Pendant Total Domination Polynomial Of Some Graphs

¹Jyoti Rani, ²Prateek Mor

¹ Research Scholar , ²Research Scholar

¹ Department of Mathematics

¹Maharshi Dayanand University , Rohtak, India

Abstract: Let G = (V, E) be a simple graph of order n. The total dominating set S of V that every vertex of V (including those in the set itself) is adjacent to some vertices of S. A total dominating set S of G is called a pendant total dominating set if the induced sub graph <S> contains at least one pendant vertex. In this paper, we introduce a new type of graph polynomial called pendant total domination polynomial. We obtain the pendant total domination polynomial of some standard graphs.

Key Words: Total dominating sets, Pendant total dominating set, Total domination polynomial, Pendant total domination polynomial.

I. Introduction

Throughout this paper, we will consider only simple graphs. Let G = (V,E) be a simple graph. For $S \subseteq V(G)$, we use $\langle S \rangle$ for the subgraph induced by S. For any vertex $v \in V(G)$, the open neighborhood of v is the set $N(v) = \{u \in V(G) | uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V(G)$, the open neighborhood of S is the set $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighborhood of S is the set $N[S] = N(S) \cup S$. The maximum degree of the graph S is denoted by S and the minimum degree is denoted by S and S is adjacent to an element of S.

A set of vertices S in a graph G is said to be a total dominating set if every vertex $v \in V(G)$ (including those in the set itself) is adjacent to an element of S.A total dominating set S of G is called pendant total dominating set if the induced sub graph <S> contains at least one pendant vertex. The minimum cardinality of a pendant total dominating set of G is called the pendant total domination number and is denoted by $\gamma_{pet}(G)$. A vertex of degree zero is called an isolated vertex and a vertex of a degree one is called a pendant vertex. An edge incident to a pendant vertex is called a pendant edge. For a detailed treatment of the domination and domination polynomial of a graph, the reader may referred to [2,1]. We introduced the pendant total domination polynomial of G, and obtain pendant total domination polynomial for some standard graphs. The join of G_1 and G_2 denoted by $G_1 \vee G_2$ is the graph such that

 $E(G_1 \vee G_2) = E(G_1) \bigcup E(G_2) \bigcup \left\{ uv; u \in V(G_1), v \in V(G_2) \right\}$ and $V(G_1 \vee G_2) = V(G_1) \bigcup V(G_2)$. The star graph $K_{1,n}$ is a graph of order n+1 obtained by joining the two graphs $G_1 \cong K_1$ and $G_2 \cong \overline{K_n}$. A fan graph $F_{m,n}$ is defined as the graph join $\overline{K_m} \vee P_n$, where $\overline{K_m}$ is the empty graph on m nodes and P_n is the path graph on n nodes. An m - gonal n - cone graph, also called the n - point suspension of C_m , is defined by the graph join $C_m \vee \overline{K_n}$, where C_m is a cyclic graph and $\overline{K_n}$ is an empty graph.

II. Pendant Total Domination Polynomial Of A Graph

Definition 2.1 Let G be a simple graph of order n with no isolated vertices. Let $d_{pet}(G,i)$ be the family of pendant total dominating sets of G with cardinality i and let $d_{pet}(G,i) = |D_{pet}(G)|$. Then the pendant total domination polynomial $d_{pet}(G,x)$ of G is defined as $d_{pet}(G,x) = \sum_{i=\gamma_{set}(G)}^{n} d_{pet}(G,i)x^{i}$, Where $\gamma_{pet}(G)$ is the pendant total domination number of G.

Example 2.1 Consider the graph G given in the figure 2.1

The pendant total dominating sets of G of cardinality 5 is 1 i.e. $\{v_2, v_3, v_4, v_5, v_6\}$. Therefore $d_{pet}(G,5)=1$.

The pendant total dominating sets of G of cardinality 6 is 2 i.e. $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ and $\{v_2, v_3, v_4, v_5, v_6, v_7\}$. Therefore $d_{pet}(G, 6) = 2$. The pendant total dominating sets of G of cardinality 7 is 1 i.e. $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$. Therefore $d_{pet}(G, 7) = 1$.

