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Abstract 

In this paper, we compare the energies of unicycilc graphs with cycle C4, (with k number of vertices, 

having the unique cycle C4, denoted by 𝐺𝑖,𝑘
′′ ), using the coefficients of the characteristic polynomials and 

Coulson integral formula by establishing the quasi- ordering ‘≤’ on the unicyclic graphs of same order k. 
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1. Introduction 

Let G be a simple graph with k vertices and A(G) be its adjacency matrix. Let 𝜆1, … , 𝜆𝑘  be the eigenvalues 

of A(G). Then the energy of G, denoted by E(G), is defined as 𝐸(𝐺) = ∑ |𝜆𝑖|𝑘
𝑖=1 . 

The characteristic polynomial det(𝑥𝐼 –  𝐴(𝐺)) of the adjacency matrix A(G) of the graph G is also called 

the characteristic polynomial of G is written as 

. 

Using the coefficients ai(G) of 𝜙(𝐺, 𝑥), the energy E(G) of the graph G with k vertices can be expressed by 

the following Coulson integral formula (Eq. (3.11) in [2]): 

 

We write bi(G) = |ai(G)|. Then clearly b0(G) = 1, b1(G) = 0 and b2(G) equals the number of edges of G. 
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About the signs of the coefficients of the characteristic polynomials of unicyclic graphs, we have the 

following result: 

Lemma 1.1: (Lemma 1 in [3]) Let G be a unicyclic graph and the length of the unique cycle of G be ̀ . Then 

we have the following: 

(1) b2i(G) = (−1)ia2i(G), 

(2) b2i+1(G) = (−1)ia2i+1(G), if G contain a cycle of length l with 𝑙 ≡ 1(mod 4), 

(3) b2i+1(G) = (−1)i+1a2i+1(G), if G contain a cycle of length  l with 𝑙 ≢ 1(mod 4). 

Thus, the Coulson integral formula for unicyclic graphs can be rewritten in terms of bi(G) as follows: 

 

Hence it follows that for unicyclic graphs G, E(G) is a strictly monotonically increasing function of bi(G), 

𝑖 =  0, … , 𝑘. To make it more precise, we define a quasi-order ≤ on graphs as follows: 

Definition 1.2: Let G1 and G2 be two graphs of order k. If bi(G1) ≤ bi(G2) for all i with 1 ≤ i ≤ k, then we 

write G1 ≤ G2. 

Thus using Coulson integral formula, we have, 

Theorem 1.3: For any two unicyclic graphs G1 and G2 of order k, we have,  

G1 ≤ G2 ⟹ E(G1) ≤ E(G2). 

Thus, for comparing the energies of any two unicyclic graphs of the same order, it is enough to establish 

the quasi-order. 

Using this idea, in Section 2, we compare the energies of the unicyclic graphs 𝐺1,𝑘
′′      𝐺2,𝑘

′′     𝐺3,𝑘
′′     and 

𝐺4,𝑘
′′  (see Fig. 2.1, Fig. 2.2, Fig. 2.3 and Fig. 2.4) with k vertices having the unique cycle C4.  These graphs 

are comparable with respect to the quasi-ordering: 

. 

We note that these graphs are bipartite. For a bipartite graph G, the characteristic polynomial is of the 

form 
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, 

as a2j+1 = 0 for 𝑗 = 1, … , ⌊
𝑘

2
⌋  .  Also, (−1)ja2j = b2j and so 

𝜙(𝐺, 𝑥) = ∑ (−1)𝑗𝑏2𝑗𝑥𝑘−2𝑗.
⌊

𝑘

2
⌋

𝑗=0  

Thus, for a bipartite graph G, the Coulson integral formula 

reduces to 

 

 

from which the monotonicity of the E(G) with respect to the bi(G), 1 ≤ i ≤ k, follows. i.e., if G1 and G2 are 

two bipartite graphs of order k such that bi(G1) ≤ bi(G2) for all i, 1 ≤ i ≤ k, then E(G1) ≤ E(G2). i.e., G1 ≤ G2 

implies E(G1) ≤ E(G2). 

 

2. Comparing the energies of the graphs 𝑮𝒊,𝒌
′′  

We consider the unicyclic graphs 𝐺1,𝑘
′′ , 𝐺2,𝑘

′′ , 𝐺3,𝑘
′′ , 𝐺4,𝑘

′′   (see Fig. 2.1, Fig. 2.2, 

Fig. 2.3 and Fig. 2.4) with unique cycle C4. These graphs are clearly bipartite. We use Theorem 1.3 to 

compare their energies using Coulson integral formula by establishing the partial order 𝐺1,𝑘
′′ ≤ 𝐺2,𝑘

′′ ≤

𝐺3,𝑘
′′ ≤ 𝐺4,𝑘

′′ .  

