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Abstract: With the advent of soft-computing technologies, ecommerce and OTT platforms have gained immense market 

capturing capabilities. Earlier, the ability to predict the effectiveness of a campaign had to be done using expert supervision 

which cost a lot of money. Neural network systems have almost been successful in eliminating the need for such a specialist. This 

paper deals with the development of a neural network scheme for software quality prediction where a feed-forward neural 

network has been employed for prediction purposes. Two feed-forward neural network algorithms such as Radial Basis Function 

Network (RBFN) and Multilayered Perception Network (MLNN) are presented and the effectiveness of both the approaches have 

been analyzed. To enhance the training accuracy, a momentum term has been added in MLNN. Both the approaches are hard-

coded and implemented in MATLAB where the performance of the available NN toolbox in MATLAB has also been compared 

with both the approaches. The comparison has been performed on 128 software dataset for which quality has to be predicted. Out 

of 128 dataset, 100 data pairs are used for training, and 28 data input is used for testing purposes. Furthermore, it is shown that 

the results obtained by the MLNN are closely matched with the actual software quality and deliver better results among all three 

approaches. 

IndexTerms - MATLAB, MLNN, Neural Networks, RBFN, Software Quality Prediction. 

I. INTRODUCTION 

In the present time, computer software is a key asset that has a huge impact on our daily life. With this continuously growing digital 

world, usage of the software has been greatly enlarged and thus the quality of software becomes more important whether in terms 

of usability or resilience against any malicious attack. The quality of the software [1] can be accessed with many parameters and it 

may be userdependent as well e.g. some users want lower maintenance cost and some wants it for confidential data, so, the cost 

may be increased in that case. It also becomes difficult to select particular software as various factors are included. So, it will be 

very useful if there is an automated quality prediction scheme that can save time and money for a firm or individual who otherwise 

asks for an expert. Various approaches have been implemented in the literature for automatic software quality prediction like fuzzy 

logic [2], neural networks, etc. [3]. The main disadvantage of fuzzy scheme is its nature of rule-based implementation and the 

performance is highly dependent on fuzzy rules. Nevertheless, a robust and effective approach for software quality prediction is 

still an interesting area. The main aim of this paper is to predict the software quality using a neural network where feed-forward 

neural network approaches have been employed for software prediction. Two feed-forward neural network algorithms namely 

RBFN and MLNN have been presented and the performance of both approaches has been compared. The update laws for weight 

parameters and RBFN centers have been derived using a back-propagation algorithm where a momentum term has also been used 

to enhance the tracking accuracy. Both of the approaches are hard-coded and simulation has been performed in the programming 

language MATLAB. Both of these approaches have also been compared with the results obtained with the MATLAB NN Toolbox. 

Simulation results have been performed on a dataset of 128 various software, the results show that the proposed MLNN gives the 

lowest Mean Square Error (MSE) among these three approaches. The manuscript is organized as follows: Related work with the 

presented approach has been described in section II. Section III describes various factors affecting the quality of software which is 

showing that five parameters namely Reliability, Usability, Efficiency, Maintainability, Portability are sufficient to access the 

software quality. A detailed description of the feed-forward neural network architecture of RBFN and MLNN and their training 

algorithm can be found in section IV. This is followed by extensive simulation results along with the comparative analysis of 

RBFN, MLNN, and MATLAB NN Toolbox in section V, Finally, concluding remarks are given in section VI. 

II. RELATED WORKS 

Over the last decade, the concept of neural networks and learning systems has led immense growth. Ranging from academia to 

industries, the study of neural networks is quite essential in cases that involve systems with unknown dynamics, systems with 

several constraint parameters or both. With the ability to increase the number of measurable attributes for prediction, neural 

network systems have been successfully implemented by popular websites such as Flipkart, Snapdeal, Netflix and many more. 

Several neural network architectures namely feed-forward neural network, feedback neural network, self-organizing feature map 

have been developed to suit the needs of the application based on the available computational resources [4]. Feed-forward neural 

networks are widely used in the literature due to their simplicity and capability of approximation. A common architecture in this 

category is the multi-layered neural network (MLNN) trained with a back-propagation algorithm. The concept relies upon the 

theory of gradient descent algorithm and tunes its weights till the energy function is minimized [5]. It must be noted that the 

theory of back-propagation can be applied to other network architectures as well. MLNNs trained using backpropagation have the 

issue of the vanishing gradient and hence cannot be appropriately implemented to networks with more than one hidden layer. 

