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Abstract 

A multi-objective inventory model with budgetary and floor space constraints is analyzed by fuzzy geometric programming 

technique and the result is compared numerically to the solution by intuitionistic fuzzy geometric programming technique. Then 

the model is changed to a stochastic model under probabilistic constraint. In our discussion the better performance of 

intuitionistic fuzzy geometric programming technique is established for different objective functions. 

1. Introduction 

Intuitionistic Fuzzy Set (IFS) was introduced by K. Atanassov (1986) and seems to be applicable to real world 

problems. The concept of IFS can be viewed as an alternative approach to define a fuzzy set in case where available 

information is not sufficient for the definition of an imprecise concept by means of a conventional fuzzy set. Thus it 

is expected that, IFS can be used to simulate human decision-making process and any activities requiring human 

expertise and knowledge that are inevitably imprecise or totally reliable. Here the degree of rejection and satisfaction 

are considered so that the sum of both values is always less than unity (1986). Atanossov also analyzed Intuitionistic 

fuzzy sets in a more explicit way. Atanassov (1989) discussed an open problems in intuitionistic fuzzy sets theory. 

An Interval valued intuitionistic fuzzy sets was analyzed by Atanassov and Gargov (1999). Atanassov and 

Kreinovich (1999) implemented Intuitionistic fuzzy interpretation of interval data. The temporal intuitionistic fuzzy 

sets are discussed also by Atanossov (1999). Intuitionistic fuzzy soft sets are considered by Maji, Biswas and Roy 

(2001). Nikolova,  Nikolov, Cornelis and Deschrijver (2002) presented a Survey of the research on intuitionistic 

fuzzy sets. Rough intuitionistic fuzzy sets are analyzed by Rizvi, Naqvi and Nadeem (2002). Angelov (1997) 

implemented the Optimization in an intuitionistic fuzzy environment. He (1995) also contributed in his another two 

important papers, based on Intuitionistic fuzzy optimization. Pramanik and Roy (2005) solved a vector optimization 

problem using an Intuitionistic Fuzzy goal programming. A transportation model is solved by Jana and Roy (2007) 

using multi-objective intuitionistic fuzzy linear programming. Mahapatra and Mahapatra (2011) discussed 

redundancy optimization using intuitionistic fuzzy multi-objective programming  

Deterministic optimization problems are well studied, but they are very limited and in many cases they do not 

represent exactly the real problem (Zimmarmann, 1985). Usually, it is difficult to describe the constraints of an 

optimization problem by crisp relations (equalities and/or non-equalities) (Zimmarmann, 1983). Practically, a small 

violation of a given constraint is admissible and it can lead to a more efficient solution of the real problem. Objective 

formulation represents, in fact, a subjective estimation of a possible effect of a given value of the objective function. 

In the last two decades optimization problems have been investigated in the sense of fuzzy set theory. Fuzzy 

optimization formulations are more flexible and allow finding solutions, which are more adequate to the real 

problem. One of the poorly studied problems in this field is definition of membership degrees. However, the author 

investigates mainly the transformations and the solution procedures (Sakwa, 1989). On the other hand, fuzzy set 
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theory has been widely developed and various modifications and generalizations have appeared. One of them is the 

concept of intuitionistic fuzzy (IF) sets. They consider not only the degree of membership to a given set, but also the 

degree of rejection such that the sum of both values is less than 1 (Atanassov, 1986). Applying this concept it is 

possible to reformulate the optimization problem by using degrees of rejection of constraints and values of the 

objective that are non-admissible. The degrees of acceptance and of rejection can be arbitrary (the sum of both have 

to be less than or equal to 1). 

Recent interest in granular computing has focused on fuzzy subsets with non-standard membership grades. Among 

the most significant of these non-standard fuzzy subsets are intuitionistic fuzzy subsets (Atanassov, 1986, 1989). 

