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Abstract: 

 S. Arumugam and J. Suresh Suseela introduced the concept of acyclic graphoidal covering of 

graphs[5]. S. Arumugam and C. Pakkiam [3] have determined the graphoidal covering number of several 

families of graphs. A complete survey of the various results in graphoidal covers and graphoidal graphs is 

given in [4]. In this paper, we study the properties of acyclic graphoidal coverings of zero divisor graph and 

we also obtain a characterization of acyclic graphoidal coverings of complete and complete bipartite zero 

divisor graphs.  
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1. Introduction:  

 A related study of this parameter was initiated by B. D. Acharya and E. Sampathkumar [1], where the 

definition of graphoidal covering and the graphoidal covering number are being introduced. This concept 

further developed by Acharya. The later results of this concept were developed by S. Arumugam and C. 

Pakkiam [3]. S. Arumugam and J. Suresh Suseela introduced the concept of acyclic graphoidal covering of 

graphs [5]. Further while studying about graphoidal cover it will be more realistic if two cycles do not have 

same start and end nodes, since in traffic two mobile traffics that are forming a cycle cannot get the same 

junction point at a time.  Algebraic Graph theory has close links with the study of Graph invariants. The Zero 

Divisor Graph is very useful to find the Algebraic structures and properties of Rings[9, 10]. This paves way 

to the investigation of the interplay between the ring theoretic properties of ring R and the Graph theoretic 

properties of certain Graphs obtained from R. In 1988, the idea of Zero Divisor Graph of a Commutative Ring 

was introduced by I. Beck [6]. Let R be a commutative ring with unity and let Z(𝑅) be its set of zero divisors. 

The zero divisor graph of R denoted by Γ(R) is a graph which is undirected with vertices Z*(𝑅) = Z(𝑅) − {0}, 

the set of non-zero divisors of R, and for distinct 𝑦, 𝑧  ∈ Z*(𝑅), the vertices 𝑦 and 𝑧 are adjacent if and only if 

𝑦𝑧= 0. D. F. Anderson and P. S. Livingston often focus on the case when R is finite, as these Rings yield finite 

Graphs [2]. 
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2. Acyclic Graphoidal Covers of Zero Divisor Graph 

Let G = (V, E) be a graph. A graphoidal cover of G is a set ψ of (not necessarily open) paths in G 

satisfying the following conditions. (i) Every path in ψ has atleast two vertices. (ii) Every vertex of G is an 

internal vertex of atmost one path in ψ. (iii) Every edge of G is in exactly one path in ψ. The minimum 

cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by η(G). 

A graphoidal cover ψ of a graph G is called an acyclic graphoidal cover if every member of ψ is a path. The 

minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of 

G and is denoted by 𝜂𝑎 (𝐺).  A path partition or a path cover of a graph G is a collection P of paths in G such 

that every edge of G is in exactly one path in P. The path partition number π of G is also called the path 

covering number of G. A graph G is called a path cover graph if there exists a graph K and an acyclic graphoidal 

cover 𝜓 of k such that G is isomorphic to Ω(𝜓). That is G≅ Ω(𝜓). Throughout this chapter, we assume that Γ(𝑍𝑛) is a 

connected graph without loops and multiple edges. 

2.1 Example: consider the graph G, 

 

Two acyclic graphoidal covers 𝜓1 and 𝜓2 of G with |𝜓1|=7 and |𝜓2|=5.  𝜓1 is not a minimum acyclic  

graphoidal cover of G. In fact 𝜓2 is a minimum acyclic graphoidal cover of G. Let 𝛽 denote be set of all acyclic 

graphoidal covers in G. Since, E(G) is trivially an acyclic  graphoidal cover of G, we have 𝛽 ≠ ∅.  

Let 𝜂𝑎(𝐺) = min
𝜓∉𝛽

|𝜓|.   

Then 𝜂𝑎(𝐺) is called the acyclic grapoidal covering number of G.  So, in the above graph, 𝜂𝑎(𝐺) = 5. Clearly, 

𝜂(𝐺) ≤ 𝜂𝑎(𝐺). Let  𝜓 be a collection of internally disjoint paths in Γ(𝑍𝑛). A vertex of Γ(𝑍𝑛) is said to be in the interior 

of 𝜓 if it is an internal vertex of some path in 𝜓.  Any vertex which is not in the interior of 𝜓 is said to be in the exterior 

of 𝜓. 

