Energy Comparison of Unicyclic Graphs with Cycle C₄

Ravikumar N.1 and Nanjundaswamy N.2

¹Asst. Professor Department of Mathematics, Government First Grade College, Gundulpet - 571111, India.

²Asst. Professor Department of Mathematics Sri Mahadeswara Government First Grade College, Kollegal-571 440, India

Abstract

In this paper, we compare the energies of unicycilc graphs with cycle C_4 , (with k number of vertices, having the unique cycle C_4 , denoted by $G''_{i,k}$), using the coefficients of the characteristic polynomials and Coulson integral formula by establishing the quasi- ordering ' \leq ' on the unicyclic graphs of same order k.

Keywords. Energy; Characteristic polynomial; Adjacency matrix A(G); Unicyclic graphs; Bipartite graphs.

1. Introduction

Let G be a simple graph with k vertices and A(G) be its adjacency matrix. Let $\lambda_1, \dots, \lambda_k$ be the eigenvalues of A(G). Then the energy of G, denoted by E(G), is defined as $E(G) = \sum_{i=1}^{k} |\lambda_i|$.

The characteristic polynomial det(xI - A(G)) of the adjacency matrix A(G) of the graph G is also called the *characteristic polynomial* of *G* is written as

$$\phi(G, x) = \sum_{i=0}^{k} a_i(G) x^{k-i}$$

Using the coefficients $a_i(G)$ of $\phi(G,x)$, the energy E(G) of the graph G with k vertices can be expressed by the following Coulson integral formula (Eq. (3.11) in [2]):

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} (-1)^i a_{2i}(G) \ x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} (-1)^i a_{2i+1}(G) \ x^{2i+1} \right)^2 \right] dx.$$

We write $b_i(G) = |a_i(G)|$. Then clearly $b_0(G) = 1$, $b_1(G) = 0$ and $b_2(G)$ equals the number of edges of G.

About the signs of the coefficients of the characteristic polynomials of unicyclic graphs, we have the following result:

Lemma 1.1: (Lemma 1 in [3]) Let *G* be a unicyclic graph and the length of the unique cycle of *G* be `. Then we have the following:

- $b_{2i}(G) = (-1)^i a_{2i}(G),$ (1)
- (2) $b_{2i+1}(G) = (-1)^i a_{2i+1}(G)$, if G contain a cycle of length l with $l \equiv 1 \pmod{4}$,
- $b_{2i+1}(G) = (-1)^{i+1}a_{2i+1}(G)$, if G contain a cycle of length l with $l \not\equiv 1 \pmod{4}$. (3)

Thus, the Coulson integral formula for unicyclic graphs can be rewritten in terms of $b_i(G)$ as follows:

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} b_{2i}(G) x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} b_{2i+1}(G) x^{2i+1} \right)^2 \right] dx.$$

Hence it follows that for unicyclic graphs G, E(G) is a strictly monotonically increasing function of $b_i(G)$, i = 0, ..., k. To make it more precise, we define a quasi-order \leq on graphs as follows:

Definition 1.2: Let G_1 and G_2 be two graphs of order k. If $b_i(G_1) \le b_i(G_2)$ for all i with $1 \le i \le k$, then we write $G_1 \leq G_2$.

Thus using Coulson integral formula, we have,

Theorem 1.3: For any two unicyclic graphs G_1 and G_2 of order k, we have,

$$G_1 \leq G_2 \Longrightarrow E(G_1) \leq E(G_2).$$

Thus, for comparing the energies of any two unicyclic graphs of the same order, it is enough to establish the quasi-order.

Using this idea, in Section 2, we compare the energies of the unicyclic graphs $G''_{1,k}$, $G''_{2,k}$, $G''_{3,k}$ and $G''_{4,k}$ (see Fig. 2.1, Fig. 2.2, Fig. 2.3 and Fig. 2.4) with k vertices having the unique cycle C_4 . These graphs are comparable with respect to the quasi-ordering:

$$G_{2,k}^{"} \leq G_{4,k}^{"} \leq G_{3,k}^{"} \leq G_{1,k}^{"}$$

We note that these graphs are *bipartite*. For a bipartite graph G, the characteristic polynomial is of the form

$$\phi(G, x) = \sum_{i=0}^{k} a_i \ x^{k-i} = \sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} a_{2j} \ x^{k-2j}$$

as $a_{2j+1} = 0$ for $j = 1, ..., \left\lfloor \frac{k}{2} \right\rfloor$. Also, $(-1)^j a_{2j} = b_{2j}$ and so

$$\phi(G,x) = \sum_{j=0}^{\left[\frac{k}{2}\right]} (-1)^j b_{2j} x^{k-2j}.$$

Thus, for a bipartite graph G, the Coulson integral formula reduces to

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x} \log \left[\left(\sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} (-1)^{j} a_{2j}(G) x^{k-2j} \right)^{2} \right] dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x} \log \left[\left(\sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} b_{2j}(G) \ x^{k-2j} \right)^{2} \right] dx,$$

from which the monotonicity of the E(G) with respect to the $b_i(G)$, $1 \le i \le k$, follows. i.e., if G_1 and G_2 are two bipartite graphs of order k such that $b_i(G_1) \le b_i(G_2)$ for all $i, 1 \le i \le k$, then $E(G_1) \le E(G_2)$. i.e., $G_1 \le G_2$ implies $E(G_1) \leq E(G_2)$.

