it
for in-house robotic navigation.
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I. INTRODUCTION

Significant improvements in the last decade have greatly advanced self-driving car technology. This fairly new technology will
have profound global impacts that could bring about improvements in the overall efficiency, convenience, and safety of our
roadways and transportation systems. Including countries like UK and USA, several Asian countries like India, China, Japan,
Korea and Singapore, are making significant contributions to the field. Although these countries are at different stages of building a
fully autonomous vehicle system, more research and effort is needed for the advancement of these technologies so that they can be
reliable enough on a large scale for real life practical applications. The tech giant Google has developed a fake city, Castle, a 100
acre area in the California desert which consists of only roads, driveways and intersections. The main goal is to recreate situations,
the robot cars are likely to encounter in real-life environments. Google engineers use different elements like signs, cones,
mannequins, and even other cars, to devise scenarios that challenge the driver-less cars to respond as human drivers would. Main
contribution of this work is to create a scaled down version of an autonomous self-driving environment to evaluate the driving
reliability through paths with randomly varying curvatures, while trajectory sensing is done by a low cost camera. Motivation is to
replicate proto type robotics navigation or toy car in lab scenario. If the toy car detects any obstacles it should change its path or
stop in case an object is in front of the car and be able to decide whether to stop or move depending on some other admiring
support. Major contribution of this experimentation is the consistency study of trajectory estimation accuracy for images capture
from a low-cost Pi-camera, so that an off-line trained model can then be used for real time control the steering of motors. Our
expected outcome is to have such features incorporated in our system which can as well help to overcome obstacles.

The analysis and literature survey for inculcating the concepts used in the experimentation and the major methods used by other
authors and their work have been presented in Section Il. Section Il and Section IV is an overview of the methodologies
implemented in the paper where the various steps involved in the experimentation and setup have been noted down. Section V talks
about the two techniques, Support Vector Machine and Multi-layered Perceptron being used in this project for autonomous driving.
The comparison of all parameters and their performance is recorded along with the observations recorded during the course of this
project. The various methods and tuning of parameters and their results are mentioned in these sections.

Il. LITERATURE REVIEW

Autonomous driving systems and self-driving cars have been under development for the past few decades. There are various
methods and implementations of such autonomous vehicles which vary from one another. Every method of implementation has
certain advantages and disadvantages. These methods will vary as per the user requirement, environment, hardware limitations,
processing accuracy and so forth. In autonomous driving systems, the main components include sensor technology, processing unit,
driving controller and some feedback mechanism. The major emphasis in this set up is kept on the sensing methods which includes
a single low-resolution camera system.

2.1. Lane Detection and Recognition

In the paper presented by Truong et al., we see that the system comprises of a single monocular camera for providing input
images in lane detection and recognition [1]. This camera is the sole input of the autonomous driving system and hence requires
further processing of input data. The input video from this camera is used only to detect the road lanes and hence serves as the
basis for an autonomous driving system [1]. This paper talks about a lane and road detection algorithm which provides a robust and
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accurate algorithm for detection as well as road recognition. First, the road image is enhanced using some conventional image
processing techniques. In the enhanced image, possible lane marking pixels are detected using Canny operator. Next, apply parallel
thinning algorithm into edge map to obtain skeleton image. Detected lane marking pixels after taking skeleton process, then, are
utilized to select control points for NUBS interpolation to construct left and right road lanes. In that case, the right and left lanes to
be detected are well separated, which means that each lane can be considered as separated from the other (unlike most of previous
works which have lane models of a uniform width) [1]. They have used vector-lane-concept to select and correct these control
points, overcome noise problem to get more robust result of road lane boundaries. Finally, a simple mathematical model to
estimate left lane and right curvature for autonomous vehicle system. This method functioned well even in the presence of noise,
however did not see any kind of neuro or fuzzy logic to control the operation of the car. The problem with such amethod is that it
is requires high computations for processing and recognition of data. This could be fatal in real time scenarios where decisions
have to be made in milliseconds.