2.1 Theorem: For any Γ(𝑍𝑛), 𝜂𝑎( Γ(𝑍𝑛))=|𝐸(Γ(𝑍𝑛)| if and only if Γ(𝑍𝑛)= Γ(𝑍9). 

Proof: If Γ(𝑍𝑛)= Γ(𝑍9) trivially 𝜂𝑎( Γ(𝑍𝑛))=|𝐸(Γ(𝑍9)|=1, 

We know that Γ(𝑍9) is isomorphic to K2. Suppose, Γ(𝑍𝑛)  ≠  Γ(𝑍9). Let P be a path in Γ(𝑍𝑛)  such that |𝐸(Γ(𝑍9)| >1. 

Then, 𝜓 =  {{𝑃}  ∪  {𝐸(Γ(𝑍𝑛)\𝐸(𝑃))}}is a acyclic graphidal cover of Γ(𝑍𝑛) and |𝜓| <  |𝐸(Γ(𝑍𝑛))|. Hence 𝜂𝑎Γ(𝑍𝑛) <

 |𝐸(Γ(𝑍𝑛))|, which is a contradiction. Therefore, 𝜂𝑎Γ(𝑍𝑛) =  |𝐸(Γ(𝑍𝑛))| if and only if Γ(𝑍𝑛) =  Γ(𝑍9). Hence proved. 
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2.2 Theorem: Let Γ(𝑍2𝑝) be a tree with p vertices, then 𝜂𝑎Γ(𝑍2𝑝) = 𝑝 − 1.  

Proof: Since, Γ(𝑍2𝑝) contains no cycles. Therefore, 𝜂𝑎 (Γ(𝑍2𝑝)) =  𝜂(Γ(𝑍𝑛)) = 𝑝 − 1. 

Theorem: 𝐹𝑜𝑟 𝑎𝑛𝑦 𝑔𝑟𝑎𝑝ℎ 𝛤(𝑍𝑛) 𝑤𝑖𝑡ℎ 𝛿 ≥ 3, 𝜂𝑎 = e − p,   where e is the number of edges, p is the number of vertices 

and δ is the minimum degree. 

Proof: Let P1 = (v1,v2,…vn) be a longest path in Γ(𝑍𝑛). So that all vertices adjacent to v1 and vn one already in P1. Let 

vi, vj, vk and vs be the vertices on P1 such that vi and vj are distinct, different from v2 and are adjacent to v1 and vk ,vs  are 

distinct, different from vn-1 and are adjacent to vn. 

If  v1 and vn are non-adjacent, Let P2=( vi,v1,vj) and P3=( vk,vn,vs). If v1 and vn are adjacent, we may assume that 

vi=vn  and vk=v1.If vj≠vs, Let P4=( vj,v1,vn,vs). Suppose vj=vs , Now since, 𝛿 ≥ 3, there exist a vertex v such that v≠ vj.  

and v≠ vj+2 and v is adjacent to vj+1. If v does not lie on P1, then (v, vj+1,vj,v1,vn,vn-1,…,vj+2) is a path which is longer 

then p1, so that v=vm for some, m≠ 𝑗 and m≠ 𝑗 + 2. 

Now let, 

𝑃1
′ = (𝑣𝑗,, 𝑣𝑗−1, … , 𝑣1, 𝑣𝑛, 𝑣𝑛−1, … , 𝑣𝑗+2, 𝑣𝑗+1)  

𝑃2
′ = (𝑣1, 𝑣𝑗, 𝑣𝑛)  

𝑃2
′ = (𝑣𝑗, 𝑣𝑗+1, 𝑣𝑚) 

Thus, we get a collection 𝜓1 of paths {𝑃1, 𝑃2, 𝑃3} or {𝑃1, 𝑃4} or {𝑃′1, 𝑃′2, 𝑃′3} such that all the paths in 𝜓1 are edge 

disjoint and internally disjoint and all the vertices of 𝑃1 are interior to 𝜓1. 

