Study of seasonal accumulation of cadmium in estuarine clam, *Meretrix meretrix* (Linnaeus)

Sanjay Kumbhar
Department of Zoology, Fergusson College, Pune, Maharashtra.

Abstract: Bhatye estuary Ratnagiri is cradle bed for estuarine clams like *M. meretrix*. It is source of livelihood for local fishermen. In the present study, seasonal concentration of cadmium in water, sediment and soft tissues of the estuarine clam, *M. meretrix* was analyzed. Estuarine water parameters varied according to season. Cadmium was below detectable level in summer while significant in months of monsoon and winter. It may be due to rainy freshets, carrying considerable load of cadmium which enriched sediment and accumulated in sediment fauna like clams. Cadmium content in gill, mantle, heaotopancreas and foot varied according to season. Gills were main depositories of cadmium. Cadmium content was found in ascending order of foot < gonad < mantle < gill in summer and winter. In monsoon cadmium content was present in ascending order of – gill < mantle < foot < heaotopancreas < gonads. Cadmium content in gill, mantle, heaotopancreas, foot varied according to season. In gonad cadmium content varied with breeding season.

Key words – Estuarine clams, *Meretrix meretrix*, Bhatye estuary, Cadmium, Bioaccumulation.

Introduction

Of all the estuaries along the West coast of India, Bhatye estuary is one of the most important productive estuary. It is cradle bed for variety of edible biota. Clams are abundantly found and widely consumed by local population. Considering its abundance, nutritional and shell value, ability of holding heavy metal load and depuration, it is used to assess the intensity of cadmium pollution in Bhatye estuary. The *M. meretrix* fishery lasts for about 7 – 10 months. During lean period of open sea fishery, it provides protein rich food and livelihood to local population. As local population is preferring *M. meretrix* as a cheap source of food, it is returning back to consumers. Bhatye Estuary, Ratnagiri is one of the major estuary along the west coast of India. Ratnagiri city is situated along the bank of Bhatye Estuary. The urbanization and industrialization of the city is very rapid and alarming. The urban and industrial development is deficient of proper waste water treatment. Untreated water is causing threat to marine environment. Estuarine water becomes polluted with different pollutants released through effluents and sewage. Concentration of heavy metals in estuarine environment is alarming.

Many workers have observed seasonal variations of cadmium in marine animals (Fox and Ramage (1930), Laxman (1988). Bioaccumulation of cadmium in the estuarine organism has been the subject of concern in the past 30 years. Geochemistry of cadmium has been discussed by Eaton and Boy et al. It is well established that although concentration of cadmium in surface water is negligible it increases many fold in sediments and still higher in marine biota. The concentration of heavy metals may exceed the recommended threshold limit and pose a risk to humans and marine ecosystem (El-Gendy 2003). Many workers have been observed seasonal variations in heavy metal load in water, sediment and animals’ bodies (Joseph and Shrivastav, 1992, Hamad Alyahya et al., 2011).

A lot of work has been done on heavy metal pollution in marine ecosystem, but little on estuarine clams perhaps there have been very few publications on bioaccumulation of cadmium in estuarine clams. In the present study, the seasonal estuarine water parameters like temperature, rainfall, salinity, pH and dissolved oxygen studied. Seasonal accumulation of cadmium in sediment and bioaccumulation of cadmium in different soft tissues of cadmium in *M. meretrix* has been studied.
Material and Methods

1. Study area – Bhatye estuary, Ratnagiri, Maharashtra.

Satellite image showing Bhatye estuary, Ratnagiri.
(Source: http/www.mapIndia.com/India/maharashtra/ratnagiri)

Bhatye estuary, Ratnagiri, Maharashtra is situated between 73°15’ East and 16°51’ north. It is formed due to merging of Kajali river in to Arabian sea near Ratnagiri. It has water spread of 2820 hectares and its mouth covers about 18 hectares. Its perennial opening permits an ideal estuarine zone for local fishermen.

2. Sampling and analysis:

Estuarine water samples were collected by dipping plastic jar below 30 cm to avoid floating water. It is emptied in previously cleaned and deionised cans. The water samples were filtered with 0.45 µm membrane filter paper.