However, several applications have been found in the academic as well as industries. Alternative network architecture to MLNNs 

is the radial-basis function network (RBFN) which relies on a single hidden layer structure and a limited number of weights [6]. 

RBFN has been used in several applications in the past. Some Authors in [7] use Recurrent RBFN to perform time series 

prediction. It is designed such that it can predict two temporal series that help in nonlinear system identification. The application 

of RBFNs in recognizing human emotions using motion is investigated in [8]. The RBFN is designed such that it learns the 

correlation of human expressions with facial feature motion patterns. The developed network provided an accuracy of 88% in 
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identifying expressions. Artificial intelligence has also been extensively used in gauging the efficacy of software passed to the 

public domain. Authors in [9] use neural networks to determine fault modules in software that require special attention. This is 

done at an earlier stage of the development in order to improve the final product. Authors [10] proposed the use of statistical 

methods to assess the software quality. These measures are made based on software attributes, also named software metrics. In 

[11], authors proposed suitable measurement metrics to capture the quality of object-oriented code and design for detecting fault-

proneness of classes using neural networks. In [12], authors have constructed a model to predict the class that will turn out faulty 

contents, in future releases of a java application. The model was then validated on a subsequent release of the same application 

with high accuracy. In paper [13], authors developed a fully automated software fault prediction model. Here, there is no need of 

an expert for prediction. The authors used X-Mean clustering algorithm. In [14], authors presented a mathematical model for 

back-propagation study on Lagrangian formalism.  Here, it is suggested various extensions of the basic algorithm. Authors in [15] 

used a solution for estimating software defect fixing effort using a Self-organizing Neural Network. Authors in [16] suggested the 

use of principal component analysis for enhancing the performance of neural networks. The authors obtained raw data from a 

large commercial software using software metrics. Two neural nets were trained, one with raw data and one with PCA data. These 

two nets were compared and it was concluded that the data with PCA produced more insightful results. A similar study is 

presented by the authors in [17]. The authors conclude that neural network models are better at predicting software quality as 

compared to statistical methods. In [18], neural networks are used for the effective measurement of service quality. The authors 

conclude that the perception-only model is more accurate in predicting service quality as compared to the perception-minus-

expectation model. Various studies in the area of neural networks for various factors related to the software are listed in Table 1. 

Table 1. NN Based Various Studies in Software Assessment 

Sr. No. Objective Method Comment 

1 Prediction of Software Reliability 

[19] 

Back-Propagation Uses 4 performance criteria 

2 Prediction of effort in developing 

a software [20]  

Back-propagation MATLAB NN Toolbox 

3 Assessment of software 

reusability [21] 

Back-propagation MATLAB NN Toolbox 

4 fault prediction in software [22]  Multilayer Perceptron Neural 

Network 

Fuzzy bell-shaped activation 

function 

5 Prediction of quality of software 

[23] 

NN with PCA Uses Software fault analysis 

 

With the above discussion and Table I, we see that Neural Network-based approaches have been widely used in the software 

assessment however most of the abovediscussed methods use the ANN toolbox, and hence still a comprehensive analysis of 

software prediction is lacking. By hard-coding the ANN architecture, we have more flexibility depending on the application and 

thus better results can be obtained. Therefore first, we analyze two feed-forward algorithms i.e. RBFN, MLNN and comparisons 

are performed with MATLAB NN toolbox thereafter. 

III. DATA PREPARATION 

There has been a lot of research on the parameters which can influence the quality of software. It is claimed that the following 

five inputs are sufficient enough to estimate the software quality, these parameters are as follows: 

1) Reliability: The ability of the software product can sustain its level of performance under stated conditions for a stated 

period of time. For better quality reliability should be highly released. 

2) Usability: The ability to which the software product makes it easy for users to operate and control it. For better quality 

usability should be highly released. 

3) Efficiency: The ability to which the software product provides appropriate performance, relative to the number of resources 

used, under stated conditions. 

