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Abstract  :  In this paper we determine some properties of pseudo W2- curvature tensor denoted by W̃2on Riemannian manifolds. 

Firstly, we consider pseudoW2- conservative manifolds. After this, spacetime with vanishing pseudo W2- curvature tensor and 

some geometrical properties of such a spacetime have been obtained. 
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I. INTRODUCTION 

 

 In 2002, Prasad defined and studied a tensor field P̃ on a Riemannian manifold of dimension ( n>2) which includes the 

projective curvature tensor P. This tensor field P̃ is known as pseudo-projective curvature tensor and it is given by  

P̃(X, Y)𝑍 = aR(X, Y)Z + b[S(Y, Z)X − S(X, Z)Y] −
r

n
(

a

n−1
+ b)[g(Y,Z)X-g(X,Z)Y],       (1) 

where a and  b are non-zero constants, R is the curvature tensor, S is the Ricci tensor  and r is the scalar curvature of the manifold 

(Mn,g) 

If a=1 and b=−
1

n−1
 in (1), then the pseudo-projective curvature tensor takes the form  

P̃(X, Y)𝑍 = R(X, Y)Z −
1

n − 1
[S(Y, Z)X − S(X, Z)Y] = P(X, Y)Z, 

where P denotes the projective curvature tensor (Mishra, 1984). Thus, the projective curvate tensor P is the particular case of the 

pseudo-projective curvature tensor P̃. 

 Many authors have been investigated pseudo-projective curvature tensor on LP-Sasakian manifold, K-contact manifold, 

Trans-Sasakian manifold, weakly symmetric manifold and Riemannian manifold [3] [4] [5] [6]. 

 In continuation of the above study, one of the author Maurya in 2004 investigated another curvature tensor on a 

Riemannian manifold – named as pseudo W2 – curvature tensor W̃2as follows  

W̃2(X, Y)Z = aR(X, Y)Z + b[g(Y, Z)QX − g(X, Z)QY] −
r

n
[

a

n−1
+ b] [g(Y, Z)X − g(X, Z)Y],       (2) 

where a and b are non-zero constant, R, S, and r as usual meanings and Q is Ricci operator of the type (1, 1) defined by 

g(QX,Y)=S(X,Y)              (3) 

If a=1 and b==−
1

n−1
 then (2) takes the form 

W̃2(X, Y)𝑍 = R(X, Y)Z −
1

n − 1
[g(Y, Z)QX − g(X, Z)QY] = W2(X, Y)Z, 

where W2denotes W2-curvature tensor (Mishra and Pokhariyal, 1970). Thus the W2- curvature tensor is the particular case of the 

pseudo-W2- curvature tensor W̃. 

Prasad [9], Prasad etal [11]and Kumar [10] extended this notation on kenmotsu manifold  LP-Sasakian manifold with coefficient 

𝛼. 

 After introduction, in section II, some properties of pseudo W2 – curvature tensor W̃ are given. In the  next section, we 

study pseudo W̃2- conservative manifold. In section III, we characterize a spacetime with vanishing pseudo W2 - curvature tensor 

W̃2- curvature tensor and some geometrical properties of such a spacetime have been obtained. 

 

II. PROPERTIES OF PSEUDO W2- CURVATURE TENSOR �̃�𝟐 ON A RIEMANNIAN MANIFOLD. 

 

Theorem(2.1): Pseudo W̃2 – curvature tensor W̃2 on a Riemannian manifold satisfied the following algebraic properties:  

҆ W̃2(X,Y,Z,W)+ ̓W̃2(Y,X,Z,W)=0                      (2.1) 

҆ W̃2(X,Y,Z,W)+ ̓W̃2(X,Y,W,Z)=b[g(Y,Z)S(X,W)-g(X,Z)S(Y,W)+g(Y,W)S(X,Z)- g(X,W)S(Y,Z)]≠0               (2.2) 