Sedimentary samples were collected from estuary with the help of local fishermen. Oven dried sediment samples were grinded and passed through 80 mesh size. About 20gm prepared sample was digested with 100ml of 4N HNO₃ for 4 hours cooled and filtered. This acid extract was digester with deionised distilled water.

Clams were collected with the help of local fishermen. Adult clams with moderate size were selected and brought to the laboratory. Shells were brushed to clean fouling biomass. The clams were dissected and various tissues like gill, mantle, hepatopancreas, foot, gonads were removed and blotted by filter paper. They were dried in an oven at 100°C (±5°C) until a constant weight was obtained. Tissues were powdered and over dried tissue powder was used for analysis. 100mg tissue powder was digested with 10ml Nitric acid and Perchloric acid mixture (Lithor, 1975) till the clean solution was obtained. The samples were cooled and filtered. The filtrate was diluted with HCl and made to 50ml with water.

The prepared water, sediment and tissue samples were analysed for the detection of Cadmium using Atomic Adsorption Spectrophotometer (Perkin-Elmer Model, 3030, U.S.A.).

Results and discussion

Table 1. The water parameters of Bhatye Estuary, Ratnagiri (2017 – 18).

<table>
<thead>
<tr>
<th>Season</th>
<th>Surface Water Temperature.</th>
<th>Rainfall (mm)</th>
<th>Salinity (mg/l)</th>
<th>pH</th>
<th>Dissolved Oxygen (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>Avg- 26.9</td>
<td>-</td>
<td>35.2</td>
<td>8.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Monsoon</td>
<td>26.1</td>
<td>34.39</td>
<td>5.2</td>
<td>7.29</td>
<td>5.0</td>
</tr>
<tr>
<td>Winter</td>
<td>25.5</td>
<td>5.2</td>
<td>30.36</td>
<td>8.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>
In the present study average surface water temperature was minimum in winter. The maximum average surface water temperature was recorded in summer. At Ratnagiri the rainfall was maximum in the month of July (34.39) but later on it decreased. There was scanty rainfall (0.006) in winter and no rainfall in summer. Maximum average salinity was recorded in summer (35.2). It was 30.36mg/l in winter. Minimum average salinity was recorded in monsoon season (5.2). The bioaccumulation and toxicity of metals increases with increase in temperature. The absorption and release of metals can also depend on temperature. This was established for mercury, methyl mercury and phenyl acetate in rainbow trout, Salmo guardeneri. (McLeod, 1973).

Salinity is key trigger of other environmental factors. It depends on certain factors as local precipitation, water influx, mixing of fresh water with sea water and evaporation. Hence, salinity is more labile parameter than any other estuarine water parameter. In the present study it varied according to season. It was maximum (35.2) in summer and minimum (5.2) in monsoon.

pH fluctuations were observed in all seasons. The average pH was 8.1, 7.2 and 8.5 in summer, monsoon and winter respectively. The average dissolved oxygen was 3.5, 5.0 and 4.3 in summer, monsoon and winter respectively during monsoon estuarine water showed maximum saturation of oxygen (5.0). It was minimum (3.5) in summer.

The hydronomics of an estuary in general is very complex because of the interdependable variables like tide, river discharge, and density difference in the water masses in the estuary, salinity and temperature. Estuarine water parameters are highly labile.

Table 2: Distribution of cadmium in Bhatye estuarine water and sediment (2017 – 18).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Period</th>
<th>Cadmium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>April</td>
<td>B.D.L.</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>0.005µg/l</td>
</tr>
<tr>
<td></td>
<td>December</td>
<td>0.001µg/l</td>
</tr>
<tr>
<td>Sediment</td>
<td>April</td>
<td>0.33µg/g</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>0.41 µg/g</td>
</tr>
<tr>
<td></td>
<td>December</td>
<td>0.39 µg/g</td>
</tr>
</tbody>
</table>