Here membership is expressed with two values whose sum must be less then one. The difference between this sum 

and one is called the hesitancy. Generally these values refer a degree of membership and non-membership. In this 

work we consider the extension to intuitionistic fuzzy subsets of a number of ideas from standard fuzzy subsets. In 

particular we look at the measure of specificity (Yagor, 1992, 1998). In addition we consider the problem of 

alternative selection when decision criteria satisfaction is expressed using intuitionistic fuzzy subsets. We also briefly 

look at the related problem of defuzzification of intuitionistic fuzzy subsets. Before turning to the main body of 

interest we shall make some brief comment on the semantics associated with intuitionistic fuzzy subsets an issue that 

is of some interest given the close formal mathematical relationship between intuitionistic fuzzy subsets and interval 

valued fuzzy subsets. In most cases intuitionistic fuzzy subsets have been used to represent situations in which there 

exists some uncertainty with respect to knowledge of membership grade. Under this semantics the hesitancy 

associated with an element is a reflection of the uncertainty about its membership grade. A second, less common, 

semantics that can be associated with intuitionistic fuzzy subsets is to model situations in which there is a lack of 

appropriateness of associating a membership grade to an element in a set.1 As an extreme example consider the fuzzy 

subset corresponding to the predicate happy. If we ask if a rock is happy, this predicate not applicable to a rock. We 

can use the intuitionistic membership grade (0, 0). Here the hesitancy reflects the lack of applicability of the concept 

happy to rock. More generally the use of intuitionistic fuzzy allows us to model partial applicability of concept to an 

object. 

Intuitionistic Fuzzy Geometric Programming is a new optimization technique. This method is more effective than 

Fuzzy Geometric Programming (FGP) in non-linear programming. It has certain advantages over the other 

optimization methods. Since late 1960, GP has been known and used in various fields (like OR, Engineering Sciences 

etc.). Duffin, Petersen and Zener (1966) discussed the basic theories with engineering applications in their books. 

Another famous book on GP and its application appeared in Beightler and Philips (1976). There are many references 

on application and the methods of GP in the survey papers (like Eckar (1980), Beightler et.al. (1979), Zener (1971). 

Hariri et al. (1997) discussed the multi-item production lot-size inventory model with varying order cost under a 

restriction Jung and Klain (2001) developed single item inventory problems and solved by GP method. Ata Fragany 

and Wakeel (2003) considered some inventory problems solved by GP technique. Zadeh (1965) first gave the concept 

of fuzzy set theory. Later on Bellman and Zadeh (1970) used the fuzzy set theory to the decision making problem 

Tanaka (1974) introduced the objective as fuzzy goal over the -cut of a fuzzy constraint set and Zimmerman (1978) 

gave the concept to an inventory and production problem. Cao (1993) and his recent book (2002) discussed fuzzy 

geometric programming with zero degree of difficulty. Das et al. (2000) developed a multi-item inventory model 

with quantity dependent inventory costs and demand dependent unit cost under imprecise objective function and 

constraint and solved by GP technique. Roy and Maiti (1997) solved single objective fuzzy EOQ model by GP 

technique. Recently Mondal et al. (2005) developed a multi-objective inventory model and solved it by GP method. 

A multi-objective fuzzy economic production quantity model is solved using GP approach by Islam and Roy (2004). 

Islam and Roy (2007) solved another fuzzy economic production quantity model under space constraint by GP 

method. Cao (2009) discussed about rough posynomial geometric programming problem. Mahaptra and Roy (2009) 

analyzed Single and multi container maintenance model by fuzzy geometric programming approach. Shivanian and 

Khorram (2009) discussed Monomial geometric programming with fuzzy relation inequality constraints with max-

product composition. Yousef et-al. (2009) considered some Geometric programming problems with fuzzy 

parameters.  Sadjadi et-al. (2010) discussed a fuzzy pricing and marketing planning model using possibilistic 

geometric programming approach. Mahapatra and Mahapatra (2011) presented the redundancy optimization by 

intuitionistic fuzzy multi-objective programming. 