4) Maintainability: The ability to which the software product can be modified. In modifications included corrections, 

improvements, or adaptations of the software to changes in the environment and in the requirements and functional specifications 

(the effort needed to be modified). For better quality maintainability should be less released. 

5) Portability: The ability of the software product to be transferred from one environment to another. The environment may include 

extended hardware or software environment. The component should have high portability for better quality. Thus to predict the 

software quality, the following five inputs namely Reliability, Efficiency, Usability, Maintainability, and Portability are used in 

this research. Software quality is the output of ANN which is calculated based on these five inputs. A total of 128 data-set of 

input-output pair has been collected where 100 data-set are used for ANN training and 28 data-set is used for testing purpose. 

The dataset has been generated by various studies and verified via expert comments. Due to space constraint, only 20 data-set 

used in this study are shown in Appendix A. 
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IV. PROPOSED METHODOLOGY 

A. Radial Basis Function Network 

Figure 1 depicts a generic RBFN architecture. As mentioned earlier, it consists of a single hidden layer with neurons that use 

radial-basis functions as activation functions. Radial basis functions are functions whose value depends upon the distance between 

the input and the fixed point. Usually, the computed distance is known as the Euclidean distance. Gaussian RBF is a commonly 

used activation function [6], is employed here as well: 𝚽(𝐱) = 𝐞(−𝛜𝐱
𝟐). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 RBFN Architecture 
where, x represents the Euclidean distance between the input and the fixed pointed center. In the succeeding subsection, we 

present the weight update formula using the gradient descent algorithm [4). 

 

As mentioned earlier, the back-propagation algorithm will be used to update the weights and the centers for the RBFN. 

If 

• x1, x2, ...., xn: Represent the inputs such that xi ∈ R. 

• c1, c2, ....., ch: Represent the centers of the RBFN. Each center is such that ci ∈ Rn. 

• w1, w2, ....., wh: Represent the weights associated with each center such that wi ∈ R. 

• y: Represents the output of RBFN. 

and the term x = [x1, x2, x3, ...., xn] then the output of RBFN can be calculated as follows: 

y = w1e
−(||c1−x||)

2

2σ2 + w2e
−(||c2−x||)

2

2σ2 +. . . +whe
−(||ch−x||)

2

2σ2  

If σ is the width of the Gaussian function then above equation can be rewritten as: 

y = ∑ wi
h
i=1 e

−(||ci−x||)
2

2σ2 = ∑ wi
h
i=1 f(ci, x)                              (1) 

 

Remark 1: RBFN constitutes linear in weight parameters as shown in Equation 1 which is sometimes a very good property, 

makes it easier to find the weight update rules. Due to this nature, the RBFN is widely used in the system and control. To perform 

weight updates using gradient-descent, an energy function has to be considered. In the case of a single output RBFN, the energy 

function is as shown below: 

𝐽 =
1

2
(𝑦𝑑 − 𝑦)2                            (2) 

The idea is to find new weights such that this energy function should be minimized. Hence, from the gradient descent-based 

back-propagation algorithm, the weight update equation is considered as given below. Figure 2 represents the gradient descent 

algorithm that is used for weight and center updates. 

𝑤𝑖,new = 𝑤𝑖,old − 𝜁
∂𝐽

∂𝑤𝑖
= 𝑤𝑖,old − 𝜁

∂𝐽

∂𝑦

∂𝑦

∂𝑤𝑖
               (3) 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Gradient Descent Algorithm 
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The above expression can be simplified as: 

wi,new = wi,old + ζ(yd − y)(||ci − x||)
2
log(||c1 − x||)

= wi,old + ζ(yd − y)f(ci, x)
           (4) 

The next stage is to update the centers which can be performed as follows. On similar lines for 𝑤𝑖 , the center ci can be updated 

as: 

ci,new = ci,old − ζ
∂J

∂ci
                                 (5) 

As done previously, it is being used the chain rule to expand the partial derivative. Hence, it is got the updated law for 𝐜𝐢 as: 

ci,new = ci,old + ζ(yd − y)(||ci − x||)(log(||ci − x||2) + 1)wi               (6) 

In certain cases, as in Figure 1, a bias term would be added at the output layer. In such cases, Equation 4 gets modified with an 

extra term. This can be written as: 

y = ∑ wi
h
i=1 e

−(||ci−x||)
2

2σ2 + wbb = wb,old + ζ(yd − y)b                            (7) 

To update the weight of the bias, Equation 3 is modified, 

wb,new = wb,old − ζ
∂J

∂wb
                  (8) 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 L-Layered Feed-Forward Neural Network 

Using Equations 4, 6 and 7, any RBFN can be trained to fit any dataset. MATLAB simulations shown in the succeeding 

sections prove the working of the same. 