If 𝑉(𝐺) ≠ {𝑣1, 𝑣2, … , 𝑣𝑛 }, we choose a longest path R1 such that R1 is edge disjoint and internally disjoint with 

all the path in  𝜓1. If the end vertices of R1 are not in P1, we make them internal vertices of some path as before. By 

continuing this process, we obtain a collection of 𝜓 of edges disjoint and internally disjoint path without exterior vertices 

in Γ(𝑍𝑛). Hence we know that, for any graph Γ(𝑍𝑛), 𝜂𝑎 = e − p, then 𝜂𝑎is equivalent to e − p, where e is number of 

edges and p is number of vertices. Therefore, 𝜂𝑎 = e − p. 

2.3 Corollary: Let Γ(𝑍𝑛) be any r-regular graph, then 𝜂𝑎 (Γ(𝑍2𝑝)) = {
1 if r=1
2 if r=2

e-p if r≥3
, where e is the number of edges and 

p is the number of vertices. 

Proof: If 𝑟 = 1 then Γ(𝑍𝑛) =  Γ(𝑍9) ≃ 𝐾2, so that 𝜂𝑎 = 1. 

If  𝑟 = 2 then Γ(𝑍𝑛) is either isomorphic with 𝐾3 (or) 𝐶𝑛. But, there is no graph of Γ(𝑍𝑛) is isomorphic to 𝐾3 and  𝐶𝑛. 

If  𝑟 = 3 then Γ(𝑍𝑛) is  isomorphic to Γ(𝑍25) = 𝐾4. Then, 𝜂𝑎 = 𝑒 − 𝑛, where e is the number of edges and n is the 

number of vertices. 
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2.4 Remark: Using the above corollary, we get the following results 𝜂𝑎 (Γ(𝑍𝑝2)) = 𝜂𝑎(𝐾𝑝−1) = {
1 𝑖𝑓 𝑟 = 3
(𝑝−1)(𝑝−4)

2

 𝑖𝑓 𝑝 ≥

5, where p is prime number. 

2.5 Theorem:  For any graph Γ(𝑍𝑛), 𝜂𝑎(Γ(𝑍𝑛)) ≥  ∆ − 1, where ∆ is maximum degree of  Γ(𝑍𝑛). 

Proof: Let 𝑣 be a vertex with maximum degree in Γ(𝑍𝑛), and 𝜓 be an acyclic graphoidal cover of Γ(𝑍𝑛). Since, 𝑣 is an 

internal vertex of at most one path in 𝜓 it follows that 𝑣is terminal vertex of at least ∆ − 2 paths in 𝜓. Hence |𝜓| ≥

 ∆ − 1 so that 𝜂𝑎(Γ(𝑍𝑛)) ≥  ∆ − 1. 

2.6 Observation:  

Based on the above theorems, we conclude the following observations, 

i). 𝜂𝑎(Γ(𝑍9)) = 1. 

ii). 𝜂𝑎 (Γ(𝑍2𝑝)) = 𝑝 − 2. 

2.7 Theorem: For any graph 𝜂𝑎 (Γ(𝑍𝑝𝑞)), where p and q are distinct prime number, then the following conditions are 

holds. 

i). 𝜂𝑎 (Γ(𝑍3𝑝)) = 1. 

ii). 𝜂𝑎 (Γ(𝑍𝑝𝑞)) = (𝑝 − 1)(𝑞 − 1) − (𝑝 − 1)(𝑞 − 1). 

Proof: We prove (i) by the method of induction on number of vertices. Let 𝑉1 =  {𝑣1, 𝑣2} 

And 𝑉2 =  {𝑢1, 𝑢2, 𝑢3, 𝑢4} be a bipartition of 𝐾2,4, where 𝑞 = 5. Then, {(𝑣1, 𝑢1, 𝑣2, 𝑢2)(𝑢2, 𝑣1, 𝑢3, 𝑣2)(𝑣2, 𝑢4, 𝑣1, 𝑢3)}  

is an acyclic graphoidal cover of Γ(𝑍15), which is isomorphic to 𝐾2,4. Hence, 𝜂𝑜(Γ(𝑍15)) ≤ 3. Also, we know that for 

any graph Γ(𝑍𝑛), 𝜂𝑎(Γ(𝑍𝑛)) ≥  ∆ − 1, where ∆ is the maximum degree in Γ(𝑍𝑛). Therefore,  𝜂𝑜(Γ(𝑍15)) ≤ 3 and  

𝜂𝑜(Γ(𝑍15)) ≥ 3 ,  

which implies that 𝜂𝑜(Γ(𝑍15)) = 3. We now assume that the result is true for Γ(𝑍3𝑝), where 𝑝 > 3.  