In our problem, a stochastic inventory model with deterministic and then with probabilistic constraint is analyzed 

here. We solve this multi-objective inventory problem with uniform lead-time demand by intuitionistic fuzzy 

geometric programming technique. We also compare the results solved by Fuzzy Geometric programming technique 

and it is observed that our Intuitionistic Fuzzy Geometric programming always performs better than the Fuzzy 

Geometric programming. 
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2. Mathematical Model 

           Firstly, we use the following notations to describe the above model: 

For the i-th item (i =1, 2, ………….,n), 

pi = price per unit item (a decision variable), 

Qi = lot size (a decision variable), 

TC(p,Q) = average annual cost, 

(p and Q are the vectors of n decision variables pi (i=1, 2, ……,n) and Qi (i=1, 2, ……,n) respectively.) 

C1i = set up cost per cycle, 

C2i = holding cost per unit item, 

fi = floor space available per unit, 

n = number of item, 

F = available floor space, 

B = total budget. 

The following assumption are made regarding the above model: 

(i) Replenishment is instantaneous, 

(ii) No back order is allowed, 

(iii) Lead time is zero, 

(iv) Demand Di(pi) is related to the unit price as: 

i
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Model I. Multi-Objective Inventory Model Under Budgetary and Floor Space Constraints 

We model (2.2) as a multi-objective inventory model splitting item-wise objectives as: 
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Model II. Stochastic Model with Deterministic Storage and Stochastic Budget 

In this case pi’s, set up cost, investment cost and holding cost are random parameters. Then the model (2.2) 

changes to a probabilistic model as: 
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( Here, ‘’ indicates the randomization of the parameters.) 

3. Mathematical Analysis 

3.1 Geometric Programming Problem 

Geometric Programming (GP) can be considered to be an innovative modus operandi to solve a nonlinear problem in 

comparison with other nonlinear techniques. It was originally developed to design engineering problems. It has 

become a very popular technique since its inception in solving nonlinear problems. The advantages of this method is 

that, this technique provides us with a systematic approach for solving a class of nonlinear optimization problems by 

finding the optimal value of the objective function and then the optimal values of the design variables are derived, 

also. This method often reduces a complex nonlinear optimization problem to a set of simultaneous equations and 

this approach is more amenable to the digital computers. 

GP is an optimization problem of the form: 

)( 0 tgMin                                                                                                                                                                              

…(3.1)                                                                                                                                          

subject to 

1)( tg j , 
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j = 1, 2, ………, m. 

1)( thk ,               k=1, 2, ……….., p 

0it ,                 i = 1, 2, ………., n                    

where, )(tg j ( j = 1, 2, ………, m) are posynomial or signomial functions and )(thk       (k=1, 2, ……….., p) are 

monomials it ( i = 1, 2, ………., n )  are decision variable vector of n components. 

The problem (3.1) can be written as: 

 )( 0 tgMin  

subject to 

1)(  tg j ,               j = 1, 2, ………, m. 

t > 0, [since 1)( tg j , 1)( thk  1)(  tg j  where  )((tg j gj(t)/hk(t)) be a posynomial (j=1, 2, ………, m ; k=1, 2, 

………, p)]. 

 

I. Posynomial Geometric Programming Problem 

A.  Primal problem 
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here, cjk > 0 and jki (i=1, 2, ………,n ; k=1, 2, ………, Nj ; j=0, 1, ………,m) are real numbers. 

T=( t1, t2, ………., tn)
T. 

It is a constrained posynomial primal geometric problem (PGP). The number of inequality constraints in the problem 

(3.2) is m. The number of terms in each posynomial constraint function varies and is denoted by Nj for each j=0, 1, 2, 

……, m. 

The degree of difficulty (DD) of a GP is defined as (number of terms in a PGP) –(number of variables in PGP)-1. 
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II. Signomial Geometric Programming Problem 

A. Primal problem 
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3.2 Functional Substitution  

When a non-linear programming problem (NLP) is of the following form: 

)())(()()( xhxqxfxMiny n      x  > 0,  n  > 0. 