2.2. Neural Networks and Machine Learning in autonomous systems

Neural computing can achieve massive parallelism and very high computation speeds. The main approach of our project is the
use of artificial neural networks for simplifying complicated tasks such as recognition and classification which is not possible with
traditional methods. The next approach adopted by Mariusz Bojarski et al., makes use of the convolution neural computing for their
autonomous vehicle system. The system developed, DAVE-2 is an autonomous vehicular system which has a much better
performance as compared to the previous adopted method [2]. The system automatically learns internal representations of the
necessary processing steps such as detecting useful road features with only the human steering angle as the training signal. They
never explicitly trained it to detect, for example, the outline of roads. Their end-to-end system optimizes all processing steps
simultaneously. This system consists of three cameras for collection of data on the road. This video is captured simultaneously with
the steering angle applied by the human driver. This steering command and video data is captured in the Controller Area Network
(CAN) [2]. The steering command is represented as 1/r where r is the turning radius in meters. We use 1/r instead of r to prevent a
singularity when driving straight (the turning radius for driving straight is infinity. 1/r smoothly transitions through zero from left
turns (negative values) to right turns (positive values). This model is trained with human steering command and during testing
phase, only a single center camera is used for vision and the network computed steering command is given to the driver controller. A
small amount of training data from less than a hundred hours of driving was sufficient to train the car to operate in diverse
conditions, on highways, local and residential roads in sunny, cloudy, and rainy conditions. The CNN is able to learn meaningful
road features from a very sparse training signal (steering alone). The main hardware requirement of this method of computing or
image processing task is the use of Graphics Processing Unit (GPU) [2]. Fig.2 shows us the overview of the implementation in
the paper by Mariusz Bojarski et al.
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2.3. SVM for robotic navigation

Konstantinos Charalampous et al. [3] have used maximum margin notion to constructs a global 3D metric map of the
environment and then unrolling planer path finding on the corresponding 2D map. However Global path planning (GPP) operates
in high level and are only suitable for finding shortest path to a goal by avoiding dead ends. In [25] authors have used SVM
(Support Vector Machine) for wheel chair navigation by using EEG signals. EEG being prone to noise and a multidimensional
signal is likely to fail under real environment. In the paper by Yuanging Lin and et al, for SVM training they had approximately
1000 classes, each class containing more than 1000 images on an average. [22] In spite of having such a large number of input
images for each class they managed to obtain an overall accuracy of 71.8 % for their large-scale image classification system. In a
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paper by Kuo-Ho Su et al., an autonomous wheeled agent is implemented using SVM for path planning. An autonomous agent is
placed in a room full of obstacles and a camera is placed overviewing the entire area. The camera then uses the image to plot a
path for the autonomous agent to travel from one point to another. A Gaussian SVM is used to smoothen the path and provide
reliable navigation. [22].

I11. RASPBERRY Pl CAMERA AND VIDEO STREAMING

The design for any good system is the scalability factor so that it can be downsized to a local region or upgraded for a major
operation. The Autonomous driving system proposed in our project is a scaled down model of a remote control car. To suit the
requirements at such a small scale and operating in a confined local environment, high end systems would be redundant and quite
expensive. The proposed system would include a scaled down version of a car, with a Raspberry Pi Model 3 as the on board system
controller. The Raspberry Pi will acquire data from the sensors on the car with the help of Pi Camera which will be the visual
sensor of this system. The Pi Camera is a very lightweight and versatile camera module and would go on board the model car. In the
paper proposed by Rupali Ikhankar et al., a robot makes use of the Raspberry Pi and Pi Camera for localization and navigation
within an environment. The images captured from the Pi Camera are overlaid together to form a continuous video stream and helps
in faster processing of the video. The usual video format of recording of the Pi Camera is the H.264 format encoding which is
usually has a bit rate of 17 Mbps. This data is streamed over a local wireless network to another device such as a laptop or another
client. Similarly, Valeriu Manuel et al., designed a system where the Raspberry Pi platform as an add-on to a classic TV set in
order to transform it into an internet enabled device [5]. The Raspberry Pi is used to control the local storage, display and speaker,
and isable to communicate with a server in order to control the play and update the local content with the data received from the
server [5]. The chosen communication solution was TCP because of the file size, the need to transfer files correctly and low
processor computational power (that would be necessary in the case of an alternate UDP implementation). This solution is easy to
implement, upgrade and allows for personalized advertisements.