2. Comparing the energies of the graphs $G''_{i,k}$

We consider the unicyclic graphs $G''_{1,k}$, $G''_{2,k}$, $G''_{3,k}$, $G''_{4,k}$ (see Fig. 2.1, Fig. 2.2,

Fig. 2.3 and Fig. 2.4) with unique cycle C_4 . These graphs are clearly bipartite. We use Theorem 1.3 to compare their energies using Coulson integral formula by establishing the partial order $G_{1,k}^{\prime\prime} \leq G_{2,k}^{\prime\prime} \leq$ $G_{3,k}^{\prime\prime} \leq G_{4,k}^{\prime\prime}$

Theorem 2.1: Let $G''_{1,k}$ be the graph with k vertices given below:

Fig. 2.1 Graph $G_{1k}^{\prime\prime}$

Let $A(G_{1,k}^{\prime\prime})$ be the adjacency matrix of the graph $G_{1,k}^{\prime\prime}$. Then, for $k \ge 7$, its characteristic polynomial $\chi(G_{1,k}^{\prime\prime})$ is given by:

$$\chi(G''_{1,k}) = \lambda \chi(P_{k-1}) - \chi(P_{k-2}) - (\lambda^2 + 1) \chi(P_{k-4})$$
(1)

Also, for $1 \le i \le k$, the coefficient of λ^i in $\chi(G''_{1,k})$ is

$$(-1)^{\frac{k-i}{2}} \left[{\binom{\frac{k+i-2}{2}}{\frac{k-i}{2}}} + {\binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}}} + {\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}}} - {\binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}}} \right]$$
 (2

Proof: The adjacency matrix $A(G''_{1,k})$ is given by

The characteristic polynomial of the adjacency matrix $A(G''_{1,k})$ is given by $\chi(G''_{1,k}) = |\lambda I - A|$, where I is the identity matrix of order k. Thus, by expanding the following determinant and the subsequent determinants by their first column, we get,

$$-\left\{ \begin{vmatrix} -1 & 0 & 0 & \dots & 0 \\ \lambda & -1 & 0 & \dots & 0 \\ 0 & -1 & \lambda & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{vmatrix}_{k-2} + \lambda \begin{vmatrix} 0 & -1 & 0 & \dots & 0 \\ \lambda & -1 & 0 & \dots & 0 \\ 0 & -1 & \lambda & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{vmatrix}_{k-2} + \begin{vmatrix} 0 & -1 & 0 & \dots & 0 \\ -1 & 0 & -1 & \dots & 0 \\ 0 & -1 & \lambda & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{vmatrix}_{k-2} \right\}$$

$$= \lambda \; \chi(P_{k-1}) - \chi(P_{k-2}) + \begin{vmatrix} \lambda & -1 & 0 & \dots & 0 \\ -1 & \lambda & -1 & \dots & 0 \\ 0 & -1 & \lambda & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} -1 & 0 & 0 & \dots & 0 \\ -1 & \lambda & -1 & \dots & 0 \\ 0 & -1 & \lambda & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{vmatrix}_{k-3}$$

$$+ \, \lambda^2 \begin{vmatrix} -1 & 0 & 0 & \dots & 0 \\ -1 & \lambda & -1 & \dots & 0 \\ 0 & -1 & \lambda & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{vmatrix}_{k-3} - \begin{vmatrix} -1 & 0 & 0 & \dots & 0 \\ -1 & \lambda & -1 & \dots & 0 \\ 0 & -1 & \lambda & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{vmatrix}_{k-3}$$

$$= \lambda \chi(P_{k-1}) - \chi(P_{k-2}) - \chi(P_{k-4}) - \chi(P_{k-4}) - \lambda^2 \chi(P_{k-4}) + \chi(P_{k-4})$$

= $\lambda \chi(P_{k-1}) - \chi(P_{k-2}) - (\lambda^2 + 1) \chi(P_{k-4}),$

where $\chi(P_{k-1})$, $\chi(P_{k-2})$ and $\chi(P_{k-4})$ denote the characteristic polynomials of the paths P_{k-1} , P_{k-2} and P_{k-4} containing k-1, k-2 and k-4 vertices respectively.

This proves (1).

We now compute the coefficient of λ^i in $\chi(G''_{1,k})$ using (1). We make use of the following characteristic polynomial of the path P_n :

$$\chi(P_n) = \sum_{t=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^t \binom{n-t}{t} \lambda^{n-2t} \tag{3}$$

Put n=k-1 in (3). If $t=\frac{k-i}{2}$, then n-2t=i-1, and so the coefficient of λ^{i-1} in $\chi(P_{k-1})$ is

$$(-1)^{\frac{k-i}{2}} \left(\frac{\frac{k+i-2}{2}}{\frac{k-i}{2}}\right)$$
, since then $n-t=k-1-\left(\frac{k-i}{2}\right)=\frac{k+i-2}{2}$. Also, by putting $n=k-2$ in (3) and taking

 $t = \frac{k-i-2}{2}$, we obtain the coefficient of

$$\lambda^{i} \operatorname{in} \chi(P_{k-2})$$
 to be $(-1)^{\frac{k-i-2}{2}} \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}}\right)$, since $n-2t=k-2-2\left(\frac{k-i-2}{2}\right)=i$ and

$$n - t = k - 2 - \left(\frac{k-i-2}{2}\right) = \frac{k+i-2}{2}$$
.

