© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

Relationship Of Code Smells And Commits
With Technical Debt

Jaspreet Bedi, BBK DAV College For Women, Lawrence Road, Amritsar.

Abstract

Technical debt in the software development incurs due to preference of short term decisions ignoring strategic
consequences. Changes in requirements of software in the fast growing and dynamic technology and business
domains are obvious which may lead to increase in usage of quick and dirty approach resulting in code that is
no longer clean. It is the point of introduction of debt called technical debt. The decision may be apt in
situation due to absence of any alternative. If not paid for a long period of time it results in increasing
technical debt. Just like financial debt interest grows with delay in payment and ultimately a situation of
technical bankruptcy may arise. It is needed to study the factors contributing technical debt. The paper studies
effect of code smells and commit frequency on technical debt. Correlation method of statistics is used for the
purpose. The data is collected from PHP application Mockery from Github.

Index Terms—OSS, Technical debt, code smells, commit frequency.

I. INTRODUCTION

Debt is a very commonly used concept in the financial world. It is always considered with respect to some
principal amount. During its payment, an interest term is also added. Likewise in technical world of
software engineering this debt is considered in the software development process when some changes are
required. In every organization there is need to make the changes and consequently the system should adapt
to these changes. During this process knowingly or unknowingly few compromises are done in a hurry to
accomplish the work within deadlines of time. The development team may not face any problem at this
point of time and neither there is some wrong output but in the strategic framework it matters a lot. At
extreme case when the rent/debt is not paid for a large period of time it may lead to technical bankruptcy.
The team will be demotivated and the productivity will reduce thereof. At this stage it will not be feasible
to continue further in the project.

Martin Fowler[2009] posted famous TD quadrant concept in his blog. He starts with the question whether
messy code or bad system design is TD or not. Four types of approaches for implementing code are
described. He considers debt as prudent and reckless. The prudent debt to reach a release may not be
worth paying down if the interest payments are sufficiently small whereas a sloppy and low quality code is
a reckless debt, which results in crippling interest payments or a long period of paying down the principal.
The future costs attributable to known structural flaws in production code that need to be fixed. It includes

both principle and interest. Principal is the cost of remediating must-fix problems in production code. It is
calculated as product of number of hours required to remediate must-fix problems and fully burdened
hourly cost of those involved in designing, implementing, and testing these fixes. Interest means the
continuing costs that can result from the excessive effort to modify unnecessarily complex code, greater
resource usage by inefficient code etc. Technical Debt is said to be induced by certain factors and there are
many types of TD suggested in literature.

1) Reasons and causes for TD

Researchers have mentioned many reasons for TD. Dr. Dan Rawsthorne [39] in his blog says “Technical
Debt is everything that makes your code hard to work with. It is an invisible Killer of software which must
be aggressively managed.” He pointed out that lack of test, bad design, lack of documentation and poor

JETIR1905R85 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 579

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

readability are reasons of arising technical debt. Stephanie W. in his blog [40] categorized the causes of
technical debt as intentional and unintentional. In the intentional causes he includes time constraints,
Source code complexity, Business decisions which lack technical knowledge while in the unintentional
causes he included lack of coding standards and guides, junior coders with little experience and poor skills
and lack of planning for future developments. (Tushar sharma,2018) claimed that Technical debt may have
one or more causes, such as time pressures, Overly complex technical design, Poor alignment to standards,
Lack of skill, Suboptimal code, Delayed refactoring and Insufficient testing. General agreement on the
types is not there in the TD metaphor as there are many definitions of the types of technical debt that exists.
(Hampus Nilsson,2013).

