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Abstract

In this paper, the problem of the reflection of P and SV waves at the free surface of homogeneous viscoelastic
half-space media has been solved by a direct method. By using potential method with assumption that the
wave equation satisfied by the displacement potentials ¢ and ¢ but in general, a homogeneous isotropic

elastic medium does not remain a isotropic but becomes an anisotropic due to initial stress. The aim of this is
to solve the problem by direct method to avoid this ambiguity. The amplitude ratios are obtained in viscoelastic
half space.

Keywords: Reflection coefficient, refraction coefficient, Elastic intensity, initial stress, rotation gravity field,
magnetic field, anisotropic media.

Introduction

The theory of Rayleigh waves has been widely summarized in the book of Ewing et al. (1957).Biot (1962)
investigated the result of gravity on Rayleigh waves. He assumed that gravity creates an initial stresses of
hydrostatic nature adapting the same theory of initial stress and using the dynamical equation of motion for

the initial compressive stress.

The result of viscosity on the propagation of Rayleigh waves has also been shown a few authors such as Das
and Sengupta (1992) but none of them considered the initial stress might be present in the media. But the earth
is an initially stressed medium. Hence it should be geophysical interest to see how the initial stress influence

the propagation of waves in elastic or a viscoelastic medium.

Das (1995) studied the surface waves in higher order viscoelastic involving time rate of change of strain and
stress under the influence of gravity. General equation for the wave velocity was derived. This equation was
used to examine various kinds of surface waves including Rayleigh waves, Love waves and Stonley waves.
Addy and Chakraborty (2005) showed the result of temperature as well as the initial hydrostatic stress on the
propagation of Rayleigh waves in a viscoelastic half space. The authors solved this problem by introducing

potential method which is not applicable here.

The present chapter is a sincere effort to study the results on reflection coefficient of P and S waves in a

viscoelastic half space using direct method.
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Basic Equations

Fig 1Plane wave at the free surface of viscoelastic half space

Consider a voigt type viscoelastic half —space y>0, the boundary of which y=0 is free from the traction,

incremental stress s;; together with incremental strain e;; are produced in it, which are measured with reference

to the axes as showed in Fig (5.1).

The dynamic equations of equilibrium are given by

Osu1 4 9812 _ 0 (62_“) ........................ (1)
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Here s;; and s,, are the incremental stresses along the x and y axes respectively. s;,is the incremental shear

stress in the xy plane, u and v are the displacement components along x and y axes respectively.

The stress —strain relations in the voigt type viscoelastic half space are given by

Spp = [(x +20) 4+ (A +2p) %] ery + [x + A%] Cry s e (2)
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' ’ a /6
su=[O+20+ A +20) ey + A+ e, e, ©)

sp=2(p+u's)ey 4)

The incremental strain components are given as

ou v 1 dv . du

Cxx = Iz €yy = ay’ €xy = 2 [ax 5], .................... (5)

Equations (1) with the help of equations (2), (3), (4) and (5) change to

2

, ~ 010°u 010%u 0%u
[(HZ“) +(2 +2“)E] [(“ W+ (4 +“)at] dxdy [“ M3ty = (F)

’ N 0 ’ , 0 621)_ 0%v
[(7\+2u)+(/1+2u)5— [(x+u>+(z+u)aaxay+[u+ua@—p(ﬁ).

Plane wave propagation

For plane waves of circular frequencyw, number k and phase velocity C, incident at angle@ with the Y- axis,
We use direct method to solve the problem, Let

u = Uexp (iP;), v= Vexp(iP), (8)

Where U and V are amplitude factors and

P; = Kk[Ct — (xsin 8 —ycosB)],

P;is the phase factor associated with the incident waves, similarly for waves reflected at y=0, we assume
u="Uexp (iP,), v= Vexp(iP). . 9)

We use P, = k[Ct — (xsin @ + y cos 8)], is the phase factor associated with the reflected waves.