IV.DESIGN AND EXPERIMENTAL SETUP

4.1. Experimental Setup

A Raspberry Pi board attached with a Pi camera module and a sensor is used to collect input data. Two client pro- grams run on
Raspberry Pi for streaming colour video data to the computer via local Wi-Fi connection. A multi thread TCP server program runs
on the computer to receive streamed image frames and data from the Raspberry Pi. Image frames are captured and acts as visual
sensor for the car. This data is then sent to the processing unit which handle tasks like object detection and neural network training.
Once this data has been processed, it then predicts the command that has to be given to the car for navigation (forward, left, right).
The car unit is controlled via the Raspberry Pi which performs steering operations of the car like moving forward, stopping, turning
left and tuning right. The project implementation will consist of three stages. Fig. 2 shows us the block diagram of the setup used
for the training phase and later for the autonomous driving where the Raspberry Pi will make decisions based on input data.

RC Car model

Pi Camera (Input)

— - _

Control Commands 1

[ Computer | I Wireless link (Wi-Fi) i |! Raspberry Pi 3 Model B

Image Samples 1

[ Car Control Unit }

Fig. 2. Overview of the autonomous vehicle operation

4.2 Acquiring training set

The Raspberry Pi camera module mounted on top of the car captures the images required for the training and the
autonomous navigation of the car. The camera module is attached to a piece of cardboard which was not sturdy and would change
the angle of inclination of the camera. A slight shift in the angle of inclination would cause the model trained on the previous set
of images to perform very poorly due to the mismatch between the current viewport and the earlier viewport. We fixed this issue
by mounting the camera on a sturdy stand and ensured that the camera would be centered thus, providing a very broad view. The
training phase of the project involves supervised learning where the target directions will be provided by human input. The car is
placed on our test track which will be used for all training purposes and later for autonomous navigation. The program which is
run on the Raspberry Pi is used to control the motors, acting as a remote control with the keyboard keys as the human input for
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acquiring the target direction. Along with this, images are captured by Raspberry Pi camera and stored along with the direction
vector. All the images captured during this training process need to be segregated manually in their respective folders based on
the images, these folders include data for forward, idle, left and right.

4.3 Training and testing phase

In this paper, we will be comparing two different methods for image classification and autonomous driving. Support Vector
Machine model and Multi Layered Perceptron model have been used for this purpose. The different advantages and
disadvantages of both models have been analyzed and results stated accordingly in the later sections. Both these models take
input from the Raspberry Pi camera. The camera position provides a stabilized set of images, but a large area of the new image
set would contain information irrelevant for the navigation of the car. Since portions of the road necessary for the next navigation
action would be almost entirely in the lower half of the image, we used this as inputs to the model for training and prediction. The
collected images along with their respective class, are used to start training the model. We split the image horizontally and
convert the lower half into an array where the color layers flatten into a single gray scale layer. The color information does not
provide additional information to identify features and hence the images are converted into gray scale. We resize the array
according to the dimensions specified in the configuration file and flatten it. The flattened array for each image serves as input to
the neural network, and its corresponding class label value is the expected output. This optimization is done by the scipy and
sklearn libraries of Python. This optimization program generates a pickle file which contains the array of minimized error values
and network parameters which will be later used in the testing and validation phase. As optimization and learning of neural
networks is computationally done with the help of Graphical Processing Unit (GPU), the training is not done on the Raspberry Pi
but instead done on a laptop with adedicated GPU and CUDA cores. Fig. 3 is the basic architecture for a neural approach to the
task of self-driving.
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Fig. 3. Neural Network architecture implemented for self-driving

4.4 Autonomous navigation using trained parameters

The model generated is used for autonomous navigation. The lower half of the images captured by the Pi Camera are again used
as input to the model where the lower half of the images are considered as input nodes and the trained model file is used along with
the input images for autonomous navigation [3]. The accuracy of the prediction and driving will depend on the training data given to
it and varies with the conditions during the prediction or validation phase.

4.5. SVM for navigation

Support Vector Machine (SVM) is a class of machine learning method developed by Vapnik et al. in the early 1990s. SVM
transforms a nonlinear separable problem into a linear separable problem with different kernel functions and then attempts to find
the separating hyperplane that maximizes the margin between the samples from two classes. SVM finds the optimized hyperplane
by simultaneously minimizing the risk and maximizing the margin between the hyperplane and support vectors. Mathematical
representation of SVM is as follows:

min f (W) W2+ CZF &
st =y [W.K(x, %) +b]+& =1 i=12,...N
where W is the weight vector and b is the bias, both of which are optimized by the training process. The regulating parameter C is

(4.1)

a penalty factor, which can balance the model complexity and tolerable risk. In addition, g ’s are positive parameters called

. . . . . . . K(x, X,

slack variables, which represent the distance between the misclassified sample and the optimal hyperplane. Function (% J)
is the kernel function. The commonly used optimization method of SVM classifier is cross-validation accompanied with grid-
search. In our implementation, a 10-fold cross-validation is adopted to enhance the performance of the proposed SVM classifier.