2) Typesof TD

Literature includes many types of TD from perspectives of software development and business etc. and in
order to deal with the issues related to technical debt there is need to classify technical debt. Popular types
include Deliberate tech debt(in the cases in which the quick way is the right way but at times the developer
team knowingly does something the wrong way as quick delivery of product is must.), Accidental/outdated
design tech debt(when it is needed to balance future-proofing designs with simplicity and quick delivery or
developer team is naive. Some name it as naive tech debt or outdated design tech debt.) and Bit rot
tech debt (when during passage of time many incremental changes are incorporated in the software system
by using copy-paste and cargo-cult programming only without fully understanding the original design.)
(Steve McConnel2007) in his blog categorized technical debt into unintentional debt, which is foolish to
incur, and intentional debt, which might be incurred for reasons such as time to market, preservation of
startup capital and delaying development expense.

Open source software (OSS) has given a new direction to technical debt. In the version control systems on
daily basis many times new and new features are added and commits are done. It becomes clear that the
probability of technical debt grows manifolds. In such systems, it is quite evident that an increasing number
of commits may lead to more TD. This is also evident that the code smells are a major reason to introduce
TD. This paper will be investigating the relation of two factors viz. commits and code smells with technical
debt. The paper is organized into different sections. The first section introduces the topic. Section Il is the
review of related literature. It includes the major milestones in the theoretical framework of technical debt.
The section 111 describes the variables considered in study. Section IV includes the research questions.
Section V deals with tools and software used for the study. Section VI includes the method of investigation
in detail. It includes the work, statistical tools and the graphical trends etc. Section VII includes the threats
to validity and conclusions are drawn in section VIII. The sources consulted for the study are listed in the
last section that is bibliography.

Il. LITERATURE REVIEW

1992 may be considered as the birth year of the metaphor TD when Ward Cunningham in an experience
report coined it first. “Shipping first time code is like going into debt. A little debt speeds development so
long as it is paid back promptly with a rewrite[Cunningham,1993]. He included the possible loss that may
occur later on as “... The danger occurs when the debt is not repaid. Every minute spent on not-quite-right
code counts as interest on that debt. Entire engineering organizations can be brought to a stand-still under
the debt load of an unconsolidated implementation, object oriented or otherwise.” There was a large gap in
the further significant research in the area till [Zeller et.al 2005] pointed out the role of specific day in a
week for TD. Study claimed that programming on Friday is more likely to generate faults than on any other
day.

Some engineers and software developers consider TD as a short cut for output and they use a dirty
approach. [Cunningham, 2009] never intended for technical debt to be used as an excuse to write poor
code. Despite various definitions of technical debt, the blogging community has continued to preserve
Cunningham’s original representation of technical debt as a trade-off between quality, time and cost. Other
bloggers include quick and dirty approaches [Steve McConnell, 2007] and design and quality flaws
Marinescu, R.[2012] as technical debt. Martin Fowler [2009] introduced very popular TD quadrant where

JETIR1905R85 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 580

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

he mentioned four types of TD. Fowler divided basic two types of TD viz., intentional and unintentional
debt into reckless and prudent debt. There were some papers on TD management thereafter. Brown,
Nanette, et al[2010] and Nitin Taksande [2011] submitted thesis on the empirical study of TD. He
emphasized on significance of TD from strategic viewpoint. Rothman, Seaman and Guo [2011] categorized
types of technical debt as testing debt, Defect debt, Documentation debt and Design debt.

J. Eyolfson et al. [2011] analyzed relation of time of Day and Developer Experience and Committing Bugs.
Rahman and Devanbu [2011] studied the impact of ownership and experience of the developers on the
quality of code. They also conceptualized two distinct types of experience that can affect the quality of a
developer’s work viz., specialized experience and general experience. F. Rahman and P. Devanbu [2011]
also conducted study on Ownership, experience and defects at a fine-grained level. P. Runeson, M. Host, A.
Rainer and B. Regnell [2012] consolidated the historical milestones of TD in a very significant systematic
literature review. Tom et al. [2013] conducted a systematic literature review to establish a theoretical
framework of technical debt. The authors identified two elements of TD viz., code decay and design debt
and the boundaries of TD. [Dan O'Neill, 2013] in his article described three groups of conditions which
when they occur can result in the accumulation of technical debt. Management debt triggers include tight
and highly prioritised completion schedules, squeezed budgets and poor communication between
management and engineering.