Using equation (8) in equations (6) and (7), we get
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U+ 2p) + (A" + 2p)(ikC)}sin? 0 + {(u + n)ikC}cos? 0 — pC?] + V[{(A+ ) + (A" +
W)(kC)}sin@cosO] =0. . (10)

And

U[A+ ) + (X" + wW)(ikC)]sinBcosO + V[{(A+2p) + (A’ + 2p)(ikC)} cos? O + {(u +
W)(kC)}sin?0 —pC?1 =0. . (11)

Equations (10) and (11) can be written as

—[A—pC?lU+BV =0, . (12)

HUB—[D-pC2 IV =0. e (13)

Here upper and the lower symbol corresponds to the incident waves and the reflected waves respectively and
A, B and D are given by

A=[{( +2p) + (A + 2p)(ikC)}sin? 6 + {(u + n)ikC}cos? 0],  ............... (14)
B=[{A+w+ @A +u)({kC)}sinbcosh], (15)
D=[{(A+2n) + (A +2un)(ikC)}cos? O + {(u + p)(ikC)}sin?B].  ..ccooeonnn. (16)

The set of equation (12) and (13) has non -trivial solution if and only if

—(A—-pC?) +B |
4B —(D - pC?) =0. e enneeees (17)
On expansion, we get
20C?=(A+D)+J(A—DY+4F2, e (18)

From equation (18), it is clear that, in general, in this two dimensional model of homogeneous viscoelastic
medium there exist two type of plane waves whose velocities depends on the angle of incident. Let
Cp(0)andC:(0) be two values of C linked with the upper and lower symbols correspondingly, in equation
(18).

Consider a semi-infinite medium inhabiting the region y>0. For the total displacement field (u, v, 0) in such a

medium, we may assume

u = U;, exp(if;) + U, exp(if,) + U,, exp(if3) + U, exp(if,),
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v ="V, exp(if;) +V;, exp(i6,) + V. exp(ifs) + V;, exp(if,). .o (19)

Where

0, =06,(x,y) = (Cﬂ) [Cit — (x sine —y cose)],

1

0, =0,(x,y) = (é"—z) [C,t — (x sint —y cost)],
0; = 0;(x,y) = (Cﬂ) [C;t — (x sine —y cose)],

1

0, = 0,(x,y) = (c%) [Cot — (x sint —y cost)], (20)

These phase factor are linked with the incident quasi-P and quasi-SV waves and the reflected quasi-P and
quasi-SV waves, Here e is the angle between incident and reflected quasi-P waves and y-axis and t is the angle

between incident and reflected quasi-SV waves with the y-axis.

(Ui,,V;,) is the amplitude factors associated with the incident quasi-P, (U;,,V;,) is the amplitude factors
associated with the reflected quasi-P waves and (U,.,, ;) is the amplitude factors associated with the incident

quasi-S (U,,, ;. )is the amplitude factors associated with the reflected quasi-S waves correspondingly.
Meanwhile the displacements given in equation (2) need to fulfill the equations of motion (6) and (7), we have
—[A(e) — pC?]U;, + B(e)V;, =0,
—[Ae) — pC?1U,, — B(e)V,, =0,
~[A(t) — pC?]U;, — B(t)V;, = 0,
—[A@®) = pC?JU,, —B(OV,, =0. s (21)

It may be noted that we can obtain another set of similar equations corresponding to equations (13) due to

consistency condition (18). Equation (21) may be written as

Ul = F1VI.1’ UT'1 = _F1VT1’ UT'Z = _FZVT ) Ul = -

1 2 2

Where

_  B(e) _ _B(@®
Tt v TL Rabrre =R (23)

Boundary Conditions
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At y=0, there is no stress i.e.
S12 = 0, Soo = 0, aty = 0. (24)

Using equations (3) and (4) in equation (6), we have

av ou
2 5]=o, ........................ (25)
And
0\ ou ' \ 0] dv
(K+/15)a+[(7»+2u)+(/1 +2“)a]3= . e (26)

From equations (22), (25) and (26), we get

(F1 cose—sine) g (Fp cost—sint) 1 (F1 cose—sine) (Fp cost—sint) >y
ol sl y, 4 [omesnaly, [l <o

[—F;sine{l + Xiw} + cose {(1 + 2p) + (A" + 2u)iw}]V;, + [-F;sint{A + Xiw} + cost {(A + 2W) +

A"+ 2p)iw}]V;, + [F; sine{d + A'iw} — cose {(A4 + 2p) + (A" + 21)iw}]V, + [F; sint{d + Viw} —
cost {(A+ 2w + A" + 2p)iw}]V;, = 0.