Since, the minimum cardinality is 5, $\gamma_{pet}(G)=5$

$$\begin{split} D_{pet}(G, x) &= \sum_{i=\gamma_{pet}(G)}^{|V(G)|} d_{pet}(G, i) x^{i} \\ &= \sum_{i=5}^{7} d_{pet}(G, i) x^{i} \\ &= d_{pet}(G, 5) x^{5} + d_{pet}(G, 6) x^{6} + d_{pet}(G, 7) x^{7} \\ &= x^{5} + 2 x^{6} + x^{7} \\ &= x^{5} (1 + 2 x + x^{2}) \\ D_{pet}(G, x) &= x^{5} (1 + x)^{2} \end{split}$$

Observation 2.1 Let G be any connected graph of order $n \ge 2$. Then

- a) $d_{pet}(G,n)=1$, if G has a pendant vertex.
- b) $d_{pet}(G,n) = \begin{cases} 1, & \text{if } \delta(G) = 1 \\ 0, & \text{otherwise} \end{cases}$
- c) $d_{net}(G,i)=0$ iff $i < \gamma_{net}(G)$ or i > n.
- d) $d_{pet}(G,x)$ has no constant term.
- e) Zero is a root of $d_{pet}(G,x)$ of multiplicity $\gamma_{pet}(G)$.

Proposition 2.1 Let G be a connected graph of order greater than equal to 2 then $D_{pet}(G,x) = \left(\frac{n}{2}\right)x^2$ iff $G \cong K_n$

Proof : Let G be a complete graph of order greater than equal to 2. Clearly $\gamma_{pet}(G) = 2$ and a pendant total dominating set of size two is obtained by choosing any two vertices in V(G). hence there are $\left(\frac{n}{2}\right)$ ways to select the pendant total dominating set of size two and so

 $D_{per}(G,2) = \left(\frac{n}{2}\right)$. For any subset S of vertices, of size at least three, the induced sub graph <S> contains no pendant vertex and so

 $D_{\scriptscriptstyle pet}(G,i) = 0 \;\; {
m for} \;\; i \ge 3$. Therefore $D_{\scriptscriptstyle pet}(G,x) = \left(rac{n}{2}
ight) x^2$.

Conversely, Let S be a γ_{pet} - set of G and assume $D_{pet}(G,x) = \left(\frac{n}{2}\right)x^2$. Since coefficient of x^i is zero for $i \ge 3$, it follows that G contains no pendant dominating set of size greater than two. Further, every pair of vertices will be a pendant dominating set and hence any two vertices in G are adjacent, proving that $G \cong K_n$.

Theorem 2 : Let G_1, G_2 be connected graphs of order $n, m \ge 2$ respectively. Then $D_{pet}(G_1 \lor G_2, x) = nmx^2 + D_{pet}(G_1, x) + D_{pet}(G_2, x)$. **Proof :** Let $G \cong G_1 \lor G_2$ and suppose that D_1 is a pendant dominating set of G_1 and G_2 is a pendant dominating set of G_2 . Further, $\mathcal{Y}_{pet}(G) = 2$ and there are $\binom{n}{1}\binom{m}{1}$ ways to select the minimum pendant dominating set in G. Next, selecting at least one vertex

from G_1 and two vertices from G_2 (or conversely), then the resulting set leads to a sub graph having no pendant vertex. It implies that,

 $D_{pet}(G,i) = 0$, $for i \ge 3$ and vertices taken from G_1 and G_2 . Any pendant dominating set of size greater than or equal to three arises

from or G_2 . The pendant dominating sets of G_1 or G_2 will also be a pendant dominating set of G. Therefore

$$D_{pet}(G_1 + G_2, x) = \begin{bmatrix} n \\ 1 \end{bmatrix} \begin{bmatrix} m \\ 1 \end{bmatrix} x^2 + D_{pet}(G_1, x) + D_{pet}(G_2, x).$$

$$D_{pet}(G_1 + G_2, x) = nmx^2 + D_{pet}(G_1, x) + D_{pet}(G_2, x).$$

Corollary 2.1 For a connected graph G, the followings are true:

- a) If $n \ge 4$, then $D_{pet}(W_n, x) = nx^2 + D_{pet}(C_{n-1}, x)$.
- b) If G is a m- gonal n- cone graph $C_{m,n}$, then $D_{pet}(C_{m,n},x) = nmx^2 + D_{pet}(C_n,x).$
- c) If G is a fan graph $F_{m,n}$, then $D_{pet}(F_{m,n},x) = nmx^2 + D_{pet}(P_n,x).$

Proof: a) Let W_n be a wheel with $n \ge 4$ vertices, which can be constructed by joining the graph

 $G_1 = C_{n-1}$ with $G_2 = K_1$, i.e., $W_n = C_{n-1} + K_1$. Now by using Theorem 2, we get $D_{pet}(W_n, x) = nx^2 + D_{pet}(C_{n-1}, x)$.

- b) Let $G = C_{m,n}$ be a cone graph and it can be construct by joining the graph $G_1 = C_m with G_2 = \overline{K_n}$, i.e., $C_{m,n} = C_m + \overline{K_n}$. Now by using Theorem 2, we get $D_{pet}(C_{m,n}, x) = nmx^2 + D_{pet}(C_n, x)$.
- c) By applying the theorem 2, with $G_1 = \overline{K_m}$ and $G_2 = P_n$, we have the result.