JETIR1903142 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 256


http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

In this experimentation radial basis function is used as the kernel along with one-vs-all classification. SVM performs well in most
of the scenarios because of its high generalization performance without the need to add a prior knowledge, even when the
dimension of the input space is very high. During testing phase, given a pattern vector to an SVM model, the result will be a
measure of the distance of the pattern vector from the hyper plane constructed as a decision boundary between this class and rest
of the classes. A positive value represents that the pattern belongs to the target class and vice versa [19]. In our case, this can be
used to classify our predefined four classes required for navigation (Forward, Left, Right, Idle). Another advantage of SVM is its
ability to handle large scale data efficiently

4.6 Autonomous wheeled agent and car control unit

The main focus of providing a self-driving car requires some sort of a model which will demonstrate the functioning of an
actual vehicle. It will be able to drive on linear and curvilinear paths, by having some sort of speed control to handle steering and
smooth driving. This is achieved by using two motors each of 150 rpm which work along with the 1C L293D [10]. Fig 4 shows the
image of our self-driving bot. The basic construction of the bot is done using a chassis and two wheels. The Raspberry Pi which is
powered by the power bank and the Pi camera both are placed on top of the chassis. The two wheels are both connected to a 150
rpm DC motor. which are powered by a rechargeable battery fixed at the back of the bot. IC L293D is used for direction and speed
control of the bot [10].

V. EXPERIMENTAL RESULTS

5.1. Creation of dataset for comparison and analysis

In Table 1, the dataset which has been created by taking a small subset of images captured by the Raspberry Pi wheeled agent.
We have taken images from three different tracks. Since there are four directions of movement for the wheeled agent, there are four
output classes, namely Forward, Left, Right and Idle. For the purpose of analysis, we have made a dataset of about 1230 images,
with 100 images per direction. By doing so, the network will not be biased towards any direction and ensures proper training of the
network. The three tracks also ensure generalisation of the network so that it can perform well in presence of a new environment.
The database contains 100 images per direction for every track. Hence, there are 300 images for each direction of the entire
database. The three datasets used for comparison of algorithm accuracy contain unbiased data and have almost equal number of
images for all directions. The datasets are split into training and testing sets in a 70-30 split. The training set consists of 861 image
samples whereas the test set consisted of 369 image samples. The test images are exclusively selected for testing which is unseen
data and the performance of the model is evaluated based on this data. The test analysis and training are done using Python’s scikit-
learn and scipy packages run on Spyder on a system with NVIDIA 940MX GPU 4GBDDR5.

Fig. 4. Autonomous wheeled agent

Table 1
Datasets used for comparison and target direction
Track 1 110 Forward, 80 Idle, 106 Left, 118 Right
Track 2 103 Forward, 125 Idle, 100 Left, 80 Right
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Track 3 90 Forward, 99 Idle, 99 Left, 104 Right

The sample images which form the dataset for image classification and also serve as the input to the classification models are
shown in Fig. 5. Panel (a) is the image for identification of the forward class. Subsequently, Panel (b), Panel (c) and Panel (d) are
the images for identification of left, right and idle classes respectively. The three tracks that were created for training and test
purposes are shown in Fig. 6. The track in Fig. 6. (a), has a straight path with smooth left turns and moderate left and right turns in
the middle. Similarly, the track in Fig. 6. (b), has a straight path followed with sharp left turns as contrast to the smooth left turns
in Fig. 6. (a). The track shown in Fig. 6. (c) consists only of smooth left and right turns with no straight path or edges. The three
tracks are made in order to reduce the model being too biased to a certain direction with each track having its own peculiarities.
Also, multiple tracks ensure generalization of the model and it will able to classify new data with good accuracy. The inset circle
in Fig. 6. (a) correspond to the forward and left directions shown in Fig. 5. (a) and Fig. 5. (b) respectively. The inset circle in Fig.
6. (b) corresponds to the idle position shown in Fig. 5. (d) The inset circle in Fig. 6. (c) corresponds to the right direction shown in
Fig. 5. (c).