Similarly, by putting n=k-4 in (3) and taking $t=\frac{k-i-2}{2}$, we get the coefficient of λ^{i-2} in $\chi(P_{k-4})$ to be

$$(-1)^{\frac{k-i-2}{2}} \left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}}\right)$$
. Further putting $n = k-4$ and taking $t = \frac{k-i-4}{2}$ in (3), we see that the coefficient of λ^i

in
$$\chi(P_{k-4})$$
 is $(-1)^{\frac{k-i-4}{2}} \begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i-4}{2} \end{pmatrix}$

Now by (1), we have,

{Coefficient of λ^i in $\chi(G''_{1,k}; \lambda)$ }=

{Coefficient of λ^{i-1} in $\chi(P_{k-1})$ } – {Coefficient of λ^i in $\chi(P_{k-2})$ } – {Coefficient of λ^{i-2} in $\chi(P_{k-4})$ - {Coefficient of λ^i in $\chi(P_{k-4})$ }.

Thus the coefficient of λ^i in $\chi(G''_{1,k};\lambda)$ is given by

$$\begin{split} &(-1)^{\frac{k-i}{2}} \binom{\frac{k+i-2}{2}}{\frac{k-i}{2}} - (-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} - (-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} - (-1)^{\frac{k-i-4}{2}} \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} \\ &= (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-2}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} - \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} \right]. \end{split}$$

Hence the theorem.

Theorem 2.2: Let $G_{2,k}^{"}$ be the graph with k vertices given below:

Fig. 2.2 Graph $G_{2,k}^{\prime\prime}$

Let $A(G_{2,k}^{"})$ be the adjacency matrix of the graph $G_{2,k}^{"}$. Then, for $k \ge 7$, its characteristic polynomial $\chi(G_{2,k}^{\prime\prime})$ is given by:

$$\chi(G''_{2,k}) = (\lambda^3 - 2\lambda) \chi(P_{k-3}) - \lambda^2 \chi(P_{k-4}) - \lambda^3 \chi(P_{k-5})$$
(4)

Also, for $1 \le i \le k$, the coefficient of λ^i in $\chi(G_{2,k}^{\prime\prime})$ is

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right]$$
 (5

Proof: The adjacency matrix $A(G_{2,k}^{"})$ is given by

The characteristic polynomial of the adjacency matrix $A(G_{2,k}^{\prime\prime})$ is given by

 $\chi(G_{2,k}^{\prime\prime})=|\lambda I-A|$, where *I* is the identity matrix of order *k*. Thus

$$=\lambda^2 \begin{vmatrix} \lambda & 0 & -1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & 0 & 0 & 0 & \cdots & 0 \\ -1 & -1 & \lambda & -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \lambda & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \lambda & -1 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-2} + \lambda \begin{vmatrix} -1 & -1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & 0 & 0 & \cdots & 0 \\ -1 & -1 & \lambda & -1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \lambda & -1 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-2}$$

$$-\lambda \begin{vmatrix} -1 & -1 & 0 & 0 & 0 & \cdots & 0 \\ \lambda & 0 & -1 & 0 & 0 & \cdots & 0 \\ -1 & -1 & \lambda & -1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \lambda & -1 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-2} + (-1) \begin{vmatrix} \lambda & 0 & -1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & 0 & 0 & \cdots & 0 \\ -1 & -1 & \lambda & -1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \lambda & -1 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-2}$$

$$-\lambda \left\{ \begin{vmatrix} \lambda & -1 & 0 & 0 & 0 & \cdots & 0 \\ -1 & \lambda & -1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & \lambda & -1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \lambda & -1 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} -1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ \lambda & -1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \lambda & -1 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \lambda & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} -1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \lambda & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} -1 & 0 & 0 & \cdots & 0 \\ -1 & \lambda & -1 & \cdots & 0 \\ 0 & -1 & \lambda & \cdots & 0 \\ 0 & 0 & -1 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} -1 & 0 & 0 & \cdots & 0 \\ -1 & \lambda & -1 & \cdots & 0 \\ 0 & 0 & -1 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & \lambda & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} 0 & -1 & 0 & \cdots & 0 \\ \lambda & -1 & 0 & \cdots & 0 \\ 0 & -1 & \lambda & \cdots & 0 \\ 0 & -1 & \lambda & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} 0 & -1 & 0 & \cdots & 0 \\ \lambda & -1 & 0 & \cdots & 0 \\ 0 & -1 & \lambda & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{vmatrix}_{k-3} + \begin{vmatrix} 0 & -1 & 0 & \cdots & 0 \\ \lambda & -1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots &$$

$$= \lambda^{3} \chi(P_{k-3}) - \lambda^{3} \chi(P_{k-5}) - \lambda \chi(P_{k-3}) - \lambda \chi(P_{k-5}) - \lambda \chi(P_{k-5}) - \lambda^{2} \chi(P_{k-4})$$
$$+ \lambda \chi(P_{k-5}) - \lambda \chi(P_{k-3}) + \lambda \chi(P_{k-5})$$
$$= (\lambda^{3} - 2\lambda) \chi(P_{k-3}) - \lambda^{2} \chi(P_{k-4}) - \lambda^{3} \chi(P_{k-5}),$$

proving (4).