 Let 𝑉1 =  {𝑣1, 𝑣2} and 𝑉2 =  {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑝−1} be a bipartition of Γ(𝑍3𝑝). 

By induction hypothesis, 𝜂𝑎(Γ(𝑍3𝑝) − 𝑢𝑝−1) = 𝑝 − 3.  Let 𝜓1 be a minimum acyclic  graphoidal cover of Γ(𝑍3𝑝) −

𝑢𝑝−1, then 𝜓1  ∪  {𝑥1, 𝑦𝑛, 𝑥2} is acyclic graphoidal cover of Γ(𝑍3𝑝), so that 𝜂𝑎 (Γ(𝑍3𝑝)) ≤ 𝑝 − 2. Also we know that 

𝜂𝑎 (Γ(𝑍3𝑝)) ≥ 𝑝 − 2 and hence, 𝜂𝑎 (Γ(𝑍3𝑝)) = 𝑝 − 2. 

ii). We know that for any graph Γ(𝑍𝑛) with 𝛿 ≥ 3 , then 𝜂𝑎 = 𝑒 − 𝑛 , where e is the nu,ber of edges and n is the 

number of vertices.  Clearly, we know that the zero divisor graph Γ(𝑍𝑝𝑞) is isomorphic to 𝐾𝑝−1,𝑞−1, Therefore, 

𝜂𝑎 (Γ(𝑍𝑝𝑞))= no. of edges , no. of vertices. 

http://www.jetir.org/


© 2019 JETIR  May 2019, Volume 6, Issue 5                                           www.jetir.org  (ISSN-2349-5162) 

 

JETIR1905J69 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 475 

 

= (𝑝 − 1)(𝑞 − 1) − [𝑝 − 1 + 𝑞 − 1] 

= (𝑝 − 1)(𝑞 − 1) − (𝑝 − 1) − (𝑞 − 1) 

3. Graphoidal Covering of Cartesian product of 𝚪(𝒁𝟗) and 𝑷𝒏 

 For any two graphs G and H, 𝐺 × 𝐻 denotes the Cartesian product or simply the product of G and H. The 

following theorem is the Cartesian product of Γ(𝑍9) and 𝑃𝑛 , where 𝑃𝑛  is a path with n vertices.  

3.1 Theorem: 𝜂(Γ(𝑍9) × 𝑃𝑛) =  𝜂𝑎(Γ(𝑍9) × 𝑃𝑛) for all 𝑛 ≥ 3. 

Proof: We know that Γ(𝑍9) is isomorphic to 𝑃2. Let 𝑃2 = {𝑣1, 𝑣2} and 𝑃𝑛 =  {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} where n=3, let 𝑤𝑖𝑗 =

(𝑣𝑖, 𝑢𝑗), 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤ 3. Then {(𝑤12, 𝑤11, 𝑤21, 𝑤22, 𝑤33, 𝑤13) , (𝑤13, 𝑤12, 𝑤22)} is a minimum acyclic 

graphoidal cover of Γ(𝑍9) × 𝑃3 and  Γ(𝑍9) × 𝑃3 is not a acyclic and hence, 𝜂(Γ(𝑍9) × 𝑃3) =  𝜂𝑎(Γ(𝑍9) × 𝑃3) = 2. 