҆ W̃2(X,Y,Z,W)+ ̓W̃2(Z,W,X,Y) ≠0                      (2.3) 

and 

҆ W̃2 (X,Y,Z,W)+ ̓W̃2 (Y,Z,X,W)+ ҆ W̃2 (Z,X,Y,W)=0                    (2.4) 
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҆ W̃2(e𝑖 , e𝑖 , Z, W)=0= ̓W̃2 (𝑋, 𝑌, e𝑖 , e𝑖 ,)                      (2.5) 

҆ W̃2(e𝑖 , Y, Z, e𝑖)=(a-b)[S(Y-Z)- 
r

n
g(Y,Z)]               (2.6) 

 ҆ W̃2 (X,e𝑖 , e𝑖 , W)=b(n-1)[S(X,W)- 
r

n
g(X,W)]- 

r

n
a g(X,W)               (2.7) 

W̃2(e𝑖 , e𝑖 ,)=0               (2.8) 

 

Proof : Equation (2) can be written as  

҆ W̃2(X, Y, Z, W)=a ҆ R(X,Y,Z,W)+b[g(Y,Z)S(X,W)-g(X,Z)S(Y,W)] − 
r

n
[ 

a

n−1
+   b] [g(Y, Z)g(X, W) −   g(X, Z)g(Y, W)]      (2.9) 

where 

g(W̃2 (X,Y)Z,W)= ҆ W̃2(X,Y,Z,W) 

and g(R(X,Y)Z,W)= ҆ R (X,Y,Z,W) 

In view of (2.9);(2.1),(2.2),(2.3) and (2.4) can be proved. 

 Let {e𝑖} be an orthonormal basis of the tangent space at each point of the manifold where 1≤ 𝑖 ≤ 𝑛. 

Hence from (2.9), we get (2.5), (2.6), (2.7) and (2.8). 

This proves the theorem. 

 

Definition (2.1): Let (Mn,g) be a Riemannian manifold with Levi-Civita connection D.A quadratic killing tensor is a general-

ization of a killing vector field and is defined as a second order symmetric tensor A satisfying the condition [12] and [14]. 

(DXA)(Y,Z)+(DYA)(Z,X)+(DZA)(X,Y)=0             (2.10) 

 

Definition(2.2): Let (Mn,g) be a manifold with Levi- Civita connection D. A quadratic conformal killing tensor is an analogous 

generalization of a conformal killing vector and is defined as a second order symmetric tensor A satisfying the condition [12] and 

[14]. 

(DXA)(Y,Z)+(DYA)(Z,X)+(DZA)(X,Y)=K(X)g(Y,Z)+K(Y)g(Z,X)+K(Z)g(X,Y)             (2.11) 

 Now, we have the following theorem: 

 

Theorem(2.2): If the Ricci tensor of Mn admitting pseudo W2 – curvature tensor W̃2 is a quadratic conformal killing tensor then 

W̃2(Y,Z) of type (0,2) is also quadratic conformal killing tensor.  

 

Proof: From (2.6), we get  

W̃2 (Y,Z)=(a-b)[S(Y,Z)- 
r

n
g(Y,Z)],             (2.12) 

Differentiating covariantly (2.12), we get  

(DXW̃2)(Y,Z)=(a-b)[(DXS)(Y,Z)- 
1

n
(DXr)g(Y,Z)]             (2.13) 

From (2.13)we get  

(DXW̃2)(Y,Z)+(DYW̃2)(Z,X)+(DZW̃2)(X,Y)=(a-b)[{(DXS)(Y,Z)+(DYS)(Z,X)+(DZS)(X,Y)}   

                                                                          −
1

n
{(DXS)g(Y,Z)+(DYr)g(Z,X)+(DZr)g(X,Y)}]             (2.14) 

If we assume that the Ricci tensor is a quadratic conformal killing tensor, then from (2.11) and (2.14), we get 

(DXW̃2)(Y,Z)+(DYW̃2)(Z,X)+(DZW̃2)+(X,Y)=(a-b).[{K(X)- 
1

n
(DXr)}g(Y,Z)+{K(Y)- 

                                                                              
1

n
(DY r)}g(Z,X)]+{K(Z) −

1

n
(DZ r)}g(X,Y)]             (2.15) 

By taking (a-b) K (X)- 
(a−b)

n
(DXr)=𝛼(X), then (2.15) can be written as  

(DXW̃2)(Y,Z)+(DYW̃2)(Z,X)+(DZW̃2)(X,Y)=[ 𝛼(X)g(Y,Z)+ 𝛼(Y)g(Z,X)+ 𝛼(Z)g(X,Y)]. 