To compute the coefficient of λ^i in $\chi(G_{2,k}^{\prime\prime})$, we first compute the coefficients of λ^{i-3} and λ^{i-1} in $\chi(P_{k-3})$. Put

$$n = k - 3$$
 in (3). If $t = \frac{k - i}{2}$ then $n - 2t = i - 3$, and so the coefficient of $\lambda^{i - 3}$ in $\chi(P_{k - 3})$ is $(-1)^{\frac{k - i}{2}} \left(\frac{k + i - 6}{2}\right)$,

since $n-t=k-3-\left(\frac{k-i}{2}\right)=\frac{k+i-6}{2}$. Again by putting n=k-3 in (3), we obtain the coefficient of λ^{i-1}

in
$$\chi(P_{k-3})$$
 to be $(-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}}$ by taking $t = \frac{k-i}{2}$ as $n-2$ $t = k-3-2 \left(\frac{k-i-2}{2}\right) = i-1$ and $n-1$

$$t = k - 3 - \left(\frac{k-i-2}{2}\right) = \frac{k+i-4}{2}$$
. Similarly, by putting $n = k - 4$ and taking $t = \frac{k-i-2}{2}$ in (3), we see that the

coefficient of λ^{i-2} in $\chi(P_{k-4})$ to be $(-1)^{\frac{k-i-2}{2}} \left(\frac{\frac{\kappa+i-6}{2}}{\frac{k-i-2}{2}}\right)$. Further, putting n=k-5 in (3), we see that the

coefficient of
$$\lambda^{i-3}$$
 in $\chi(P_{k-5})$ is $(-1)^{\frac{k-i-2}{2}} \begin{pmatrix} \frac{k+i-8}{2} \\ \frac{k-i-2}{2} \end{pmatrix}$ by taking $t = \frac{k-i-2}{2}$.

Now by (4), we have,

{Coefficient of λ^i in $\chi(G_{2,k}^{\prime\prime})$ }=

{Coefficient of λ^{i-3} in $\chi(P_{k-3})$ } – 2{Coefficient of λ^{i-1} in $\chi(P_{k-3})$ } – {Coefficient of λ^{i-2} in $\chi(P_{k-4})$ } - {Coefficient of λ^{i-3} in $\chi(P_{k-5})$ }.

Thus, the coefficient of λ^i in $\chi(G_{2,k}^{\prime\prime})$, is given by

$$(-1)^{\frac{k-i}{2}} \binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} - 2(-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} - (-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} - (-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}}$$

$$= (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right].$$

Hence the theorem.

Let $G_{3,k}^{"}$ be the graph with k vertices given below: Theorem 2.3:

Fig. 2.3 Graph $G_{3,k}^{\prime\prime}$

Let $A(G_{3,k}^{"})$ be its adjacency matrix. Then, for $k \ge 7$, the characteristic polynomial of the graph $G_{3,k}^{"}$ is given by:

$$\chi(G_{3,k}'') = \lambda \chi(G_{2,k-1}'') - \chi(G_{1,k-2}'')$$
(6

Also, for $1 \le i \le k$, the coefficient of λ^i in $\chi(G_{3,k}^{\prime\prime})$ is

$$(-1)^{\frac{k-i}{2}} \left[{\frac{k+i-8}{2} \choose \frac{k-i}{2}} + 2 {\frac{k+i-6}{2} \choose \frac{k-i-2}{2}} + {\frac{k+i-4}{2} \choose \frac{k-i-4}{2}} + {\frac{k+i-4}{2} \choose \frac{k-i-2}{2}} + {\frac{k+i-8}{2} \choose \frac{k-i-2}{2}} + {\frac{k+i-10}{2} \choose \frac{k-i-2}{2}} \right] + {\frac{k+i-8}{2} \choose \frac{k-i-4}{2}} - {\frac{k+i-6}{2} \choose \frac{k-i-6}{2}}$$

$$(7)$$

Proof: Proof of (6) follows from Theorem 2.2. Since we have, $\chi(G''_{3,k},\lambda) = \lambda \chi(G''_{2,k-1}) - \chi(G''_{1,k-2})$, the coefficient of λ^i in $\chi(G''_{3,k})$ is

{Coefficient of
$$\lambda^{i-1}$$
 in $\chi(G''_{2,k-1})$ }-{Coefficient of λ^i in $\chi(G''_{1,k-2})$.

By replacing *i* by i-1 and k by k-1 in (5), the coefficient of λ^{i-1} in $\chi(G''_{2,k-1})$ is seen to be:

$$(-1)^{\frac{k-i}{2}} \left[{\frac{k+i-8}{2} \choose \frac{k-i}{2}} + 2 {\frac{k+i-6}{2} \choose \frac{k-i-2}{2}} + {\frac{k+i-8}{2} \choose \frac{k-i-2}{2}} + {\frac{k+i-10}{2} \choose \frac{k-i-2}{2}} \right]$$

Also, by replacing k by k-2 in (2), we obtain the coefficient of λ^i in $\chi(G''_{1,k-2})$ to be:

$$(-1)^{\frac{k-i-2}{2}} \left[\binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} - \binom{\frac{k+i-6}{2}}{\frac{k-i-6}{2}} \right] \right]$$