 

B. Multi-Layered Neural Network 

A multilayered Neural network (MLNN) can have more than one hidden layers as opposed to the RBFN. The architecture of 

MLNN is shown in Figure 3 where: 

x : m× 1 input vector. 

y : n × 1 output vector. 

in : n = 1,2,3, . . . . , L; index for representing a neuron in the nth layer. 

i0 : Index for representing a neuron in the input layer. 

hin : Weighted sum of the input to the in
th neuron in the nth layer. 

vin : Response of the in
th neuron in the nth layer. 

Winin−1  : Weight connecting the in
th neuron in the nth layer and the in−1

th  neuron in the (n − 1)th layer. 

All the weight parameters need to be updated to meet the performance index which is given same as that of Equation 2. 

J =
1

2
(yd − y)

2
                                                                             (9) 

These weight parameters are updated using gradient descent update law as shown in previous section 4.1. Generalized weight 

update law can be derived as: 

Winin−1
(k + 1) = Winin−1

(k) + ηδinviN−1(k)                           (10) 

Where, vin−1  is the output of the ith neuron of the Layer n-1 and δin for each layer is expressed as: 

δin = {
[yiL

d (k) − yiL(k)] [yiL(k) (1 − yiL(k))] , I

vin(k)[1 − vin(k)]∑ δin+1
nn+1
in+1=1

Win+1in
(k), II

              (11) 

Where, I is for the output Layer L and II is for the other hidden layers. It is shown in literature that one hidden layer is 

sufficient enough to approximate a nonlinear function and thus it has been used one hidden layer in MLNN architecture which is 

called as a 3-layered MLNN with one Input layer, one hidden layer and one output layer. For a 3-layered MLNN, output of 

MLNN can be calculated as follows: As shown in Figure 3, the input to the 𝐢𝟏
𝐭𝐡 neuron of hidden Layer is given as: 

hi1 = ∑ Wi1i0
m
i0=1

xi0                                                                    (12) 
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The output of the i1
th neuron of hidden Layer, to the input, is given below. Note that, Log-sigmoidal activation function (Φ(z) =

1

1+e−z
) is used in this process. 

vi1 = Φ(hi1) =
1

1+e
−hi1

                                                             (13) 

On similar patterns, computing the net output, it’s got: 

hi2 = ∑ Wi2i1
n1
i1=1

xi1                                                                  (14) 

And the output of MLNN is obtained as: 

𝑦𝑖2 = 𝑣𝑖2 = 𝛷(ℎ𝑖2) =
1

1+𝑒
−ℎ𝑖2

                                                 (15) 

Where, 𝑛1 is the number of neurons in the hidden layer. 

Thus, the weight update rule is given as: 

𝑊𝑖2𝑖1
(𝑘 + 1) =  𝑊𝑖2𝑖1

(𝑘) + 𝜂𝛿𝑖2𝑣𝑖1(𝑘)

𝑊𝑖1𝑖0
(𝑘 + 1) =  𝑊𝑖1𝑖0

(𝑘) + 𝜂𝛿𝑖1𝑥𝑖0(𝑘)
}                                (16) 

Where, 𝜂 is the learning rate, 𝛿𝑖2 = [𝑦𝑖2
𝑑 (𝑘) − 𝑦𝑖2(𝑘)] [𝑦𝑖2(𝑘) (1 − 𝑦𝑖2(𝑘))] is the error back-propagated from the output layer 

whereas 𝛿𝑖1 = 𝑣𝑖1(𝑘)[1 − 𝑣𝑖1(𝑘)] ∑ 𝛿𝑖2
𝑛2
𝑖2=1

𝑊𝑖2𝑖1
(𝑘) is the error back-propagated from the hidden hidden Layer. 