This completes the proof. 

Theorem(2.3). Let the Ricci tensor of Mn admitting a pseudo W2 – curvature tensor W̃2 be a quadratic killing tensor. A necessary 

and  sufficient condition for W̃2(X,Y) to be a quadratic killing tensor is that the scalar curvature tensor be constant provided a-

b≠0. 

 

Proof: Let us consider that the Ricci tensor of the manifold Mn is a quadratic tensor. Then from equations (2.10) and (2.14), we 

get 

(DXW̃2)(Y,Z)+(DYW̃2)(Z,X)+(DZW̃2)(X,Y)=(a-b)[− 
1

n
{(DXr)g(Y,Z)+(DYr)g(Z,X)+(DZr)g (X,Y)}]             (2.16) 

If W̃2 (X,Y) is a quadratic killing tensor, then from (2.16), we get 

(a-b)[(DXr)g(Y,Z)+(DYr)g(Z,X)+(DZr)g(X,Y)]=0             (2.17) 

Walkar’s Lemma [13] states that, if A(X,Y) and B(X) are numbers such that A(X,Y)=A(Y,X)and 

A(X,Y)B(Z)+A(Y,Z)B(X)+A(Z,X)B(Y)=0             (2.18) 

for all X,Y,Z then either all A(X,Y) are zero or all B(X) are zero. 
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Hence by above Lemma, we get from (2.17) and (2.18) that either g(X,Y)=0 or (DXr)(Y,Z)=0. But g(X,Y) ≠ 0 and hence, we get 

DXr=0⇒r is constant. Conversely, if the scalar curvature is constant, then from (2.16), we get W̃2 (X,Y) is a quadratic killing 

tensor. This proves the theorem. 

 

III. PSEUDO W2 – CONSERVATIVE RIEMANNIAN MANIFOLDS. 

 

 Let(Mn,g)(n>2) be a pseudo W2 – conservative so div W̃2 = 0 [15]. Taking covariant derivative of (2), we get 

(DUW̃2)(X,Y)Z=a(DUR)(X,Y)Z+b[g(Y,Z)(DUQ)X- 

g(X,Z)(DUQ)Y]+ 
dU(r)

n
( 

a

n−1
+ b) [g(Y, Z)X − g(X, Z)Y]             (2.19) 

Contracting (2.19) over U, we get 

(div W̃2)(X,Y)Z=a(divR)(X,Y)Z+b[g(Y,Z)(divQ)X-g(X,Z)(div Q)(Y)] - 
1

n
[( 

a

n−1
+ 1)(g(Y, Z))dr(X) – g(X,Z)dr(Y)]       (2.20) 

It is known  that (div R)(X,Y)Z=(DXS)(Y,Z)-(DYS)(X,Z)             (2.21) 

Combining (2.20) and (2.21), we get  

(div W̃2)(X,Y)Z = a [(DXS)(Y,Z)-(DYS)(X,Z)]+ 
b(n−1)(n−2)−2a

2n(n−1)
[g(Y, Z)dr(X) −  g(X, Z)dr(Y)]             (2.22) 

Thus, in a pseudo W2 – conservative manifold, relation (2.22) can be put as  

a[(DXS)(Y,Z)-(DYS)(X,Z)]= 
2a−b(n−1)(n−2)

2n(n−1)
[g(Y,Z)dr(X) – g(X,Z)dr(Y)]             (2.23) 