Where, )(xf , )(xq  and )(xh  are single or multi-term functionals of posynomial or signomial form. This generalized 

formulation is not directly solvable using geometric programming; however, under a simple transformation it can be 

changed into standard geometric programming form. Let )(xqP   and replace the above problem with the following 

one: 

)()()( xhPxfxyMin n  

subject to 

                 1))((1  xqP                      

                    Px,  > 0. 

The rationale used in constructing the equivalent problem with an inequality constraint is based on the following 

logic. Since )(xy is to be minimized, if )(xq  is replaced by P, then it is correct to say that )(xqP  , realizing that in 

the minimization process P will remain as small as possible. Hence )(xqP   at optimality. Note that )(xh and/or 

)(xq are permitted to be multiple term expressions and that the optimal (minimizing) solution to )(xy is obviously the 

same as the optimal solution to )(xy . 

3.3 Lemma 

A stochastic non-linear programming problem is considered as: 

Min f0(X) 

Subject to 

      fj(X)  cj                      (j=1, 2, ………..,m) 

      X  0. 

 

So,Minf0(X)                                                                                                                                                                            

….(3.5) 

Subject to 

      fj(X)  0                    (j=1, 2, ………..,m) 

      X  0. 

Where, fj(X) = fj(X) - cj 

Here X is a vector of N random variables y1, y2, ……….,yn and it includes the decision variables x1, x2, ……….,xn. 

Expanding the objective function f0(X) about the mean value iy of iy and neglecting the higher order term: 
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If yi (i=1, 2, ……. ,n) follow normal distribution then so does )(X . The mean and variance of )(X are given by: 
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….(3.7)         
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When some of the parameters of the constraints are random in nature then the constraints will be probabilistic and 

thus, the constraints can be written as: 

jj rfP  )0(     (j=1,2………,m)                                                                        

Then in the light of the theoretical convention given above, equivalent deterministic constraints are: 
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where, )( jj r is the value of the standard normal variate corresponding to the probability rj. 

4. Intuitionistic Fuzzy Geometric Programming Problem [IFGPP] 

Multi-objective geometric programming (MOGP) problem is a special type of a class of MONLP problems. Here an 

intuitionistic fuzzy geometric programming technique is developed to solve a MOGP problem. 

A Multi-Objective Non-Linear Programming (MONLP) or Vector Minimization problem (VMP) may be 

taken in the following form:  

            Min f(x) = [f1(x), f2(x), f3(x), …. , fk(x)]T 

Subject to x є X = {x є Rn : gj(x) ≤ or =  or ≥ bj for j = 1, …….., m                        

                               and  li ≤ xi ≤ ui  (i = 1, 2, ……. , n)}. 

Zimmermann (1978) showed that fuzzy programming technique could be used to solve the multi-objective 

programming problem. 

To solve the MOGP problem we follow the Zimmerman’s technique (1978). The procedure consists of the following 

steps: 

Step 1. Pick the first objective function and solve it by geometric programming, as a single objective NLP problem 

subject to the same constraints. Continue the process K-times for K different objective functions. These K sets of 

solutions are called ideal solutions. If all the solutions i.e. 
**

2

*

1 ...... kXXX  are same, then one of them is the 

optimal compromise solution and go to step 6. Otherwise go to step 2. (However, this rarely happens due to the 

conflicting objective functions) 

Step 2. To build membership function, goals and tolerances should be determined. Using the ideal solutions, obtained 

in step 1, we find the values of all the objective functions at each ideal solution and construct pay off matrix as 

follows: 
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Step 3. Determine the upper and lower bounds of each objective for the degree of acceptance and rejection 

corresponding to the set of solutions as follows: 
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kU = ))(max(
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rk XZ       and 
acc

kL = ))(min(
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            kr 1                      kr 1  
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For linear membership functions, 
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…(4.2) 

Step 4. When the degree of rejection (non-membership) is defined simultaneously with degree of acceptance 

(membership) of the objectives and when both of these degrees are not complementary to each other, then IF sets can 

be used as a more general tool for describing uncertainty. 