© (d)

Fig. 5. Sample images captured from the Raspberry Pi
camera during image acquisition
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Fig. 6 Simulation tracks

5.2 Comparison of SVM and MLP

5.2.1 Evaluation Metrics: The performance of the algorithms is measured by the various parameters such as
precision, recall and f1-score. Precision is the ratio of the correctly predicted positive observations to the
total predicted positive observations.

TP,
TP.+FP,

Precision = (5.1)

where c is the class label, TP is considered true positive and FP is considered the false positive sample. Recall is the ratio of
correctly predicted positive observations to all the observations in the actual class.

TP,
TPc+FN,

Recall = (5.2)

where c is the class label and FN, the false negative sample. f1-score is another metric which is the weighted average of precision
and recall. Usually, it is much more useful than normal accuracy measures where the ratio of correctly predicted observations to the
total observations are taken into account. Micro-average will aggregate the contributions of all classes to compute the average
metric. A confusion matrix is also used to determine the correctly predicted samples of a particular class for a particular model.

- A _ 3TPRC
Micro — Average = SThTT N, (5.3)

5.2.2 Performance of Multi-layered Perceptron on test dataset

The hidden layer size can be changed but we give it a value of around 60 for our model. The learning rate (a) is
initialized to be 0.1 for training purposes. The values of learning rate and the hidden layer size should be chosen carefully to
prevent the network from overfitting/underfitting the data. The network will underfit for large values of lambda and small values of
the hidden layer size. Similarly, lower values of lambda and large values of the hidden layer size cause the network to overfit the
data and will start incorporating noise into the model. We have experimented with various values of lambda and found that values
between 0 and 0.1 are adequate in most cases. The rule of the thumb for the number of nodes in the hidden layer is that they are
usually between the size of the input layer and the size of the output layer. The multi-layered perceptron is the most straightforward
way for implementing neural networks. As stated earlier, the two parameters of learning rate and hidden layer size are tuned in
order to optimize the training and distinguish the various classes for prediction. The experimental test set was subjected to the two
different algorithms in MLP, i.e. BACKPROP and RPROP. The training was carried out for 200 iterations and the testing accuracy
is shown in the Table Il below.

Table 2
Testing accuracy of backprop and prop for multi-layered perception

a=0.01 a=0.05 a=0.1

Hidden layer = BACKPROP 68.56% 65.31% 63.96%
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30 RPROP 70.73% 72.36% 70.73%
Hidden layer = BACKPROP 71.54% 70.82% 64.50%
>0 RPROP 74.80% 74.53% 69.92%
Hidden layer = BACKPROP 73.98% 71.54% 68.56%
%0 RPROP 75.34% 73.98% 72.09%

The algorithms give almost equal accuracy when trained on an unbiased dataset with a slight improvement seen while using
RPROP. The accuracy results are comparably better with hidden layer size set at 60 neurons and with learning rate set to 0.01. As
the learning rate increases, the test accuracy takes a degradation. Also, the time taken for training using RPROP is significantly
less as compared to BACKPROP. The MLP performs better with the Canny edge detection done on the images before giving as
input to the network. Without Canny edge detection, the test accuracy drops down to 54% and is very poor. The performance
metrics of the MLP were recorded for various set of parameters but the best possible accuracy was recorded with learning rate at
0.01 and hidden layer size set to 60. MLP did not perform well when as the images are quite overlapping and the model overfitted
for noise. As we have seen, MLP does not provide good enough accuracy. The errors seen in the MLP prediction suffers due to
ambiguous classification of image samples. In Table 3, we see the confusion matrix as observed from the MLP model which give
us the number of correctly predicted samples from each class. In this Table 4, the direction written vertically in the first column
are the actual classes while the direction written horizontally is the predicted classes.

Table 3
Performance of MLP ( learning rate = 0.01 hidden layer size = 60)

Precision Recall F1-score Micro Average
Forward 0.69 0.71 0.70
Left 0.72 0.77 0.74 0.73
Right 0.69 0.62 0.65
Idle 0.76 0.75 0.76
Table 4
Confusion matrix of multilayered perceptron
Forward Left Right Idle
Forward 75 6 7 17
Left 5 58 11 1
Right 11 16 54 6
Idle 18 1 6 77