Contracting (2.23) with respect to Y and Z, we get [a-b(n-1)(n-2)]dr(X)=0 and so either a-b(n-1)(n-2)=0 or r=0. Moreover if 

a=b(n-1)(n-2), then by (2.23), we get 

(DXS)(Y,Z) – (DYS)(X,Z)= 
1

2n(n−1)
[g(Y,Z)dr(X) – g(X,Z)dr(Y)]             (2.24) 

From (2.24), we see that div C=0, where C denotes the conformal curvature tensor. Hence in this case the manifold is conformally 

conservative. On the other hand if a-b(n-1)(n-2)≠0 then the scalar curvature is constant so from (2.23), we get  

a[(DXS)(Y,Z) – (DYS)(X,Z)]=0             (2.25) 

Since a≠0 and hence by (2.25), we get  

(DXS)(Y,Z)=(DYS)(X,Z), 

which means that the manifold has the  Codazzi type Ricci tensor [16]. Hence we can state the following theorem: 

 

Theorem(3.1): If (Mn,g)(n>2) be a pseudo W2 – conservative manifold. Then , either it is conformally conservative or it has 

constant scalar curvature. Moreover if (M,g)(n>2) is of constant scalar curvature and scalar a≠0, then Ricci tensor of this 

manifold is of Codazzi type. 

 

IV. SPACETIME WITH VANISHING PSEUDO W2 – CURVATURE TENSOR �̃�𝟐 

 

Let V4 be the spacetime of general relativity, then from equation (2), we get 

҆ W̃2(X,Y,Z,W)=a ҆ R(X,Y,Z,W)+b[g(Y,Z)(X,W)-g(X,Z)S(Y,W)] −  
r

4
( 

a

3
+ b)[g(Y, Z)g(X, W) −  g(X, Z)g(Y, W)]              (4.1) 

If  ҆ W̃2 (X,Y,Z,W)=0, then (4.1) gives  

a  ҆ R(X,Y,Z,W)+b[g(Y,Z)S(X,W)-g(X,Z)S(Y,W)]- 
r

4
( 

a

3
+ b)[g(Y, Z)g(X, W) −  g(X, Z)g(Y, W)]=0               (4.2) 

From (4.2), we get (a-b)[S(Y,Z) -  
r

4
 g(Y,Z)]=0               (4.3) 

Hence, we get state the following theorem: 

 

Theorem(4.1): A pseudo W2 – flat spacetime is an Einstein spacetime, provided a-b≠0. 

Also from (4.2) and (4.3), we get 

҆ R(X,Y,Z,W)= 
r

12
[g(Y,Z)g(X,W) – g(X,Z)g(Y,W)]               (4.4) 

Thus, we have the following theorem: 

 

Theorem(4.2): A pseudo W2 – flat spacetime is a spacetime of constant curvature, provided a≠0. 

 Let us consider a spacetime satisfying the Einstein’s field equation with cosmological constant  

S(X,Y) -  
r

2
 g(X,Y)+λg(X,Y)= κT(X,Y)               (4.5) 

where S, r and κ denote the Ricci tensor, scalar curvature and the gravitational constant respectively, λ is the cosmological 

constant and T(X,Y) is the energy momentum tensor. 

Using (4.3) and (4.5), we get  

                   T(X,Y)= 
1

κ
[λ-

r

4
]g(X,Y)               (4.6) 

Taking covariant derivative of (4.6), we get  

              (DZT)(X,Y)=− 
1

4κ
dr(Z)g(X,Y)               (4.7) 

Since pseudo W2 – flat spacetime is constant. Hence  
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                     dr(X)=0               (4.8) 

In view and (4.7) and (4.8), we get (DZT)(X,Y)=0. 

Thus we can state the following theorem: 

 

Theorem(4.3): In a pseudo W2 – flat spacetime satisfying Einstein’s field equation with cosmological constant, the energy 

momentum tensor is covariant constant. 

 Katzin etal[17] were the pioneers in caring out a detailed study of curvature collineation(CC), in the context of the 

related particle and field conservation laws that may be admitted in the standard form of general relativity.  