To maximize the degree of acceptance of IF objectives and to minimize the degree of rejection of IF objectives and 

following the fuzzy decision of Bellman-Zadeh (1970) and Anglov (1997) together with linear membership and non-

membership functions of (6.2) and (6.3), an intuitionistic fuzzy optimization model of NLP problem can be written 

as: 

k

k k

max  ( ), ,  k 1,2,......,K

min ( ) [i.e. max (- ( ))], ,  k 1,2,......,K

X X R

X X X R

 

  




                                                                                                                                            

....(4.3)                                            
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Using max-additive operator, problem (4.1) can be reduced as: 

    



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k

kk XXMax
1
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Subject to 
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Step 5. Solve the crisp NLP problem (4.2) by Geometric programming method. 

Step 6. STOP. 

     

5. Numerical Examples 

For numerical illustration of model (2.3), we consider the following data: 

n=2, 1=100; 2=120; C11=100; C12=120; C21=1; C22=1.5; 1=0.85; 2=0.8;  

B=12000;f1=20;f2=30;F=20000;
acc

U1
=

rej
U1

=202.23;
acc

L1
=197.56;

rej
L1

=199; 
acc

U2
=

rej
U2

=310.67;
acc

L2
=276.43;

rej
L2

=280. 

[All the cost related parameters are measured in “$” and area is measured in “m2” and all the first and second 

components of the fuzzy and stochastic normal variables indicates respectively, their mean and standard deviations.] 

The comparative study of Fuzzy Geometric Programming (FGP) and Intuitionistic Fuzzy  Geometric 

Programming (IFGP) technique of the model (2.3) 

Method TC1 TC2 Q1 Q2 p1 p2 μ* ν* 

FGP 197.04 274.27 31.49 42.01 14.96 12.16 0.897 -- 

IFGP 191.22 270.23 35.45 41.37 14.98 11.08 0.913 0.058 

Table - 5.1 

                             

From the above Table - 5.1 we conclude that TC1 and TC2 both are minimized more in case of IFGP than 

FGP, for the model (2.3) 

For numerical illustration of model (2.4), we consider the following data: 

n=2, 1=100; 2=120; r = 0.95; Ĉ 11=($100,$1); Ĉ 12=($120,$1.2); Ĉ 21=($1,$0.01); Ĉ 22=($1.5,$0.015); 1=0.85; 

2=0.8; B̂ =($12000,$12); f1=2 m2; f2=3 m2;  

F=15000m2;
acc

U1 =
rej

U1 =450.43;
acc

L1 =486.36;
rej

L1 =490;     
acc

U2 =
rej

U2 =0.7321;
acc

L2 =0.6143;
rej

L2 =0.62. 

)01.0,(ˆ
iii ppp  for i = 1, 2.  

[All the cost related parameters are measured in “$” and area is measured in “m2” and all the first and second 

components of the fuzzy and stochastic normal variables indicates respectively, their mean and standard deviations.] 

The comparative study of Fuzzy Geometric Programming (FGP) and Intuitionistic Fuzzy Geometric 

Programming (IFGP) technique of the model (2.4) 

Method TC TC Q1 Q2 p1 p2 μ* ν* 

FGP 483.05 0.58 25.75 31.16 19.72 24.74 0.96 -- 

IFGP 482.679 0.57 28.25 34-

26 

18.89 20.92 0.98 0.071 

Table - 5.2 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1908C20 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 141 
 

From Table - 5.2, we conclude that TC is more minimized in case of Intuitionistic Fuzzy Geometric Programming 

(IFGP) than Fuzzy Geometric Programming (FGP) method, for the model (2.4). 
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