Thus, the coefficient of λ^i in $\chi(G''_{3,k})$ is given by,

$$(-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-8}{2} \right) + 2 \left(\frac{k+i-6}{2} \right) + \left(\frac{k+i-8}{2} \right) + \left(\frac{k+i-10}{2} \right) \right]$$

$$- (-1)^{\frac{k-i-2}{2}} \left[\left(\frac{k+i-4}{2} \right) + \left(\frac{k+i-4}{2} \right) + \left(\frac{k+i-8}{2} \right) - \left(\frac{k+i-6}{2} \right) \right]$$

$$= (-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-8}{2} \right) + 2 \left(\frac{k+i-6}{2} \right) + \left(\frac{k+i-8}{2} \right) + \left(\frac{k+i-8}{2} \right) \right] + (-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-4}{2} \right) + 2 \left(\frac{k+i-6}{2} \right) + \left(\frac{k+i-8}{2} \right) + \left(\frac{k+i-10}{2} \right) \right] + (-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-4}{2} \right) + \left(\frac{k+i-4}{2} \right) + \left(\frac{k+i-8}{2} \right) - \left(\frac{k+i-6}{2} \right) \right]$$

$$= (-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-8}{2} \right) + 2 \left(\frac{k+i-6}{2} \right) + \left(\frac{k+i-4}{2} \right) + \left(\frac{k+i-4}{2} \right) + \left(\frac{k+i-4}{2} \right) + \left(\frac{k+i-8}{2} \right) + \left(\frac$$

Hence the Theorem.

Theorem 2.4: Let $G''_{4,k}$ be the graph with k vertices given below:

Fig. 2.4 Graph $G_{4k}^{\prime\prime}$

Let $A(G''_{4,k})$ be its adjacency matrix. Then, for $k \ge 7$, the characteristic polynomial of the graph $G''_{4,k}$ is given by:

$$\chi(G''_{4,k}) = \lambda \ \chi(G''_{3,k-1}) - \chi(G''_{2,k-2})$$

Also, for $1 \le i \le k$, the coefficient of λ^i in $\chi(G''_{4,k})$ is

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-10}{2}}{\frac{k-i}{2}} + 3\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + 3\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} \right] + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-10}{2}}{\frac{k-i-4}{2}} - \binom{\frac{k+i-8}{2}}{\frac{k-i-6}{2}} \right].$$

Proof: Proof of (8) follows from Theorem 2.2. Since we have, $\chi(G''_{4,k},\lambda) = \lambda \chi(G''_{3,k-1}) - \chi(G''_{2,k-2})$, the coefficient of λ^i in $\chi(G''_{4,k})$ is

{Coefficient of
$$\lambda^{i-1}$$
 in $\chi(G_{3,k-1}'')$ } – {Coefficient of λ^i in $\chi(G_{2,k-2}'')$ }.

By putting k = k - 1, i = i - 1 in (7), the coefficient of λ^{i-1} in $\chi(G_{3,k-1}'')$ is seen to be:

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-10}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-4}{2}} - \binom{\frac{k+i-8}{2}}{\frac{k-i-6}{2}} \right]$$

Also, replacing k by k-2 in (5), we obtain the coefficient of λ^i in $\chi(G_{2,k-2}'')$) to be:

$$(-1)^{\frac{k-i-2}{2}} \left[\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-4}{2}} \right] \right]$$

Thus the coefficient of λ^i in $\chi(G''_{4,k})$ is given by,

$$\begin{aligned} &(-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-10}{2} \atop \frac{k-i}{2} \right) + 2 \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right) + \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} \right) + \binom{\frac{k+i-12}{2}}{\frac{k-i-2}{2}} \right) \\ &+ \binom{\frac{k+i-10}{2}}{\frac{k-i-4}{2}} - \binom{\frac{k+i-8}{2}}{\frac{k-i-6}{2}} \right] - (-1)^{\frac{k-i-2}{2}} \left[\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-4}{2}} \right] \\ &= (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-10}{2}}{\frac{k-i}{2}} + 3 \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + 3 \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} \right) \\ &+ \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-12}{2}}{\frac{k-i-2}{2}} + 2 \binom{\frac{k+i-10}{2}}{\frac{k-i-4}{2}} - \binom{\frac{k+i-8}{2}}{\frac{k-i-6}{2}} \right] \end{aligned}$$

This proves (9).

Theorem 2.5: For the graphs $G_{1,k}^{\prime\prime}$, $G_{2,k}^{\prime\prime}$, $G_{3,k}^{\prime\prime}$ and $G_{4,k}^{\prime\prime}$, we have, for $k \ge 10$,

$$b_i(G''_{1,k}) \ge b_i(G''_{3,k}) \ge b_i(G''_{4}) \ge b_i(G''_{2,k})$$

for all *i*.

Proof: We prove that:

- (i) $b_i(G''_{1,k}) \ge b_i(G''_{3,k})$
- (ii) $b_i(G''_{3,k}) \ge b_i(G''_{4,k})$
- (iii) $b_i(G''_{4,k}) \ge b_i(G''_{2,k})$.