.............. (27)
aV;, +aV, + V. +aV,, =0, (28)
b.Vi, + b;Vi, — bV, + bV, = 0.
Where
a, = [Flcoscel—sine]
a, =2 cos ;—sint],
by = [—{l +A'iw}F 1sine+{()l+2u)+(/1’+2u’)iw}cose]’
by = [(A+ Vi, e (aaps(saYiw)cost | o (29)
C,=0C1(e),C,=Co(t). (30)
Here we have put up the results
0:(x,0) =65(x,0) (31)

Since equations (30) and (31) should be true for all the values of x, we have

0,(x,0) = 6,(x,0)and 6,(x,0) = 0,(x,0)

JETIR1907Q98 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 338


http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www .jetir.org (ISSN-2349-5162)

This on using equation (28) , gives

sine sint

Cl — C_Z’ ......................... (32)

It is the kind of Snell’s Law for the homogenous viscoelastic materials.

Quasi — P waves incident

Put U;, = V;, = 0 in equation (19), the total displacement field can be written as

u = U;, exp(i0;) + Uy exp(ifs) + U,, exp(if,),

v ="V, exp(i0;) + V,, exp(if3) + V., exp(iB,). ., (33)
Equation (28) also reduces to

a Vi, + a1V, + a;V,, =0,

biVi —biVy + bV, =0. (34)

Where a1, a2, b1 andby are defined in equation (29) solving equation (34), we get

VT'1 _Aq VTZ _Ar 35
Vll A I ‘/L1 A ] e e mEEEEEEEEEREEERERRRE ( )
UT1 — V‘rl — __Al Urz — F2Vr2 — _FZAZ (36)
Ul1 Vll A ) Ull Flvll F]_A = asssssssssssssssssssssssmas
Where
a, 2
A=1_p p | =aby+aby (37)
1

A,andA,are obtained from A on replacing the elements of its 1%t and 2" columns by —a, and —b, respectively.

On simplification we get

& azbl—azbl Vr2 _ —2a1b1

_Gbimaghy Vo 2aby (38)
Vi1 A Vil A

Ury _ @aba—azby Ury, _  —F(2a1by) (39)
Ui, N U, F@byraybl) e

Quasi — S waves incident
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Put U;, = V;, = 0 in equation (19), the total displacement field can be written as
u = Uy, exp(i6,) + Uy, exp(if3) + Uy, exp(if,),

v ="V, exp(if;) + V. exp(ifs) + V, exp(i6s). i, (40)
Equation (28) can be reduced to

aVi, + a.Vp +a,V,, =0,

bVi, —biV,, + bV, =0. (42)

Solving equation (41), we get

Vro _as Vra _a (42)
Vl A ) V A L R TR R R R R

2 i2
and
Ury _ R8s Ury _ B (43)
Uil FzA ) Ulz A 2 NN

Where A is given by equation (37) and A; and A, are obtained from A on replacing the elements and its 1%

and 2" by —b, and — a, respectively.

Equations (42) and (43) give the reflection coefficient when quasi-S waves are incident at a free surface of

infinite homogenous viscoelastic semi-infinite medium.
Particular case

If the medium is a homogenous, isotropic elastic, then put A’ = u" = 0 using equations (14), (16), (18), (23)
and (29), we get

Ci=Ci(e) =a, C,=0C(t)=p,

F; = —tane, F, =cott, (44)
—2sine cos 2t
a; = ) a, = )
1 a 2 'B
b __ —pacos2f __2ucosf
17 pBzcose ' 727 p

Where a = /“pz" and g = \/% are the usual P and S-wave velocities.

Using equation (44), we may express equation (39) equivalent to equation (4.30).
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