Li, Zengyang et al [2015] conducted mapping study on technical debt and its management and came out
with a detailed classification of TD. Ten types were outlined viz., Requirements TD, Architectural TD,
Design TD, Code TD, Test TD, Build TD, Documentation TD, Infrastructure TD, Versioning TD, Defect
TD. Eight TDM activities were also outlined viz, TD prevention, identification, measurement,
representation/documentation, prioritization, monitoring, and repayment O'Neill D [2013].

Alves et al. [2015] investigated the influence of developers on the introduction of code smells in 5 open
source software systems. Li, Zengyang [2015] have classified developers in different groups based on two
characteristics, namely developer participation (calculated as the time interval between his first and last
commit) and developer authorship (representing the amount of modified files and lines of code). The
authors investigated how those two characteristics are related to the insertion and/or removal of five types
of code smells as dead (unused) code, large classes, long methods, long parameter list (of methods) and
unhandled exceptions. Results suggested that groups with fewer participation in code development tended
to have a greater engagement in the introduction and removal of code smells. Authors suggested that
groups with higher participation level code more responsibly during maintenance whereas the other groups
tend to focus on error correction actions.

Everton da S. Maldonado [2016] in his thesis included one new type of TD of his times viz., Self-Admitted
Technical Debt. Per Classon [2016] submitted thesis on Managing Technical Debt in Django Web
Applications. He emphasized that appropriate strategies are necessary to support decisions about when and
to what extend a TD item should be paid off. Alves et al. [2015] studied the strategies followed by
different researches and found six strategies viz., Cost-Benefit Analysis, Portfolio Approach, Options
Investment Analytic Hierarchy Process (AHP), calculation of TD Principle and Marking of Dependencies
and Code Issues. Alves, Nicolli SR et al [2016] conducted very systematic mapping study of the period.
Theodoros Amanatidis et al [2017] considered software quality from the perspective of TD. Tufano et al,
[2017] analyzed developer-related factors on 5 open source Java projects that could influence the likelihood
of a commit to induce a fix. They found evidence that clean commits have higher coherence than fix-
inducing commits. Commits with changes that are focused on a specific topic or subsystem are considered
more coherent than those with more scattered changes. Furthermore their results suggested that developers
with higher experience perform more fix-inducing commits that developers with lower experience. Studies
over the years have proposed different approaches to measure technical debt, which has been found to
impact (internal) quality. Zhixiong [2017] and thesis of Sultan Wehaibi [2017] were worth mentioning.
Mrwan Benldris [2018] pointed that the total number of selected empirical studies has nearly doubled from
2014 to 2016. It is clear from state of art that research occurred on the theoretical framework of technical
debt. There is a void if quantification of technical debt is seen in research.

JETIR1905R85 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 581

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)
I1l. VARIABLES USED

A. Commit frequency
Commit frequency means number of commits.

B. Code Smells

Code smell, also known as a bad smell, in computer programming code, refers to any symptom in the
source code of a program that possibly indicates a deeper problem.

IV. RESEARCH QUESTIONS

RQ#1: Does TD correlate with commits?

The goal is to provide an initial investigation to determine if some correlation exists between two
parameters viz., commits and td.

RQ#2: How do code smells affect TD?

The goal is to determine if some correlation exists between two parameters viz., code smells and td.
Hypothesis can be easily framed as
Ho: Code smells and commits increase technical debt.

V. TOOLS AND APPLICATION USED
Following tools were used in performing the analysis of current paper:

A. Sonarqube

SonarQube is a web-based open source platform which is used for measuring and analyzing the source
code quality. SonarQube is maintained by SonarSource. The tool is written in java. It can analyze and
manage code of twenty plus programming languages like c++, PL/SQL, Cobol etc. More than 50 plugins
are available to extend the functionality of SonarQube. SonarQube receives files as an input and analyzes
them and calculates a set of metrics. It then stores them in a database and shows them on a dashboard.