Proof of (i): By putting $\frac{k+i}{2} = r$ and $\frac{k-i}{2} = s$ in (2) and (7), we obtain

$$b_i(G_{1,k}'') = \left[\binom{r-1}{s} + \binom{r-1}{s-1} + \binom{r-3}{s-1} - \binom{r-2}{s-2} \right]$$

and

$$b_i(G_{3,k}^{"}) = \left[\binom{r-4}{s} + 2\binom{r-3}{s-1} + \binom{r-2}{s-2} - \binom{r-2}{s-1} + \binom{r-4}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} - \binom{r-3}{s-3} \right]$$

By using the binomial identity, we have,

$$b_i(G''_{1:k})$$

$$= \binom{r-1}{s} + \binom{r-1}{s-1} + \binom{r-3}{s-1} - \binom{r-2}{s-2}$$

$$= \left[\binom{r-2}{s} + \binom{r-2}{s-1}\right] + \left[\binom{r-2}{s-1} + \binom{r-2}{s-2}\right] + \left[\binom{r-4}{s-1} + \binom{r-4}{s-2}\right] - \binom{r-2}{s-2}$$

$$= \left[\binom{r-2}{s-2} + \binom{r-4}{s-1} + \binom{r-4}{s-2}\right] + \binom{r-2}{s} + 2\binom{r-2}{s-1} - \binom{r-2}{s-2}$$

$$= \left[\binom{r-2}{s-2} + \binom{r-4}{s-1} + \binom{r-4}{s-2}\right] + \left[\binom{r-3}{s} + \binom{r-3}{s-1}\right]$$

$$+ 2\left[\binom{r-3}{s-1} + \binom{r-3}{s-2}\right] - \left[\binom{r-3}{s-2} + \binom{r-3}{s-3}\right]$$

$$= \left[\binom{r-2}{s-2} + \binom{r-4}{s-1} + \binom{r-4}{s-2} + 2\binom{r-3}{s-2} - \binom{r-3}{s-3}\right] + \binom{r-3}{s} + \binom{r-3}{s-1} + \binom{r-3}{s-1} + \binom{r-4}{s-1} + \binom{r-4}{s-2} + 2\binom{r-3}{s-1} - \binom{r-3}{s-3}\right] + \left[\binom{r-4}{s} + \binom{r-4}{s-1}\right]$$

$$+ 2\binom{r-3}{s-2} + \binom{r-4}{s-1} + \binom{r-4}{s-2} + 2\binom{r-3}{s-1} - \binom{r-3}{s-3}\right] + \left[\binom{r-4}{s} + \binom{r-4}{s-1}\right]$$

$$+ \binom{r-3}{s-1} + \binom{r-3}{s-2}$$

$$= \left[\binom{r-2}{s-2} + \binom{r-4}{s-1} + \binom{r-4}{s-2} + 2\binom{r-3}{s-1} + \binom{r-4}{s-1} - \binom{r-3}{s-3}\right] + \binom{r-4}{s-1} + \binom{r-4}{s-1} + \binom{r-4}{s-1} + \binom{r-4}{s-1} + \binom{r-4}{s-1} + \binom{r-4}{s-2} + \binom{r-4}{s-1} + \binom{r-4}{s-2} + \binom{r-4}{s-1} + \binom{r-4}{s-2} + \binom{r-4}{s-1} + \binom{r-5}{s-2} + \binom{r-5}{s-2} + \binom{r-4}{s-1} + \binom{r-5}{s-2} + \binom{r-$$

This proves (i).

Proof of (ii): If $\frac{k+i}{2} = r$ and $\frac{k-i}{2} = s$, then by (7) and (9), we have,

$$b_i(G_{3,k}'') = \left[\binom{r-4}{s} + 2\binom{r-3}{s-1} + \binom{r-2}{s-2} - \binom{r-2}{s-1} + \binom{r-4}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} - \binom{r-3}{s-3} \right]$$

and

$$b_i(G''_{4,k}) = \left[\binom{r-5}{s} + 3\binom{r-4}{s-1} + 3\binom{r-3}{s-2} + \binom{r-3}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2} - \binom{r-4}{s-3} \right]$$

Consider $b_i(G_{3,k}^{\prime\prime})$

$$= \binom{r-4}{s} + 2\binom{r-3}{s-1} + \binom{r-2}{s-2} + \binom{r-4}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} + \binom{r-2}{s-1} - \binom{r-3}{s-3}$$

$$= \left[\binom{r-5}{s} + \binom{r-5}{s-1} \right] + 2 \left[\binom{r-4}{s-1} + \binom{r-4}{s-2} \right] + \left[\binom{r-3}{s-2} + \binom{r-3}{s-3} \right]$$

$$+ \left[\binom{r-3}{s-1} + \binom{r-3}{s-2} \right] + \binom{r-4}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2}$$

$$- \left[\binom{r-4}{s-3} + \binom{r-4}{s-4} \right]$$

$$= \left[\binom{r-5}{s} + 3 \binom{r-4}{s-1} + 2 \binom{r-3}{s-2} + \binom{r-3}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} - \binom{r-4}{s-3} \right]$$

$$+ \binom{r-5}{s-1} + 2 \binom{r-4}{s-2} + \binom{r-3}{s-3} - \binom{r-4}{s-4}$$

$$= \left[\binom{r-5}{s} + 3\binom{r-4}{s-1} + 2\binom{r-3}{s-2} + \binom{r-3}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} - \binom{r-4}{s-3} \right]$$

$$+ \left[\binom{r-6}{s-1} + \binom{r-6}{s-2} \right] + 2\binom{r-4}{s-2} + \left[\binom{r-4}{s-3} + \binom{r-4}{s-4} \right] - \binom{r-4}{s-4}$$