Let 𝑛 ≥ 3 and let 𝑤𝑖𝑗 = (𝑣𝑖 , 𝑢𝑗), 1 ≤ 𝑖 ≤ 2; 1 ≤ 𝑗 ≤ 𝑛, then 

{(𝑤12, 𝑤11, 𝑤21, 𝑤22, … , 𝑤2𝑛, 𝑤1𝑛, 𝑤1(𝑛−1), … , 𝑤13) , (𝑤22, 𝑤12, 𝑤13, 𝑤23)} is a set of internally disjoint and edge 

disjoint paths without exterior points in Γ(𝑍𝑞) × 𝑃𝑛 and hence, 𝜂(Γ(𝑍9) × 𝑃𝑛) =  𝜂𝑎(Γ(𝑍9) × 𝑃𝑛) = 𝑞 − 𝑝. 

3.2 Remark: i). Any two isomorphic acyclic graphoidal covers of G give rise to the same partition of q, but the 

converse is not true.  

ii). A tree Γ(𝑍𝑛) has unique minimum acyclic graphoidal cover if and only if there exists at most one vertex 𝑢 with 

degree 𝑢 ≥ 2 and all the perdant vertices are at the same distance form 𝑣. 

iii). There is no unicycle graph Γ(𝑍𝑛) has a unique minimum acyclic graphoidal cover if and only if Γ(𝑍𝑛) = 𝐶3. 

3.3 Theorem: Let p denotes the number of vertices of degree ∆. If 𝜂𝑎 = ∆ − 1, then, 𝑝 ≤
2(∆−1)

∆−2
, where 

∆ 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑔𝑟𝑒𝑒. 

Proof: Let 𝜓 be a minimum acyclic graphoidal cover of Γ(𝑍𝑛) so that |𝜓| = ∆ − 1. Since each vertex of degree ∆ 

appears as pm external vertex in a path of 𝜓 at leat ∆ − 2 times and the total number of external vertices is at most 

2(∆ − 1), we have 𝑝(∆ − 2) ≤ 2(∆ − 1). Hence, 𝑝 ≤
2(∆−1)

(∆−2)
.  

The concept of path partition and path partition number 𝜋 of a graph was introduced by F. Harary [7]. B. Peroche [8] 

obtained the path partition number 𝜋 for the some multipartite graphs. Since every acyclic graphoidal cover is a path 

partitions, we have 𝜋 ≤ 𝜂𝑎. 

3.4 Theorem: The path partition number of  Γ(𝑍𝑝2) =
𝑝−1

2
, where p is any prime numbers. 

Proof: Since, Γ(𝑍𝑝2) is isomorphic to 𝐾𝑝−1, we know that , Γ(𝑍𝑝2) has a decomposition into 
𝑝−1

2
 Hamilton paths and 

hence, 𝜋(Γ(𝑍𝑝2)) ≤
𝑝−1

2
. Since, we know that the path partition number of Γ(𝑍𝑝2) ≥

𝑝−1

2
 and hence, 𝜋 (Γ(𝑍𝑝2)) =

𝑝−1

2
. 
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The concept of unrestricted path number 𝜋∗ was introduced by B. Peroche [8]. We now proceed to determine the 

unrestricted path number of complete graphs and complete bipartite graphs of Γ(𝑍𝑛). 

3.5 Theorem: The unrestricted path number of the complete graph of Γ(𝑍𝑛) is [
𝑝−1

2
], where p is a prime number. 

Proof: Since, we know that the complete graphs of Γ(𝑍𝑛) are Γ(𝑍𝑝2), where p is any prime number. Clearly, we 

know that Γ(𝑍𝑝2) is isomorphic to 𝐾𝑝−1, so, each path can cover at most 𝑝 − 2 edges, we have 𝜋∗ (Γ(𝑍𝑝2)) ≥ [
𝑝−1

2
] , 

we know that, the unrestricted path number of a graph is less than or equal to the path partition number of a graph. 

Therefore, 𝜋∗ (Γ(𝑍𝑝2)) ≤ 𝜋 (Γ(𝑍𝑝2)) =  [
𝑝−1

2
] and hence 𝜋∗ (Γ(𝑍𝑝2)) = [

𝑝−1

2
]. 

3.6 Theorem: The unrestricted path number of Γ(𝑍𝑝𝑞)is 𝜋∗ (Γ(𝑍𝑝𝑞)) = [
(𝑝−1)(𝑞−1)

2(𝑞−1)−𝛿(𝑝−1,𝑞−1)
], where p and q are distinct 

prime numbers and 𝛿 is the conversional kronecker delta function. 