B. MS-Excel
MS EXCEL 2010 was used to enter and analyse the results of study. There is a wide variety of statistical
and mathematical functions of Excel which were required for the study. Graph drawing feature was also

very helpful in showing the relation of the variables. Regression function of excel was used to calculate
value of r? that is regression coefficient.

C. Vetkra Mockery

It is a one of the PHP applications in the top twenty list of github. Mockery provides the ability to easily
generate mocks for golang interfaces. It removes the boilerplate coding required to use mocks. It is
considered case for study while the unit of consideration is each revised project that is available as new
version.

D. Origin 6.0

Origin 6.0 is a graphic drawing tool. Origin is a proprietary computer program used for data analysis.
Origin Lab Corporation.[35]

VI. RESULTS AND DISCUSSION

The data of 231 versions of projects of Vektra Mockery PHP (application considered for study) was
collected from github. For this all the projects were downloaded on machine. Sonarqube was used to find
technical debt for all projects. The outputs from sonar dashboard were entered in Excel worksheet. TD
calculated was normalized using mathematical functions of excel as the data was in different units of time
that is days, hours and minutes. All 38 contributors of application were considered. The process of analysis
is a three step process and is depicted in figure 1.

JETIR1905R85 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 582

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5

www.jetir.org (ISSN-2349-5162)

CONTRIBUTOR’ DATA FROM GITHUB
REPOSITORY

)

CALCULATION OF TD WITH SONARQUBE

N,

ANALYSIS OF DATA FROM GITHUB AND

SONARQUBE WITH MS-EXCEL AND ORIGING.0

Figure 2: Process of analysis

In order to find answer research questions, correlation of the commits and code smells with TD separately
is considered. It comes out as approx .78 with commits which is more than .5. it indicates that a positive
correlation exists between commits and TD which is statistically significant. While a correlation of the

code smells and TD comes out as approx .97 which is very near to 1.

Figure 3: correlation matrix of commits and code smells with TD

commits TD

commits 1
TD 0.775834 1
code
smells TD
code
smells 1
TD 0.965048 1

Figure 4: Graphs showing increasing trend of TD in hours w.r.t. commit frequency and code smells resp.

180

aw
160 —
o G
QD
140 -
o
120 —
fore
O 100 a
= awo ° &
80 > °
o o 5
) B
60 I 0g D D ©
an e
40 amo
20 T T T T T T T T |
o 50 100 150 200

commit frequency

250

180 —

160 —

140

120

0O 100 —
=

80 —

60 —

40 —

20

*

e Mt
ot Hbbt
*

T T T T T T T T T
6 8 10 12 14

code smells

JETIR1905R85

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 583

16

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

The pictorial layouts in figure 4 shows the relation of number of commits and that of TD and relation of
number of code smells and that of TD in two parts. The graphs show an overall increasing trend of TD with
increase in code smells. At certain intervals it is constants like 6,7,9 etc. but it cannot be considered so
significant as it is so only at a very few points. Similarly an overall increasing trend in TD due to code
smells is also clear. At certain intervals it is constants like 10-50, 50-70,110-130. It is however decreasing
at certain points like 95-100 but it cannot be considered so significant as it is so only at a very few points. It
is obvious that null hypothesis is proved.

VII. THREATS TO VALIDITY

[R. Marinescu, 2012] points that in every experimental study, there are threats to validity. There are threats
to external validity that are related with generalization of results. In order to generalize results, all releases
or commits of MOCKERY are used in the study. Then also it cannot be ensured that the findings are valid
for all other domains, applications or all open source systems. Many case studies are needed for
establishing whether the aforementioned outcomes concerning technical debt are applicable in all
applications or domains.

Threats to internal validity may also exist. They are confounding factors that may have influenced the
results of this study. This threat is mainly related to the assumption that all cases of version control systems
have same behavior in terms of users and technical debt inducing factors. To limit this threat, random
manual inspections of projects or commits was performed. To a large extent, the results of these inspections
support the assumption, but in order to draw any solid conclusions on the actual causes of the changes
between releases, a detailed study is needed with the many more such projects.