Proposition 2.2The following properties holds for coefficient of $D_{pet}(P_n, x)$.

- a) $D_{pet}(P_n, n) = 1$, if $n \ge 2$.
- b) $D_{net}(P_n, n-1) = n, if \ n \ge 3.$
- c) $D_{net}(P_n, n) = 1$, if $n \ge 2$.
- d) $D_{pet}(P_{3n}, n) = 0 \ \forall n$.

Theorem 3 : Let $G \cong S_n$. Then $D_{pet} = x \lceil (1+x)^n - 1 \rceil$.

Proof: Let $G \cong S_n$ be a star graph. Then $\gamma_{pet}(G) = 2$ and $G \cong S_n \cong \overline{K}_n + K_1$. Let $\{u_1, u_2, u_3, \dots, u_n\}$ be a vertex set of \overline{K}_n and u be a vertex of K_1 . Any pendant total dominating set in G must contain u and so the number of pendant total dominating sets of size two will be the number of totally disconnected graph and so $d_{pet}(G, 2) = n$.

Also, pendant dominating sets of size $j, 3 \le j \le n$ are obtained by taking any j-1 number of vertices from $V(\overline{K}_n)$. Therefore, we have $\binom{n}{j-1}$ ways to choose a pendant set of j size and so $d_{pet}(G) = \binom{n}{j-1}$.

Therefore

$$D_{pet}(G, x) = \binom{n}{1}x^{2} + \binom{n}{2}x^{3} + \binom{n}{3}x^{4} + \dots + \binom{n}{n}x^{n+1}.$$

$$D_{pet}(G, x) = x \left[\binom{n}{1}x^{1} + \binom{n}{2}x^{2} + \binom{n}{3}x^{3} + \dots + \binom{n}{n}x^{n} \right].$$

$$D_{pet}(G, x) = x \left[\sum_{i=0}^{n} \binom{n}{i}x^{i} - 1 \right].$$

$$D_{pet}(G, x) = x \left[(1+x)^{n} - 1 \right].$$

Theorem 4: Let
$$G \cong K_{n,n}$$
 be a complete bipartite graph. Then $D_{pet}(G,x) = (nx)^2 \left[1 + \frac{nx(1-x)-x}{(1-x)^2}\right] + 2nx^{n+1}$.

Proof : Let G be a complete bipartite graph with 2n vertices. Clearly $\gamma_{pet}(G) = 2$. The minimum pendant total dominating set is of size two and maximum pendant total dominating set is of size n+1. There are n^2 edges of pendant total dominating set of size two. Therefore $d_{pet}(G,x) = n^2$. Then there are $n^2 \binom{n-1}{1}$ ways to select the pendant total dominating set of size three, similarly $n^2 \binom{n-2}{1}$ ways to select the pendant total dominating set of size n+1. Therefore

$$\begin{split} D_{pet}(G,x) &= \left[n^2 x^2 + n^2 (n-1) x^3 + n^2 (n-2) x^4 + \ldots \right] + \binom{2n}{1} x^{n+1}. \\ &= \left(nx \right)^2 \left[1 + (n-1) x + (n-2) x^2 + \ldots \right] + 2n x^{n+1}. \\ &= (nx)^2 \left[1 + nx + nx^2 + nx^3 + \ldots - x - 2x^2 - 3x^3 - \ldots \right] + 2n x^{n+1}. \\ &= (nx)^2 \left[1 + nx (1 + x + x^2 + \ldots) - x (1 + 2x + 3x^2 + \ldots) \right] + 2n x^{n+1}. \\ &= (nx)^2 \left[1 + \frac{nx (1 - x) - x}{(1 - x)^2} \right] + 2n x^{n+1}. \end{split}$$

III. ACKNOWLEDGMENT

THERE IS NO FUNDING AGENCY.

REFERENCES

- 1. Alikhani, S. and Peng, Y.H. (2009). Introduction to Domination Polynomial of a graph. arXiv, 0905.2251v1.
- 2. Alikhani, S. and Jafari, N. (2017). Total domination polynomial of graphs from primary subgraphs. Journal of Algebraic Systems, 5(2), 127-138.
- 3. Haynes, T.W., Hedetniemi, S.T. and Slater, P.J. (1998), Fundamentals of domination in graphs, Marcel Dekker, New York.
- 4. Nayaka, S.R., Puttaswamy and Purushothama, S. (2017). Pendant Domination Polynomial of a graph, 117(11), 193-199.
- 5. Vijayan, A. and Anitha Baby, T. (2014). Connected total domination polynomials of graphs, International journal of Mathematical Archive, 5(11), 127-136.