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ABSTRACT 

We have proposed studying properties that “almost always” hold. This phrase has meaning in 

the context of a probability model. 

Definition. Given a sequence of probability spaces, let 𝑞𝑛 be the probability that property 𝑄 

holds in the nth space. Property 𝑄 almost always holds if lim
𝑛→∞

𝑞𝑛 = 1.  

For us, the nth space is a probability distribution over 𝑛‐vertex graphs. When property 𝑄 

almost always holds, we say almost every graph has property 𝑄 Making aU graphs with vertex 

set [𝑛] equally likely is equivalent to letting each vertex pair appear as an edge with probability 

1/2. Models where edges arise independently with the same probability are the most 

common for random graphs because they lead to the simplest computations. We allow this 

probability to depend on 𝑛. 

Definition. Model A Given 𝑛 and 𝑝 = 𝑝(𝑛) , generate graphs with vertex set [𝑛] by letting 

each pair be an edge with probability 𝑝, independently. Each graph with 𝑚 edges has 

probability 𝑝𝑚(1 − 𝑝)(2
𝑛) −𝑚. The random variable 𝐺𝑝 denotes a graph drawn from this 

probability space. “The random graph” means Model A with 𝑝 = 1/2, which makes all graphs 

with vertex set [𝑛] equally likely. 

Computations are much simpler for graphs with a fixed vertex set (′′labeled′′ graphs) than for 

random isomorphism classes. Since inputs to algorithms are graphs with specified vertex sets, 

this model is consistent with applications. 

We often measure running times of algorithms in terms of the number  of vertices and 

number of edges; hence we may want to control the number of edges. This suggests a model 

in which the 𝑛‐vertex labeled graphs with 𝑚 edges are equally likely. (We use 𝑚 to count 

edgesin this section because the number 𝑒 = 2.71828 … plays an important role in 

asymptotic arguments.) 

Definition. Model B: Given 𝑛 and 𝑚 = 𝑚(𝑛) , let each graph with vertex set [𝑛] and 𝑚 edges 
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occur with probability         (
𝑁
𝑚

)
−1

  , where 𝑁 = (
𝑛
2

). The random vańable  𝐺𝑚 denotes a 

graph generated in this way. 

These two are the most common of many models studied. Model B seems more pertinent for 

applications. We ask questions hke as a function of 𝑛, how many edges are needed to make 

a graph almost surely connected?’ In Model A we would say, “as a function of 𝑛, what edge 

probability is needed to make a graph almost surely connected?” Unfortunately, calculations 

needed to answer such questions are messier in Model B than in Model A. 

Fortunately, Model B is accurately described by Model A when 𝑛 is large and 𝑝 = 𝑚/ (
𝑛
2

), 

because the actual number of edges generated in Model A is almost always very close to the 

resulting expectation 𝑚. The correspondence is valid for most properties of interest. The 

proof of this requires detailed use of the binomial distribution for the number of edges. A 

graph property 𝑄 is convex if 𝐺 satisfies 𝑄 whenever 𝐹       𝐺   𝐻 and 𝐹, 𝐻 satisfy 𝑄. 

 

Key words: partition , probability , standard deviation , threshold ,  composition, binomial 

distribution. 

 

INTRODUCTION 

Theorem. (Bollobás [1985, p34‐35]) If 𝑄 is convex and 𝑝(1 − 𝑝) (
𝑛
2

) → ∞, then almost every 

𝐺𝑝 satisfies 𝑄 if and only if, for every fixed 𝑥, almost 

every 𝐺𝑚 satisfies 𝑄, where 𝑚 = ⌊𝑝 (
𝑛
2

) + 𝑥 [𝑝(1 − 𝑝) (
𝑛
2

)]
1/2

⌋.  

 

 

Theorem. (Gilbert ) When 𝑝 is constait, almost every 𝐺𝑝 is connected. 

Proof. We can make 𝐺 disconnected by picking a vertex partition into two sets and forbidding 

edges between the two sets. Occurrence of edges within the sets is irrelevant. We bound the 

Rrobability 𝑞𝑛 that 𝐺𝑝 is disconnected by summing 𝑃([𝑆, 𝑆] = ∅) over aU bipartitions 𝑆, 𝑆. 