$$= \left[\binom{r-5}{s} + 3\binom{r-4}{s-1} + 2\binom{r-3}{s-2} + \binom{r-3}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} - \binom{r-4}{s-3} \right]$$

$$+ \binom{r-6}{s-1} + \binom{r-6}{s-2} + 2\left[\binom{r-5}{s-2} + \binom{r-5}{s-3} \right] + \binom{r-4}{s-3}$$

$$= \left[\binom{r-5}{s} + 3\binom{r-4}{s-1} + 2\binom{r-3}{s-2} + \binom{r-3}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} + \binom{r-6}{s-1} \right]$$

$$+ 2\binom{r-5}{s-2} - \binom{r-4}{s-3} + \binom{r-6}{s-2} + 2\binom{r-5}{s-3} + \binom{r-4}{s-3}$$

$$+ \binom{r-6}{s-2} - \binom{r-4}{s-3} + \binom{r-6}{s-2} + 2\binom{r-5}{s-3} + \binom{r-4}{s-3} - \binom{r-4}{s-3} \right]$$

$$= \begin{bmatrix} \binom{r-6}{s-2} + \binom{r-6}{s-3} \end{bmatrix} + \binom{r-6}{s-4} + \binom{r-5}{s-3} + \binom{r-4}{s-3}$$

$$= \binom{r-5}{s-2} + \binom{r-6}{s-4} + \binom{r-5}{s-3} + \binom{r-4}{s-3}$$

$$= \begin{bmatrix} \binom{r-5}{s-2} + \binom{r-5}{s-3} \end{bmatrix} + \binom{r-6}{s-4} + \binom{r-4}{s-3}$$

$$= \begin{bmatrix} \binom{r-4}{s-2} + \binom{r-4}{s-3} \end{bmatrix} + \binom{r-6}{s-4} + \binom{r-6}{s-4}$$

$$= \binom{r-3}{s-2} + \binom{r-6}{s-4} .$$

Hence

$$b_{i}(G_{3,k}^{"}) = \left[\binom{r-5}{s} + 3\binom{r-4}{s-1} + 2\binom{r-3}{s-2} + \binom{r-3}{s-1} + \binom{r-3}{s-2} + \binom{r-5}{s-1} + \binom{r-6}{s-1} + \binom{r-6}{s-2} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2} - \binom{r-4}{s-3} \right] + \binom{r-6}{s-4}$$

$$= b_{i}(G_{4,k}^{"}) + \binom{r-6}{s-4}.$$

This proves (ii).

Proof of (iii): If $\frac{k+i}{2} = r$ and $\frac{k-i}{2} = s$, then by (5), we have

$$b_i(G_{2,k}^{"}) = \left[\binom{r-3}{s} + 2\binom{r-2}{s-1} + \binom{r-3}{s-1} + \binom{r-4}{s-1} \right]$$

We need to show that $b_i(G''_{4,k}) \ge b_i(G''_{2,k})$. Consider,

$$b_{i}(G_{4,k}'') - b_{i}(G_{2,k}'')$$

$$= \binom{r-5}{s} + 3\binom{r-4}{s-1} + 3\binom{r-3}{s-2} + \binom{r-3}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2} - \binom{r-4}{s-3} - \binom{r-3}{s} - 2\binom{r-2}{s-1} - \binom{r-3}{s-1} - \binom{r-4}{s-1}$$

$$= \left[\binom{r-5}{s} + \binom{r-5}{s-1} \right] + 2\binom{r-4}{s-1} + \left[\binom{r-4}{s-2} + \binom{r-4}{s-3} \right]$$

$$+ 2\binom{r-3}{s-2} + \binom{r-4}{s-2} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2} - \binom{r-4}{s-3} - \binom{r-3}{s-2} - 2\binom{r-2}{s-1}$$

$$= \binom{r-4}{s} + 2\binom{r-4}{s-1} + \binom{r-4}{s-2} + 2\binom{r-3}{s-2} + \binom{r-4}{s-2} + \binom{r-6}{s-1}$$

$$+ 2\binom{r-5}{s-2} - \binom{r-3}{s} - 2\binom{r-2}{s-1}$$

$$= \left\{ \binom{r-4}{s} + \binom{r-4}{s-1} \right\} + \left\{ \binom{r-4}{s-1} + \binom{r-4}{s-2} \right\} + 2\binom{r-3}{s-2}$$

$$+ \binom{r-4}{s} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2} - \binom{r-3}{s} - 2\binom{r-2}{s-1}$$

$$= \binom{r-3}{s} + \binom{r-3}{s-1} + 2\binom{r-3}{s-2} + \binom{r-4}{s-2} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2}$$

$$- \binom{r-3}{s} - 2\binom{r-2}{s-1}$$

$$= \left\{ \binom{r-3}{s-1} + \binom{r-3}{s-2} \right\} + \binom{r-3}{s-2} + \binom{r-4}{s-2} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2} - 2\binom{r-2}{s-1}$$

$$= \binom{r-2}{s-1} + \binom{r-3}{s-2} + \binom{r-4}{s-2} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2} - 2\binom{r-2}{s-1}$$

$$= \binom{r-6}{s-1} + 2\binom{r-5}{s-2} + \binom{r-4}{s-2} + \binom{r-6}{s-1} + 2\binom{r-5}{s-2} - 2\binom{r-2}{s-1}$$