 The geometrical symmetrics of a space time are expressed through the equation 

 ŁξA – 2 Ω A= 0,                        (4.9) 

where A represents a geometrical/physical quantity, Łξ denotes the Lie derivative with respect to the vector field ξ and Ω is a 

scalar [17]. 

One of the most simple and widely used example is the metric inheritance symmetry for A=g in (4.9) and for this case, ξ is the 

killing vector field if Ω =0. Therefore 

  (Łξ g)(X,Y) = 2 Ω g(X,Y)                     (4.10) 

A space time Mn is said to admit a symmetry called a curvature collineation (CC)([18][19]), provided there exists a vector field ξ 

such that 

 (Łξ R)(X,Y)Z=0,                      (4.11) 

where R is the Riemannian curvature tensor. 

 Now we shall investigate the role of such symmetry inheritance for the space time admitting pseudo W2 – curvature 

tensor W̃2. 

Let us consider spacetime admitting pseudoW2 – curvature tensor W̃2 with a killing vector field ξ is a CC. Then we have  

  (Łξg)(X,Y)=0,                      (4.12) 

Again, since Mn admits a CC, we have from (4.11) 

  ( ŁξS)(X,Y)=0,                      (4.13) 

Taking Lie derivative of (2) and then using (4.11), (4.12) and (4.13), we obtain (ŁξW̃2)(X,Y)Z=0. 

Thus we have the following theorem: 

 

Theorem(4.4): If a spacetime Mn admitting the pseudo 𝐖𝟐 – curvature tensor W̃𝟐with ξ as a killing vector field is CC, then the 

Lie derivative of the pseudo 𝐖𝟐  – curvature tensor W̃𝟐vanishes along the vector field ξ. 

The well known symmetry of the energy momentum tensor T is the matter collineation defined by  

(ŁξT)(X,Y)=0,  

where ξ is the vector field generating the symmetry and Łξ is the Lie derivative operator along the vector field ξ.  

 Let ξ be a killing vector field on the space time with vanishing pseudo 𝐖𝟐 – curvature  tensor W̃2 . Then  

                             (Łξg)(X,Y)=0,             (4.14) 

where Łξ denotes Lie derivative with respect to ξ. 

Taking Lie derivative of both sides of (4.6) with respect to ξ, we get  

𝟏

𝐤
(λ −

𝐫

𝟒
)
′

( Łξ g)(X,Y)=( Łξ T )(X,Y)             (4.15) 

From(4.14) and (4.15), we get  

                                         (Łξ T)(X,Y)=0,  

which implies that the spacetime admits matter collineation. 

 Conversely, if (Łξ T)(X,Y)=0, it follows from (4.15), we get (Łξ g)(X,Y)=0. 

Hence we can state the following theorem: 

 

Theorem(4.5): If a spacetime obeying Einstein’s field equation has vanishing pseudo  𝐖𝟐– curvature tensor W̃2then the 

spacetime admits matter collineation with respect to a vector field ξ if and only if ξ is a killing vector field.  

 Next, we assume that ξ is a conformal killing vector field. Then we have  

  (Łξ g)(X,Y) = 2 ϕ g(X,Y),                     (4.16) 

where ϕ is a scalar. 

Then from(4.15), we get  

(λ −
𝐫

𝟒
) . 𝟐 𝛟 𝐠(𝐗, 𝐘) = 𝛋 (Łξ T)(X,Y)             (4.17) 

From (4.6) in (4.17), we find 

(Łξ T)(X,Y) = 2 ϕ T(X,Y),             (4.18) 

From(4.18), we can say that the energy – momentum tensor has Lie inheritance property along ξ. 

Conversely, if (4.18) holds, then it follows that (4.16) holds, that is, ξ is a conformal killing vector field. Thus we have the 

following theorem. 
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Theorem(4.6): If a space time obeying Einstein field equation has vanishing pseudo 𝐖𝟐 – curvature tensor W̃2, then a vector field 

ξ on the space time is a conformal killing vector field iff the energy momentum tensor has Lie inheritance along ξ.  
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