Graphs with many components are counted many times. When |𝑆1 = 𝑘, there are 𝑘(𝑛 − 𝑘) 

possible edges in [𝑆, 𝑆]. Each has probability 1 − 𝑝 of not appearing, independently, so 

𝑃([𝑆, 𝑆] = ∅) = (1 − 𝑝)𝑘(𝑛−𝑘). Considering all 𝑆 generates each partition from each side, so 
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𝑞𝑛 ≤
1

2
∑ (

𝑛
𝑘

) (1 − 𝑝)𝑘(𝑛−𝑘)𝑛−1
𝑘=1  . 

This formula is symmetric in 𝑘 and 𝑛 − 𝑘; hence 𝑞𝑛 is bounded by  ∑ (
𝑛
𝑘

) 
⌊𝑛/2⌋
𝑘=1  (1 − 𝑝)𝑘(𝑛−𝑘). 

We loosen the bound to simpli6𝑟 it. Using (
𝑛
𝑘

) < 𝑛𝑘  and (1 − 𝑝)𝑛−𝑘 ≤ (1 − 𝑝)𝑛/2 (for 𝑘 ≤

𝑛/2) yields 𝑞𝑛 < ∑ (𝑛(1 − 𝑝)𝑛/2)
𝑘⌊𝑛/2⌋

𝑘=1 . For large enough 𝑛, we have 𝑛(1 − 𝑝)𝑛/2 < 1. This  

makes our bound the initial portion of a convergent geometric series. We obtain 𝑞𝑛 <

𝑥/(1 − 𝑥) , where 𝑥a = 𝑛(1 − 𝑝)𝑛/2. Since 𝑛(1 − 𝑝)𝑛/2 → 0 when 𝑝 is constant, our bound 

on 𝑞𝑛,∙ approaches 0 as 𝑛 → ∞. 

 

We avoid struggling with probability formulas by introducing integer valued random variables 

and techniques involving expectation. If 𝑋 is a nonnegative random variable such that 𝑋 = 0 

when G𝑝 has property 𝑄, then 𝐸(𝑋) → 0 implies that almog every 𝐺𝑝 satisfies 𝑄. This is a 

special case of the following lemma. We prove it only for integer variables, but it also holds 

for continuous variables. 

 

Lemma. (Markov’s Inequality) If 𝑋 takes only nonnegative values, then 𝑃(𝑋 ≥ 𝑡) ≤ 𝐸(𝑋)/𝑡. 

In particular, if 𝑋 is integer‐valued, then 𝐸(𝑋) → 0 

implies 𝑃(𝑋 = 0) → 1. 

Proof. 𝐸(𝑋) = ∑ 𝑘 
𝑘≥0 𝑝𝑘 ≥ ∑ 𝑘 

𝑘≥𝑡 𝑝𝑘 ≥ 𝑡 ∑ 𝑝𝑘
 
𝑘≥𝑡 = 𝑡𝑃(𝑋 ≥ 𝑡〉. 

                                    For connectedness, we can define 𝑋(𝐺𝑝) by 𝑋 − − − 1 if 𝐺 is 

disconnected and 𝑋 = 0 otherwise. The expectation ofan indicator vanable is the probability 

that it equals 1. We proved 𝑃(𝑋 = 1) → 0 (when 𝑝 is constant) to prove that almost every 𝐺𝑝 

is connected. With a different random variable we can simplify the proof and strengthen the 

result. We still want 𝐺 to satisfy 𝑄 if 𝑋 = 0 (in order to apply Markov’s Inequality), but we 

don’t need (𝑋 = 0) ⇔(𝐺 satisfies 𝑄). We use a sum 𝑋 ofmany indicator variables, such that 

𝐺 satisfies 𝑄 if 𝑋 = 0. The linearity of expectation and convenience of 𝐸(𝑋𝑖) = 𝑃(𝑋𝑖 = 1〉 for 

the indicator variables simplify the task of proving 𝐸(𝑋) → 0. 

 

Theorem. If 𝑝 is constant, then almost every 𝐺𝑝 has diameter 2 (and hence is connected). 
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Proof  Let 𝑋(𝐺𝑝) be the number of unordered vertex pairs with no common neighbor. If there 

are none, then 𝐺𝑡, is connected and has diameter 2. By Markov’s Inequality, we need only 

show 𝐸(𝑋) → 0. We express 𝑋 as the sum of (
𝑛
2

) indicator variables 𝑋𝑖.𝑗 , one for each vertex 

pair {𝑣𝑖 , 𝑣𝑗}, where 𝑋𝑖.𝑗 = 1 if and only if 𝑣𝑗 , 𝑣𝑗 have no common neighbor. 