$$= \binom{r-6}{s-1} + \binom{r-6}{s-2} + \binom{r-6}{s-3} + \binom{r-6}{s-3} + \binom{r-5}{s-2} + \binom{r-4}{s-2} + \binom{r-3}{s-2} - \binom{r-2}{s-1}$$

$$= \left\{ \binom{r-6}{s-1} + \binom{r-6}{s-2} + \binom{r-6}{s-3} + \binom{r-5}{s-2} + \binom{r-4}{s-2} + \binom{r-3}{s-2} - \binom{r-2}{s-1} \right\}$$

$$= \left\{ \binom{r-6}{s-1} + \binom{r-6}{s-2} + \binom{r-6}{s-3} + \binom{r-6}{s-3} + \binom{r-4}{s-2} + \binom{r-3}{s-2} - \binom{r-2}{s-1} \right\}$$

$$= \left\{ \binom{r-3}{s-1} + \binom{r-6}{s-2} \right\} + \binom{r-6}{s-3} + \binom{r-6}{s-3} - \binom{r-2}{s-1}$$

$$= \left\{ \binom{r-3}{s-1} + \binom{r-3}{s-2} \right\} + \binom{r-6}{s-3} - \binom{r-2}{s-1}$$

$$= \left\{ \binom{r-3}{s-1} + \binom{r-3}{s-2} \right\} + \binom{r-6}{s-3} - \binom{r-2}{s-1}$$

$$= \left\{ \binom{r-3}{s-3} \right\} \ge 0.$$

This proves (iii). Hence the theorem.

Corollary 2.6: For $k \ge 10$, we have, $G_{1,k}^{\prime\prime} \ge G_{3,k}^{\prime\prime} \ge G_{4,k}^{\prime\prime} \ge G_{2,k}^{\prime\prime}$. Consequently,

$$E(G_{1.k}^{''}) \geq E(G_{3.k}^{''}) \geq E(G_{4.k}^{''}) \geq E(G_{2.k}^{''}).$$

Proof: The first statement follows from Theorem 2.5. The second statement follows from Theorem 1.3.

Remark 2.7: The characteristic polynomial and energy of the adjacency matrix of a bipartite graphs $G''_{1,k}$, $G_{2,k}^{\prime\prime}$, $G_{3,k}^{\prime\prime}$ and $G_{4,k}^{\prime\prime}$ for k = 10, 11, 12 (by using matlab) are given below:

No. of vertices k	Graphs	Characteristic Polynomial	Energy (approx.)
k = 10	$G_{1,10}^{\prime\prime}$	$\lambda^{10} - 10\lambda^8 + 32\lambda^6 - 36\lambda^4 + 10\lambda^2$	11.7618
	$G_{3.10}''$	$\lambda^{10} - 10\lambda^8 + 31\lambda^6 - 34\lambda^4 + 10\lambda^2$	11.7202
	$G_{4.10}^{\prime\prime}$	$\lambda^{10} - 10\lambda^8 + 32\lambda^6 - 34\lambda^4 + 9\lambda^2$	11.6828
	$G_{2.10}^{\prime\prime}$	$\lambda^{10} - 10\lambda^8 + 32\lambda^6 - 33\lambda^4 + 9\lambda^2$	11.6714
k = 11	$G_{1,11}^{\prime\prime}$	$\lambda^{11} - 11\lambda^9 + 41\lambda^7 - 60\lambda^5 + 29\lambda^3 - 2\lambda$	13.1868
	$G_{3,11}^{\prime\prime}$	$\lambda^{11} - 11\lambda^9 + 40\lambda^7 - 57\lambda^5 + 28\lambda^3 - 2\lambda$	13.1426
	$G_{4,11}^{\prime\prime}$	$\lambda^{11} - 11\lambda^9 + \frac{40}{10}\lambda^7 - 57\lambda^5 + 27\lambda^3 - 2\lambda$	13.1325
//	$G_{2,11}^{\prime\prime}$	$\lambda^{11} - 11\lambda^9 + 40\lambda^7 - 56\lambda^5 + 26\lambda^3 - 2\lambda$	13.1154
k = 12	$G_{1.12}^{\prime\prime}$	$\lambda^{12} - 12\lambda^{10} + 51\lambda^{8} - 92\lambda^{6} + 65\lambda^{4} - 12\lambda^{2}$	14.3254
	$G_{3.12}^{\prime\prime}$	$\lambda^{12} - 12\lambda^{10} + 50\lambda^{8} - 88\lambda^{6} + 62\lambda^{4} - 12\lambda^{2}$	14.2832
	$G_{4.12}''$	$\lambda^{12} - 12\lambda^{10} + 50\lambda^{8} - 88\lambda^{6} + 61\lambda^{4} - 11\lambda^{2}$	14.2532
	$G_{2,12}^{\prime\prime}$	$\lambda^{12} - 12\lambda^{10} + 50\lambda^{8} - 87\lambda^{6} + 59\lambda^{4} - 11\lambda^{2}$	14.2404

References

- [1] D. M. Cvetkovi'c, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
- I. Gutman, X. Li, and Y. Shi, Graph Energy, New York: Springer, 2012. [2]
- [3] F. Harary, Graph Theory, Addison-Wesley Publishing Company, New York, 1969
- [4] Hou, Unicyclic graphs with minimal energy, Journal of Mathematical Chemistry, Y. Vol. 29, No. 3, (2001), 163-168.