5.2.3 Performance of Support Vector Machine on test dataset

The SVM is a more versatile option for image classification and regression tasks. However, we are only interested in the
classification part for now. Machine learning algorithms such as SVM have parameters that can be fine-tuned to control the learning
process of the classification. Parameter C is to set the amount of regularization which controls the trade-off between the errors on
training data and the model complexity. A small value for C will generate a simple model with more training errors, while a large
value will lead to a complicated model with fewer errors. Kernel is to introduce different non linearities into the SVM model by
applying kernel functions on the input data. Gamma defines how far the influence of a single training example reaches, with low
values meaning ‘far’ and high values meaning ‘close’. coef0 is an independent parameter used in sigmoid and polynomial kernel
function. [22]. SVM with properly tuned parameters even outperforms convolutional neural networks in terms of computation cost
and performance [22]. The parameters for tuning the SVM model are useful in improving the performance. The ¢ parameter is set as
1.0 whereas we have chosen the Radial Basis Function (RBF) kernel. Gamma value is usually taken as the inverse of number of
samples, where for this analysis is set to ‘auto’. SVM parameters tuning are also observed along with their score for each tuned
parameter as seen in Table V. The graph given below in Fig. 6 is the tuning of the various parameters of SVM classification. The
parameter c is varied from a range 1 to 50, whereas the kernels chosen are Radial Basis function and Polynomial. The gamma values
are also chosen using scikit-learn and given values, ‘auto’ and ‘scale’. The coefficient ‘coef0’ is significant only for polynomial and
hence varied between 0 and 1. The analysis is shown below in Fig. 7. As seen from the graph, the RBF kernel with Gamma set to
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Auto and parameter c set to 10 gives us the best score. The use of RBF kernel greatly improves the performance of the classification
and better class-wise prediction can be seen in Table 5, where the micro-average is observed at 93% accuracy.
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Fig. 7 Graph of SVM parameter tuning with performance score

For SVM, we observed that the model performs better when Canny edge detection is not done on the images before fitting the
model and we can achieve accuracy far more superior than Multi-layered Perceptron models. SVM is very useful for multi-class
classification and performs better than most neural network projects which require high-end computational power. In Table 6, the
confusion matrix as observed with the tuning parameters give us the number of correctly predicted samples from the whole set of
images. In this table, the direction written vertically in the first column are the actual classes while the direction written horizontally
is the predicted classes. As we can see, the accuracy has greatly increased using SVM. There are some ambiguities which still exist
in the track especially for Forward along with Idle classification. Idle class is used on images when the wheeled agent goes off the
track or comes up against any obstacle and will stop the vehicle.

Table 5
Performance of Support Vector Machine (kernel = rbf , gamma = auto , ¢ = 10)

Precision Recall F1-score Micro Average
Forward 0.92 0.88 0.90
Left 0.99 0.96 0.97
Right 0.94 0.94 0.97 0.93
Idle 0.88 0.90 0.89
Table 6

Confusion matrix of Support Vector Machine

Forward Left Right Idle
Forward 82 0 5 6
Left 1 74 2 5
Right 4 0 88 5
Idle 17 0 8 72
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The observations recorded for the two methods of MLP and SVM shows that SVM outperforms the MLP for this dataset and accordingly
the task at hand. The improvement in accuracy in accuracy dwells from the fact that the RBF kernel is used to decide the hyperplane for
classification. Also, the training time as observed for SVM is greatly minimized as compared to MLP. SVM is computationally faster and hence
speeds up the process of fitting the data. Fig.8 shows the output of the python code which is run on the Raspberry Pi during training,
each steering command given through the keyboard to the vehicle is noted by the program and is saved along with the JPEG file
captured by the Pi camera as explained above. The increase and reduction in speed is also noted and saved. This data will later
help the vehicle run autonomously through the track. The training images should be able to successfully identify the trajectory
that has to be followed by predicting the direction in which the wheeled agent will move and reduce the number of
misclassifications.

V1. CONCLUSION

The training of this wheeled agent in this simulated environment will demonstrate the ability of the wheeled agent’s autonomy
by navigating itself without any human control. The comparison of the two methods, MLP and SVM and their parameters have
been observed and found that SVM performs better by having far better testing accuracy and subsequently will perform better on
unseen and untested data, in this case self-driving in a new environment. Also, the wheeled agent should be able to adjust its speed
accordingly during curved paths so as to avoid going off the track. With proper training and testing, we aim on achieving proper
navigation and driving which will make the wheeled agent capable for self-driving.

Fig. 8. Predicted command being generated during the autonomous mode.
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