When 𝑋𝑖\𝑗 = 1, the 𝑛 − 2 other vertices fail to have edges to both ofthese, so 

𝑃(𝑋𝑖.𝑗 = 1) = (1 − 𝑝2)𝑛−2 and 𝐸(𝑋) = (
𝑛
2

) (1 − 𝑝2)𝑛−2. When 𝑝 is fixed, 𝐸(𝑋) → 0, and 

hence almost every 𝐺𝑝 has diameter 2. 

 

The intuition behind this argument, made precise by Markov’s Inequality, is that if we expect 

almost no bad pairs, then almost every graph has none. The summation disappears, and for 

the limit we need only know that (1 − 𝑝2)𝑛−2 tends to 0 faster than any polynomial function 

of 𝑛. 

 

THRESHOLD FUNCTIONS 

Roughly speaking, random graphs with constant edge probability are connected because they 

have many more edges than needed to be connected. To improve  above Theorem , we want 

to make 𝑝(𝑛) as small as possible to have almost every 𝐺𝑝 connected. We need the notion of 

a threshold probability function. By the relationship between Model A and Model B, a 

threshold edge probability also yields a threshold number of edges. 

 

Definition. A monotone property is a graph property preserved by addìtion of edges. A 

threshold probability function for a monotone property 𝑄 is a function 𝑡(𝑛) such that 

𝑝(𝑛)/𝑡(𝑛) → 0 implies that almost no 𝐺𝑝 satisfies 𝑄, and 𝑝(𝑛)/𝑡(𝑛) → ∞ implies that almost 

every 𝐺𝑝 satisfies 𝑄. Threshold edge fimction is defined similarly for Model B. 

 

Definition. The 𝑟th moment of 𝑋 is the expectation of 𝑋𝑟. The variance of 𝑋, wntten 𝑉𝑎𝑟(𝑋) , 

is the quantity 𝐸 [(𝑋 − 𝐸(𝑋))
2

]. The standard deviation of 𝑋 is the square root of 𝑉𝑎𝑟(𝑋) . 

  

Lemma. ( 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 𝑀𝑒𝑡ℎ𝑜𝑑)     If 𝑋  is a random  variable  
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𝑃(𝑋 = 0) ≤
𝐸(𝑋2)−𝐸(X)2

𝐸(𝑋)2
. Inparticular, 𝑃(𝑋 = 0) → 0  when 

𝐸(𝑋2)

𝐸(𝑋)2
→ 1 .  

 

 Proof. Applied to the variable (𝑋 − 𝐸(𝑋))
2

 and the value 𝑡2, Markov’s Inequality yields 

𝑃 [(𝑋 − 𝐸(𝑋))
2

≥ 𝑡2] ≤ 𝐸 [(𝑋 − 𝐸(𝑋))
2

] /𝑡2.We rewńte this as 

 𝑃[|𝑋 − 𝐸(𝑋)1 ≥ 𝑡] ≤ 𝑉𝑎𝑟(𝑋)/t2 (Chebyshev’s Inequality). Since 

𝐸 [(𝑋 − 𝐸(𝑋))
2

] = 𝐸 [𝑋2 − 2𝑋𝐸(𝑋) + (𝐸(𝑋))
2

] = 𝐸(𝑋2) − (𝐸(𝑋))
2

, 

Chebyshev’s Inequality becomes �̇�[|𝑋 − 𝐸(𝑋)| ≥ 𝑡] ≤ (𝐸(𝑋2) − 𝐸(𝑋)2)/𝑡2. Since 𝑋 = 0 

only when |𝑋 − 𝐸(𝑋)1 ≥ 𝐸(𝑋) , setting 𝑡 = 𝐸(𝑋) completes the proof ∙          

 

 Intuitively,  if the mean grows and the standard deviation grows more slowly, then all the 

probability is pulled away from 0, and 𝑃(𝑋 = 0) → 0 results. We illustrate the method by 

considenng the disappearance of isolated vertices. Since a connected graph has no isolated 

vertices, a threshold for connectedness must be at least as large as a threshold for 

disappearance ofisolated vertices. The computations for the latter are simpler, because we 

can express this condition using a sum of identically distributed indicator variables with  

easily computed expectations. In fact, both properties have the same threshold, since it 

happens that at the threshold almost every graph consists of one huge component plus 

isolated vertices. 
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