A momentum term has been added to enhance the training accuracy and improve the learning. By using the momentum, weight 

update laws are expressed as: 

𝑊𝑖2𝑖1
(𝑘 + 1) = 𝑊𝑖2𝑖1

(𝑘) + 𝜂𝛿𝑖2𝑣𝑖1(𝑘) + 𝜇(𝑊𝑖2𝑖1
(𝑘)

−𝑊𝑖2𝑖1
(𝑘 − 1))

𝑊𝑖1𝑖0
(𝑘 + 1) = 𝑊𝑖1𝑖0

(𝑘) + 𝜂𝛿𝑖1𝑥𝑖0(𝑘) + 𝜇(𝑊𝑖1𝑖0
(𝑘)

−𝑊𝑖1𝑖0
(𝑘 − 1))

                     (17) 

Where, 𝜇 is the learning rate for momentum term. The above update laws will be used to train the proposed MLNN 

architecture. 

V. SIMULATION STUDY 

A. Training of ANN 

There are various parameters for training the ANN which can have a great impact on the accuracy of the trained ANN, for 

example, a very small value of learning rate may give slower convergence of parameters i.e. slow learning whereas a larger value 

may result in instability of the ANN parameters i.e. ANN instability occurs in this case hence these should be carefully selected. 

We have chosen the ANN parameters by trial and error starting from very small values and then gradually increasing until we get 

no further improvement in the performance. 

1) RBFN training: Various parameters of RBFN are selected as follows: 

Learning Rate for weight parameters update: 0.3 

Learning Rate for centers update: 0.2 

No. of Centers in hidden layer: 50 

No. of weight parameters: 50 

All of the 50 weight parameters are initialized with small values randomly selected between -0.1 to 0.1. We have written the 

whole training algorithm in MATLAB from scratch. A total of 50000 iterations are used to train the ANN where one iteration 

corresponds to the one passage of the whole data-set to ANN. All the weights are updated at each instant of the data set. Stopping 

criteria for ANN training is either root mean square error (RMSE) < 0.001 or 50000 iterations i.e. the training algorithm is 

stopped when RMSE reaches under 0.001 or 50000 iterations are reached. As all the weights, as well as centers, are also updated 

instantaneously, all the weights and center values are converged to their respective optimal values. The training results for all 100 

samples are shown in Figure 4 as follows where the ’blue’ line shows the actual quality of the software i.e. desired quality to be 

predicted and the ’red’ line shows the software quality predicted by the ANN. From the Figure 4, we see that the desired quality 

has been correctly estimated by the ANN which constitutes the successful training of the ANN. 
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Fig. 4. Training results of RBFN 

2) MLNN training: 

The parameters of MLNN are selected as follows: 

Learning Rate for weight parameters update: 0.3 

Momentum: 0.2 No. of hidden Layer neurons: 8 

No. of weight parameters: 48 Activation function: Sigmoid 

Stopping criteria: RMSE < 0.001 or 50000 iterations 

No. of Layers: 3 i.e. Input Layer, Hidden Layer and Output Layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. ANN architecture using MATLAB NN Toolbox 

No. of weight parameters in MLNN can be calculated as No. of weights = No. of neurons in Hidden Layer (No. of inputs + No. 

of outputs) 8 × 5 + 8 × 1 = 48. The presented 3-layered MPLN has been implemented in MATLAB R2018a on a core-i5 

processor. The MATLAB code is written from the scratch to implement the MLNN algorithm to check the efficacy of the 

presented architecture instead of using the MATLAB NN toolbox directly. 

 

Training results of both the NN toolbox and our approach have been presented here. At first, MATLAB NN toolbox training 

results are given here. The NN architecture is shown in Figure 5 which consists of 5 neurons in the input layer, 50 neurons in the 

hidden layer, and one output layer neuron. For a fair comparison, the NN parameters are kept the same as those of the presented 

approach which are described at the start of this section. 

 

The training results obtained using NN toolbox is shown in Figure 6. 
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Fig. 6. MATLAB NN Tool training results 

 

The training accomplished by proposed MLNN shows the training results in Figure 7. 