Theorem 2.1: Let 𝐺1,𝑘
′′  be the graph with k vertices given below:   

 

Fig. 2.1 Graph 𝐺1,𝑘
′′  

Let 𝐴(𝐺1,𝑘
′′ ) be the adjacency matrix of the graph 𝐺1,𝑘

′′ . Then, for k ≥ 7, its characteristic polynomial 𝜒(𝐺1,𝑘
′′ ) 

is given by: 
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 (1)  

Also, for 1 ≤ i ≤ k, the coefficient of 𝜆𝑖 in 𝜒(𝐺1,𝑘
′′ ) is 

 

(2)  

Proof: The adjacency matrix 𝐴(𝐺1,𝑘
′′ ) is given by 

 

The characteristic polynomial of the adjacency matrix 𝐴(𝐺1,𝑘
′′ ) is given by 𝜒(𝐺1,𝑘

′′ ) = |𝜆𝐼 − 𝐴|, where I is 

the identity matrix of order k. Thus, by expanding the following determinant and the subsequent 

determinants by their first column, we get, 
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where χ(Pk−1), χ(Pk−2) and χ(Pk−4) denote the characteristic polynomials of the paths Pk−1, Pk−2 and Pk−4 

containing k−1, k−2 and k−4 vertices respectively. 

This proves (1). 

We now compute the coefficient of 𝜆𝑖 in 𝜒(𝐺1,𝑘
′′ ) using (1). We make use of the following characteristic 

polynomial of the path Pn: 

 

(3)  

Put n = k − 1 in (3). If 𝑡 =
𝑘−𝑖

2
 , then n − 2t = i − 1, and so the coefficient of 𝜆𝑖−1 in 𝜒(𝑃𝑘−1)  

  is 

(−1)
𝑘−𝑖

2
 (

𝑘+𝑖−2

2
𝑘−𝑖

2

), since then 𝑛 −  𝑡 =  𝑘 −  1 − (
𝑘−𝑖

2
) =

𝑘+𝑖−2

2
. Also, by putting n = k − 2 in (3) and taking 

𝑡 =
𝑘−𝑖−2

2
, we obtain the coefficient of 

λi in χ(Pk−2) to be (−1)
𝑘−𝑖−2

2
 (

𝑘+𝑖−2

2
𝑘−𝑖−2

2

), since 𝑛 − 2𝑡 =  𝑘 −  2 − 2 (
𝑘−𝑖−2

2
) = 𝑖 and 

𝑛 −  𝑡 =  𝑘 −  2 − (
𝑘−𝑖−2

2
) =

𝑘+𝑖−2

2
. 
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Similarly, by putting n = k −4 in (3) and taking 𝑡 =
𝑘−𝑖−2

2
, we get the coefficient of λi−2 in χ(Pk−4) to be 

(−1)
𝑘−𝑖−2

2
 (

𝑘+𝑖−6

2
𝑘−𝑖−2

2

). Further putting n = k−4 and taking 𝑡 =
𝑘−𝑖−4

2
  in (3), we see that the coefficient of λi 

in χ(Pk−4) is (−1)
𝑘−𝑖−4

2
 (

𝑘+𝑖−4

2
𝑘−𝑖−4

2

) 

Now by (1), we have, 

{Coefficient of 𝜆𝑖 in 𝜒(𝐺1,𝑘
′′ ; 𝜆)}= 

{Coefficient of λi−1 in χ(Pk−1)} − {Coefficient of λi in χ(Pk−2)} − {Coefficient of λi−2 in 

χ(Pk−4)} − {Coefficient of λi in χ(Pk−4)}. 

Thus the coefficient of 𝜆𝑖  in 𝜒(𝐺1,𝑘
′′ ; 𝜆) is given by 

 

Hence the theorem. 

Theorem 2.2: Let 𝐺2,𝑘
′′  be the graph with k vertices given below:   

 

Fig. 2.2 Graph 𝐺2,𝑘
′′  

Let 𝐴(𝐺2,𝑘
′′ ) be the adjacency matrix of the graph 𝐺2,𝑘

′′ . Then, for k ≥ 7, its characteristic polynomial 

𝜒(𝐺2,𝑘
′′ )  is given by: 

 (4)  

Also, for 1 ≤ i ≤ k, the coefficient of  𝜆𝑖 in 𝜒(𝐺2,𝑘
′′ ) is 

 

(5)  

Proof: The adjacency matrix 𝐴(𝐺2,𝑘
′′ )  is given by 
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The characteristic polynomial of the adjacency matrix 𝐴(𝐺2,𝑘
′′ )  is given by 

𝜒(𝐺2,𝑘
′′ ) = |𝜆𝐼 − 𝐴|, where I is the identity matrix of order k. Thus 
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= λ3 χ(Pk−3) − λ3 χ(Pk−5) − λ χ(Pk−3) − λ χ(Pk−5) − λ χ(Pk−5) – λ2 χ(Pk−4) 

+λ χ(Pk−5) − λ χ(Pk−3) + λ χ(Pk−5) 

= (λ3 − 2λ) χ(Pk−3) − λ2 χ(Pk−4) − λ3 χ(Pk−5), 

proving (4). 