VIIl. CONCLUSION

There are a number of factors affecting technical debt. This is an important area of research to unveil these
factors. It can be well concluded that the commits and code smells effect TD. It is statistically proved that
both these factors effect TD significantly. As code smells and commit frequncy grow, there is
corresponding increasing change in TD. Further research is needed to unveil more contributing factors
towards technical debt. The code smells when kept under control can help in maintaining TD within limits.
Commit frequency will increase in a project if there is need to make changes in the form of additions and
deletions. It is can be very vividly stated that commits are bound to increase in the competitive world of
business and technology b fact but the finding of the paper indicates that on committing the check should
always be there on the code smells. If they do exist beyond certain limit the solutions dealing with code
smells like refactoring etc. should be used.

IX. BIBLIOGRAPHY

[N

. W. Cunningham. The WyCash Portfolio Management System. http: //c2.com/doc/oopsla92.html.

Cunningham, Ward. "The WyCash portfolio management system." ACM SIGPLAN OOPS Messenger 4.2 (1993): 29-30.

3. J. Sliwerski, T. Zimmermann, and A. Zeller, “Don’t Program on Fridays! How to Locate Fix-Inducing Changes,” in
Proceedings of the 7th Workshop on Software Reengineering, Bad Honnef, Germany, 2005.

4. Steeve McConnell. Technical Debt. http://blogs.construx.com/blogs/ stevemcc /archive/2007/11/01/technical-debt-
2.aspx.

5. Cunnigham, W., Ward Cunningham's Debt Metaphor Isn't a Metaphor, in Powers of Two, R. Mayers, Editor. 2009

6. Atwood, J., Coding Horror: Paying Down Your Technical Debt, in programming and human factors. 2009.

7. Robert C. Martin. A Mess is not a Technical Debt. http://blog.objectmentor.com/articles/2009/09/22/ a-mess-is-not-a-
technical-debt

8. Fowler, M. Technical debt quadrant, 2009; http:// martinfowler.com/bliki/TechnicalDebtQuadrant.html.

n

JETIR1905R85 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 584

http://www.jetir.org/
http://blogs.construx.com/blogs/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

9.

10.

11.

12.
13.
14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.
36.
37.

38.
39.
40.
41.

"Managing technical debt in software-reliant systems.” Proceedings of the FSE/SDP workshop on Future of software
engineering research. ACM, 2010.

Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe Kruchten, Erin Lim, Alan
MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka.
Managing technical debt in software-reliant systems. FOSER *10 Proceedings of the FSE/SDP workshop on Future of
software engineering research Pages 47-52, 2010.

J. Eyolfson, L. Tan, and P. Lam, “Do Time of Day and Developer Experience Affect Commit Bugginess?,” in
Proceedings of the 8th Working Conference on Mining Software Repositories, New York, NY, USA, 2011, pp. 153—
162.

Nitin Taksande, Thesis: Empirical study on technical debt as viewed by software practitioners [2011]

Strutz, N., Technical Debt - it's still a bad thing, right?, in The Dopefly Tech Blog. 2011.

L. Tan, and P. Lam, “Do Time of Day and Developer Experience Affect Commit Bugginess?,” in Proceedings of the
8th Working Conference on Mining Software Repositories, New York, NY, USA, 2011, pp. 153-162.

F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-grained study of authorship,” In Proceedings of
the 33rd International Conference on Software Engineering, Waikiki, Honolulu, USA, 2011, p. 491.

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software Engineering: Guidelines and
Examples, 1st ed. Wiley Publishing, 2012.

Thesis : Markus Lindgren ,Bridging the software quality gap [Oct. 2012]

Tom, Edith, Ayblke Aurum, and Richard T. Vidgen. "A Consolidated Understanding of Technical debt." ECIS. 2012.
P. Kruchten, R. L. Nord, and 1. Ozkaya, “Technical Debt: From Metaphor to Theory and Practice,” IEEE Softw., vol.
29, no. 6, pp. 18-21, Nov. 2012.