 

 
Fig. 7. Proposed MLNN training results 

 

We have also plotted the RMSE per iteration during the training of the MLNN. The RMSE per iteration has been shown in 

Figure8 where, we see that ANN has been trained successfully as the RMSE is reached to 0.0236892 in 50000 iterations. 
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Fig. 8. Error plot of ANN training 

B. Testing Results and Discussion 

After training the ANN, optimal weight i.e. input to hidden layer weights and hidden to output layer weights are stored. These 

stored weights are used to estimate the software quality for the given five parameters i.e. Reliability, Efficiency, Usability, 

Maintainability, and Portability. A total of 28 samples for different software are taken where quality needs to be estimated using the 

proposed ANN. 

 
Fig. 9. RBFN testing results 

 

Testing results for these 28 input samples are shown in Figure 9, 10 and 11 where we see that the estimated quality by ANN 

matches with the actual quality of software (desired quality), and better results are obtained with the customcoded MLNN 

approach. Some performance indexes [20] are used to show the efficacy of the proposed approach. All these approaches are also 

compared in terms of performance index Mean square error (MSE) and Mean Absolute Relative Error (MARE), Mean Relative 

Error (MRE) as these are popular measures to access the quality of prediction. MSE and MARE are estimated as follows: 

 

MSE =
∑ (n
i=1 yd(i)−y(i))

2

n
                                             (18) 

MARE =
∑ |(

yd(i)−y(i)

y(i)
)|n

i=1

n
                                          (19) 
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Fig. 10. NN Tool testing results 

 
Fig. 11. Proposed MLNN testing results 

The measured MSE and MARE for these three methods are shown in Table 2 and Table 3. In table II, we see that the lowest 

MSE is obtained in case of proposed MLNN whereas highest MSE in case of RBFN. 

Table 2. Comparison of MSE among Various Methods 

Sr. No. Method Mean Square Error (MSE) 

Training Testing 

1 RBFN 0.0179 0.0198 

2 NN Tool 0.0066 0.0121 

3 Proposed MLNN 0.0023 0.0099 

 

Table 3. Comparison of MARE among Various Methods 

Sr. No. Method Mean Absolute Relative Error (MARE) 

Training Testing 

1 RBFN 0.2185 0.2161 

2 NN Tool 0.1327 0.1597 

3 Proposed MLNN 0.0770 0.1510 

 

Furthermore, Table 3 shows the MARE values obtained by three sachems where the proposed custom-coded NN achieves the 

lowest MARE value. Figure 12 and 13 shows the graphical representation of performance comparison among these three 

techniques. Figure 12 and 13 show that proposed MLNN achieves the lowest MSE, MARE, and MRE values in case of both 

training and testing phase which ensures the better prediction quality of this approach. Hence, we can conclude that the proposed 
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ANN architecture predicts the quality of the given unknown data-set which is not used in the training of the ANN with the highest 

accuracy. Thus the proposed scheme has the potential to be employed in realtime to save money and time for a customer. 

 

 
 

Fig. 12. Training performance comparison 

 
Fig. 13. Testing results comparison 

VI. CONCLUSION 

The variants of feed-forward neural networks namely multilayered neural network (MLNN) and RBFN have been proposed in 

this paper to predict the quality of software on the basis of five parameters namely Reliability, Usability, Efficiency, 

Maintainability, and Portability. RBFN has been used due to its universal approximation capability and linear parameter weights 

which gives a simpler form of ANN whereas MLNN can have nonlinear weight parameters which show good approximation 

performance. A data-set of a total of 128 software have been collected where 6 parameters (Reliability, Usability, Efficiency, 

Maintainability, Portability, and quality) are stored for each of the software, out of which 100 datasets have been used for training 
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of the ANN. 28 datasets have been used to test the efficacy and correctness of the trained ANN. The performance of MLNN, 

RBFN, and MATLAB NN Toolbox have been analyzed and compared which shows that the MLNN shows better performance in 

prediction which is justified by the obtained lowest values of performance measures MSE, MARE, and MRE. Simulation results 

show that the introduced MLNN structure correctly predicts the quality of software. In nutshell, the proposed scheme can be very 

effective for customers (who want to choose a particular software) in real-time to automatically predict the software quality based 

on the five parameters only. The future direction of this work includes the performance enhancement of the software quality 

approach by incorporating linguistic information. 
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