To compute the coefficient of λi in  𝜒(𝐺2,𝑘
′′ ), we first compute the coefficients of λi−3 and λi−1 in χ(Pk−3). Put 

n = k − 3 in (3). If 𝑡 =
𝑘−𝑖

2
 then n − 2t = i − 3, and so the coefficient of λi−3 in χ(Pk−3) is (−1)

𝑘−𝑖

2
 (

𝑘+𝑖−6

2
𝑘−𝑖

2

), 

since 𝑛 −  𝑡 =  𝑘 −  3 − (
𝑘−𝑖

2
) =

𝑘+𝑖−6

2
. Again by putting  n = k −3 in (3), we obtain the coefficient of λi−1 

in χ(Pk−3) to be (−1)
𝑘−𝑖−2

2
 (

𝑘+𝑖−4

2
𝑘−𝑖−2

2

) by taking 𝑡 =
𝑘−𝑖

2
   as 𝑛 − 2 𝑡 =  𝑘 −  3 − 2 (

𝑘−𝑖−2

2
) = 𝑖 − 1  and 𝑛 −

 𝑡 =  𝑘 −  3 − (
𝑘−𝑖−2

2
) =

𝑘+𝑖−4

2
. Similarly, by putting n = k − 4 and taking 𝑡 =

𝑘−𝑖−2

2
  in (3), we see that the 

coefficient of λi−2 in χ(Pk−4) to be (−1)
𝑘−𝑖−2

2
 (

𝑘+𝑖−6

2
𝑘−𝑖−2

2

) . Further, putting n = k−5 in (3), we see that the 

coefficient of λi−3 in χ(Pk−5) is  (−1)
𝑘−𝑖−2

2
 (

𝑘+𝑖−8

2
𝑘−𝑖−2

2

)by taking 𝑡 =
𝑘−𝑖−2

2
. 

Now by (4), we have, 

{Coefficient of λi in  𝜒(𝐺2,𝑘
′′ )}= 
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{Coefficient of λi−3 in χ(Pk−3)} − 2{Coefficient of λi−1 in χ(Pk−3)} − {Coefficient of λi−2 in χ(Pk−4)} 

− {Coefficient of λi−3 in χ(Pk−5)}. 

Thus, the coefficient of λi in  𝜒(𝐺2,𝑘
′′ ),  is given by 

 

Hence the theorem.  

Theorem 2.3: Let 𝐺3,𝑘
′′  be the graph with k vertices given below:    

 

Fig. 2.3 Graph 𝐺3,𝑘
′′  

Let  𝐴(𝐺3,𝑘
′′ ) be its adjacency matrix. Then, for k ≥ 7, the characteristic polynomial of the graph 𝐺3,𝑘

′′  is 

given by: 

 (6)  

Also, for 1 ≤ i ≤ k, the coefficient of  λi  in  𝜒(𝐺3,𝑘
′′ )} is 

 
(7)   

Proof: Proof of (6) follows from Theorem 2.2. Since we have, 𝜒(𝐺′3,𝑘
′ , 𝜆) = 𝜆 𝜒(𝐺′2,𝑘−1

′ ) − 𝜒(𝐺′1,𝑘−2
′ ), the 

coefficient of λi in 𝜒(𝐺′3,𝑘
′ ) is 

{Coefficient of λi-1 in 𝜒(𝐺′2,𝑘−1
′ )}-{Coefficient of λi in 𝜒(𝐺′1,𝑘−2

′ ). 

By replacing i by i−1 and k by k −1 in (5), the coefficient of λi−1 in 𝜒(𝐺′2,𝑘−1
′ )is seen to be: 

 . 

Also, by replacing k by k − 2 in (2), we obtain the coefficient of λi in 𝜒(𝐺′1,𝑘−2
′ )to be: 

 . 

Thus, the coefficient of λi in 𝜒(𝐺′3,𝑘
′ ) is given by, 
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 , 

 

 . 

Hence the Theorem.  