Proof: We know that Γ(𝑍𝑝𝑞) is a complete bipartite graph namely, 𝐾𝑝−1,   𝑞−1. That is, Γ(𝑍𝑝𝑞) is isomorphic to 

𝐾𝐾𝑝−1,   𝑞−1, where p and q are distinct prime numbers with 𝑝 > 𝑞. 

                 Since, 2(𝑞 − 1) − 𝛿(𝑝 − 1, 𝑞 − 1) is the length of a longest path in Γ(𝑍𝑝𝑞) and there are           (𝑝 − 1)(𝑞 −

1) edges to be covered, so, we have 𝜋∗ (Γ(𝑍𝑝𝑞)) ≥ [
(𝑝−1)(𝑞−1)

2(𝑞−1)−𝛿(𝑝−1,𝑞−1)
]. Clearly the product (𝑝 − 1)(𝑞 − 1) is even. 

So, 𝜋∗ (Γ(𝑍𝑝𝑞)) ≤ 𝜋 (Γ(𝑍𝑝𝑞)) =  [
(𝑝−1)(𝑞−1)

2(𝑞−1)−𝛿(𝑝−1,𝑞−1)
]. Hence, 𝜋∗ (Γ(𝑍𝑝𝑞)) = [

(𝑝−1)(𝑞−1)

2(𝑞−1)−𝛿(𝑝−1,𝑞−1)
] 

3.7 Theorem: Let Γ(𝑍𝑛) be a tree then there exists an acyclic graphoidal cover which is also a paring on odd vertices 

if and only if ∆≤ 3, where ∆ is the maximum degree of Γ(𝑍𝑛). 

Proof: If there exists an acyclic graphoidal cover in Γ(𝑍𝑛) which is also a pairing on odd vertices then  ∆≤ 3. By the 

method of induction on r, where r is the number of end vertices of  Γ(𝑍𝑛).  When 𝑟 = 2, Γ(𝑍𝑛) is a path and the result 

is trivial. Suppose the result is true for all the tree with 𝑟 = 1 end vertices, where 𝑟 ≥ 3. 

Let Γ(𝑍𝑛) be a tree with r pendant vertices. Let 𝑥0 be a pendant vertex of Γ(𝑍𝑛). Let 𝑃 = (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡) be a path 

of Γ(𝑍𝑛) such that  𝑑𝑒𝑔 𝑥1 = 𝑑𝑒𝑔 𝑥2 = ⋯ = 𝑑𝑒𝑔 𝑥𝑡 −1 = 2 and 𝑑𝑒𝑔 𝑥𝑡 = 3. Deleting  𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡−1 from Γ(𝑍𝑛). 

We get a tree namely Γ(𝑍𝑛)1 with 𝑟 − 1 pendant vertices and the degree of 𝑥𝑡−1 in Γ(𝑍𝑛)1 is 2. By induction hypothesis 

Γ(𝑍𝑛)1 has an acyclic graphoidal cover 𝜓1 which I a pairing on odd vertices of Γ(𝑍𝑛)1. Now 𝜓 = 𝜓1 ∪ {𝑃} is an acyclic 

graphoidal cover of Γ(𝑍𝑛) which is a pairing an odd vertices of Γ(𝑍𝑛)1. Hence proved the theorem. 

3.8 Observation: If Γ(𝑍𝑛) is a 3-regular graph, then every minimum acyclic graphoidal cover is a pairing on odd 

vertices of Γ(𝑍𝑛). Let 𝜓 be a minimum acyclic graphoidal cover of Γ(𝑍𝑛). Since, Γ(𝑍𝑛) is a 3-regular, then we know 

that from theorem, any graph Γ(𝑍𝑛) with 𝛿 ≥ 3 then 𝜂𝑎 = 𝑒 − 𝑝. Therefore, |𝜓| = 𝑒 − 𝑝 = 3 (
𝑝

2
) − 𝑝 =

𝑝

2
 and every 

vertex is interior to 𝜓. Hence every vertex appears as an external vertex of exactly one path in 𝜓 so that 𝜓 is a pairing 

on odd vertices of Γ(𝑍𝑛). 
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