During summer cadmium concentration in water was below detectable level. In monsoon and winter average concentration of cadmium was 0.005 and 0.001 µg/l respectively. Cadmium level was increased slightly in monsoon followed by winter and summer. Maximum accumulation of cadmium was during the month of July. Philips (1976) proposed similar conclusion with Zinc, Cadmium, Lead and Copper. Fowler and Oregioni (1976) suggested that seasonal maximum concentration appeared in the spring was due to high water run-off which increased the amount of available metals. At Ratnagiri, heavy rainfall is noted in monsoon (34.39 mm/day). Rainy freshets brought heavy load of soil that impregnated with heavy metals. During summer, monsoon and winter average Cadmium concentrations of estuarine sediment were 0.33, 0.41 and 0.39 µg/g dry weight respectively. Cadmium level in sediment was increased significantly in monsoon followed by winter and summer. Sediment in marine environment play important role in the concentration of heavy metals in sediments, in sediments are found considerably higher than those obtained in river water (Sharma and Pandey, 1998). The release of organic pollutants and heavy metal ions from sediment, its effect on marine organism, its adverse effects on human beings and marine animals have been well documented. (Copeland and Ayres, 1972; Larsan, 1983).
In monsoon cadmium content in gill was significant (0.47) as compared to cadmium content during summer (0.40) and winter (0.43). It also showed rapid loss of cadmium during summer and winter. Loss of metal content from gill was extremely rapid once bivalve has moved to ‘clean environment’ (Cunningham and Tripp, 1975). Gills have been identified as a primary target organ of cadmium accumulation in Fandulus heteroclitus (Kumada et al, 1987).

Mantle showed maximum concentration of cadmium in monsoon (0.44) and minimum (0.35) in winter. Rapid elimination may be facilitated by diapedesis of metal laden amoebocytes or by the direct elimination of metal laden amoebocytes from the gill and mantle. In mantle tissue metal ion concentration may increase directly from endocytosis or from transportation of metal ions by amoebocytes. Due to its high capacity of metal accumulation damage was severe, but loss of metal from mantle to shell is very rapid. Due to this rapid loss mantle of M. meretrix might have showed comparatively less concentration of cadmium as compared to other soft target tissue. Two major mechanisms involve in loss of metal from mantle are – diapedesis and production of shell. Mantle is primary organ in shell production (Galtsoff, 1964).

Hepatopancreas showed maximum concentration of cadmium in monsoon (0.26) and minimum (0.21) in summer. Loss of cadmium was rapid. Hepatopancreas might have eliminated heavy metals through feces (George et al, 1977) or by metal complexion with food material which are phagocytosed by wandering amoebocytes and transported from the digestive tract to the blood (Adami et al, 1997).

Foot showed less cadmium accumulation than gill, mante and female gonad. Cadmium accumulation was 9.27, 0.28 and 0.27 in summer, monsoon and winter respectively. It showed comparatively less variance in seasonal bioaccumulation.

Gonad accumulated 0.33, 0.17 and 0.24 in summer, monsoon and winter respectively. Gonad is having ability to concentrate large amount of heavy metals. Many workers have provided definitive evidences establishing a gamete-metal interaction (Greig et al, 1975). Heavy metals could associate with connective tissue or nutritive cells of gonad rather than with the gametes. So that it might be possible that accumulation may have no relationship with spawning season. In the present study it was observed that in M. meretrix cadmium load in gonad is related to spawning season. Cadmium content was found in ascending order of hepatopancreas < foot < gonad < mantle < gill in summer and winter, while in the monsoon accumulation order was gonad < foot < hepatopancreas < mantle < gill.

Conclusion

The present study gives detailed account of seasonal water parameters of Bhatye estuary, seasonal accumulation of cadmium in water, sediments and different target organs of estuarine clam, M. meretrix. Accumulation of cadmium in soft tissue was high in monsoon and low in summer. Gills accumulate higher concentration of cadmium while lower cadmium content was found in hepatopancreas. By analyzing concentration of cadmium in estuarine water, sediment and various soft tissue of estuarine clam, M. meretrix, intensity and extent of cadmium pollution can be determined. Here M. meretrix acted as an ideal experimental estuarine animal and good bioindicator. Estuarine clams are largely used as food and they become an important pathway for the metal back to
man. From the public health point of view, the cadmium concentration in all target tissues was below prescribed limit set by various organizations and authorities, but for daily consumers it may not be safe due to bioconcentration ability of cadmium in vital tissues and organs.

Acknowledgement:
The author gratefully acknowledges Dr. D. V Mule, Ret. Prof., Dept. of Zoology Shivaji University Kolhapur for his immense and valuable guidance.

References.