Theorem 2.4: Let 𝐺4,𝑘
′′  be the graph with k vertices given below:  

 

Fig. 2.4 Graph 𝐺4,𝑘
′′  

Let 𝐴(𝐺4,𝑘
′′ ) be its adjacency matrix. Then, for k ≥ 7, the characteristic polynomial of the graph 𝐺4,𝑘

′′  is given 

by: 

 (8)  

Also, for 1 ≤ i ≤ k, the coefficient of λi  in  𝜒(𝐺4,𝑘
′′ )} is 

 
(9)  

Proof: Proof of (8) follows from Theorem 2.2. Since we have, 𝜒(𝐺′4,𝑘
′ , 𝜆) = 𝜆 𝜒(𝐺′3,𝑘−1

′ ) − 𝜒(𝐺′
2,𝑘−2
′ ), the 

coefficient of λi  in  𝜒(𝐺4,𝑘
′′ )  is 

{Coefficient of λi-1  in  𝜒(𝐺3,𝑘−1
′′ )} – {Coefficient of λi  in  𝜒(𝐺2,𝑘−2

′′ )}. 

By putting k = k −1, i = i−1 in (7), the coefficient of λi-1  in  𝜒(𝐺3,𝑘−1
′′ )  is seen to be: 
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 . 

Also, replacing k by k − 2 in (5), we obtain the coefficient of λi in 𝜒(𝐺2,𝑘−2
′′ )  ) to be: 

. 

Thus the coefficient of ) is given by, 

 

 

 

 . 

This proves (9).  

Theorem 2.5: For the graphs 𝐺1,𝑘
′′ , 𝐺2,𝑘

′′ , 𝐺3,𝑘
′′  and 𝐺4,𝑘

′′ , we have, for k ≥ 10, 

 

for all i.  

Proof: We prove that: 

), 

), 

 

Proof of (i): By putting 
𝑘+𝑖

2
= 𝑟 and 

𝑘−𝑖

2
= 𝑠 in (2) and (7), we obtain, 

 

and 

 . 

By using the binomial identity, we have, 
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This proves (i). 

Proof of (ii): If  
𝑘+𝑖

2
= 𝑟 and 

𝑘−𝑖

2
= 𝑠, then by (7) and (9), we have,  

 

and 
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. 

Consider 𝑏𝑖(𝐺3,𝑘
′′ ) 

 

 

 

Now, 
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Hence, 

 

This proves (ii). 

Proof of (iii): If  
𝑘+𝑖

2
= 𝑟 and 

𝑘−𝑖

2
= 𝑠, then by (5), we have 

 . 

We need to show that 𝑏𝑖(𝐺4,𝑘
′′ ) ≥ 𝑏𝑖(𝐺2,𝑘

′′ ). Consider, 
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This proves (iii). Hence the theorem.  
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Corollary 2.6: For k ≥ 10, we have, 𝐺1,𝑘
′′ ≥ 𝐺3,𝑘

′′ ≥ 𝐺4,𝑘
′′ ≥ 𝐺2,𝑘

′′ . Consequently, 

 

Proof: The first statement follows from Theorem 2.5. The second statement follows from Theorem 1.3.

  

Remark 2.7: The characteristic polynomial and energy of the adjacency matrix of a bipartite graphs 𝐺1,𝑘
′′ ,

𝐺2,𝑘
′′ , 𝐺3,𝑘

′′  and 𝐺4,𝑘
′′  for k = 10, 11, 12 (by using matlab) are given below: 

 
No. of Graphs Characteristic Polynomial Energy 

vertices k   (approx.) 

 

k = 10 
 λ10 − 10λ8 + 32λ6 − 36λ4 + 10λ2 11.7618 

 λ10 − 10λ8 + 31λ6 − 34λ4 + 10λ2 11.7202 

 λ10 − 10λ8 + 32λ6 − 34λ4 + 9λ2 11.6828 

 λ10 − 10λ8 + 32λ6 − 33λ4 + 9λ2 11.6714 
 

k = 11 
 λ11 − 11λ9 + 41λ7 − 60λ5 + 29λ3 − 2λ 13.1868 

 λ11 − 11λ9 + 40λ7 − 57λ5 + 28λ3 − 2λ 13.1426 

 λ11 − 11λ9 + 40λ7 − 57λ5 + 27λ3 − 2λ 13.1325 

 λ11 − 11λ9 + 40λ7 − 56λ5 + 26λ3 − 2λ 13.1154 
 

k = 12 
 λ12 − 12λ10 + 51λ8 − 92λ6 + 65λ4 − 12λ2 14.3254 

 λ12 − 12λ10 + 50λ8 − 88λ6 + 62λ4 − 12λ2 14.2832 

 λ12 − 12λ10 + 50λ8 − 88λ6 + 61λ4 − 11λ2 14.2532 

 λ12 − 12λ10 + 50λ8 − 87λ6 + 59λ4 − 11λ2 14.2404 
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