Curtis, B.; Sappidi, J.; Szynkarski, A.”Estimating the Principal of an Application's Technical Debt” Nov.-Dec. 2012
v.29 p.34-42, ISSN 0740-7459

Marinescu, R. (2012). Assessing technical debt by identifying design flaws in software systems. IBM Journal of
Research and Development, 56(5), 9-1.

Marinescu, Radu. (2012). Assessing technical debt by identifying design flaws in software systems. Ibm Journal
of Research and Development. 56. 9:1-9:13. 10.1147/JRD.2012.2204512.

Tom et.al[2013] Edith, AybiKe Aurum, and Richard Vidgen. "An exploration of technical debt." Journal of Systems
and Software 86.6 (2013): 1498-1516.

O'Neill, D. (2013). Technical Debt In the Code. Defense Aquisition, Technology and Logistics, XLIlI No.2,, 35 - 38.
SonarQube™, (2013). Retrieved 20/07/2013, from http://www.sonarqube.org/

Li, Zengyang, Paris Avgeriou, and Peng Liang. "A systematic mapping study on technical debt and its management."
Journal of Systems and Software 101 (2015): 193-220.

L. Alves, R. Choren, and E. Alves, “An Exploratory Study on the Influence of Developers in Code Smell Introduction,”
in Proceedings of the 10th International Conference on Software Engineering Advances (ICSEA 2015), Barcelona,
Spain, 2015.

Tﬂesis : Per Classon, Managing Technical Debt in Django Web Applications [2016]

N. S. R. Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola, F. Shull, and C. Seaman, “Identification and
management of technical debt: A systematic mapping study,” Inf. Softw. Technol., vol. 70, pp. 100-121, Feb. 2016.
Theodoros Amanatidis, Alexander Chatzigeorgiou, Apostolos Ampatzoglou, loannis Stamelos, Who is Producing More
Technical Debt? A Personalized Assessment of TD Principal Conference Paper - May 2017

M. Tufano, G. Bavota, D. Poshyvanyk, M. Di Penta, R. Oliveto, and A. De Lucia, “An empirical study on developer-
related factors characterizing fix- inducing commits,” J. Softw. Evol. Process, vol. 29, no. 1, Jan. 2017.

Zhixiong Gong, Feng Lyu,Technical debt management in a largescale distributed project - An Ericsson case study[June
2017

Thesi]s : Sultan Wehaibi,On The Relationship Between Self-admitted debt and software quality [April 2017]

Mrwan Benldris, Hany Ammar, Dale Dzielski , Investigate, identify and estimate the technical debt: A Systematic
mapping study, International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.5, September 2018
Terese Besker , Antonio Martini , Jan Bosch ,Technical Debt Cripples Software Developer Productivity - A longitudinal
study on developers’ daily software development work[TechDebt '18, May 27-28, 2018, Gothenburg, Sweden
https://vizteck.com/blog/benefits-using-sonarqube/

https://github.com/vektra/mockery

https://en.wikipedia.org/wiki/Origin_(data_analysis_software)

https://tommcfarlin.com/code-smells/

https://help.github.com/en/articles/github-glossary
https://3back.com/scrum-industry-terms/the-4-types-of-technical-debt/
https://www.castsoftware.com/blog/the-causes-of-technical-debt-do-not-exist-in-a-vacuum

JETIR1905R85 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 585

http://www.jetir.org/
https://www.blogger.com/null
https://www.blogger.com/null
https://www.blogger.com/null
https://vizteck.com/blog/benefits-using-sonarqube/
https://github.com/vektra/mockery
https://en.wikipedia.org/wiki/Origin_(data_analysis_software)
https://tommcfarlin.com/code-smells/
https://help.github.com/en/articles/github-glossary
https://3back.com/scrum-industry-terms/the-4-types-of-technical-debt/
https://www.castsoftware.com/blog/the-causes-of-technical-debt-do-not-exist-in-a-vacuum

