
© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004612 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 818

Secondary Memory Management in

Wireless Sensor Network

J.David Sukeerthi Kumar1 , N Ramadevi2
1Asst Prof in CSE Dept, Santhiram Engineering College, AP, INDIA
1Asst Prof in CSE Dept, Santhiram Engineering College, AP, INDIA

Abstract: This paper provides a survey on Importance of Secondary Memory management in Wireless Sensor Network

(WSN) Operating Systems (OSs) .Sensor nodes may also have a storage unit or debugging unit. The storage unit is an external

memory device that works as a secondary memory, keeping a data log from an energy perspective. In recent years, WSNs have

received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home

automation, and environmental monitoring. A WSN is a huge dynamic network in this aspect a severe environmental

circumstances and low power of battery nodes might be die. Furthermore, a WSN is composed of limited memory and

computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace

sensor nodes after deployment, therefore a fundamental objective is to optimize the sensor nodes life time. These

characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates

from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to

point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN

applications.

Keywords: Wireless Sensor Network, Secondary Memory management, TinyOS, Dynamic Memory Location

1. INTRODUCTION

A sensor node, also known as a mote (chiefly in North

America), is a node in a sensor network that is capable of

performing some processing, gathering sensory

information and communicating with other connected

nodes in the network. A mote is a node but a node is not

always a mote. Infrastructural support for WSN

applications in the form of operating systems is becoming

increasingly important. It bridges the gap between

hardware simplicity and application complexity, and it

plays a central role in building scalable distributed

applications that are efficient and reliable. One of the

important OS design issues which requires lot more

attention is memory management in WSN[4].Memory in

current sensor nodes consists of: RAM (for fast data

storage), internal flash (for code storage), EEPROM (for

data storage), and external flash which is required for data

persistence. Commonly used memory management

techniques are static memory allocation & dynamic

memory allocation. Earlier, very little or no support used

to be provided for managing the memory assuming that

only single application runs on the sensor node.

————————————————

But with the emergence of new application domains for

WSNs which support real time traffic, multithreaded, multi

core designs, multimedia streams of data for transfer, these

WSNs provide the mechanism for concurrent execution of

multiple threads [4]. Since the memory is one of the

Constrained resources in case of WSN, it becomes a

challenging task for applying these memory management

techniques efficiently to various processes & threads with

real time traffic.

2. COMPONENTS OF SENSOR NODES

The main components of a sensor node

are a microcontroller, transceiver, external memory, power

source and one or more sensors.

Fig 1.Block Diagram of Sensor node

http://www.jetir.org/
http://en.wikipedia.org/wiki/North_America
http://en.wikipedia.org/wiki/North_America
http://en.wikipedia.org/wiki/Sensor_network
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Electric_power
http://en.wikipedia.org/wiki/Sensors

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004612 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 819

Main components of a WSN node Controller

Communication device(s) Sensors/actuators Memory

Power supply.

CONTROLLER: The controller performs tasks, processes

data and controls the functionality of other components in

the sensor node.

MAIN OPTIONS Microcontroller – general purpose

processor, optimized for embedded applications, low

power consumption DSPs – optimized for signal

processing tasks, not suitable here

FPGAs – may be good for testing ASICs – only when peak

performance is needed, no flexibility

TASKS Execution of (time sensitive) tasks Control of

communication protocols Execution and control of the

primary application program Energy management multiple

operation modes (active, idle, listen, sleep,)

COMMUNICATION DEVICE(S)

Sensor nodes often make use of ISM band, which gives free

radio, spectrum allocation and global availability. The

possible choices of wireless transmission media are radio

frequency (RF), optical communication (laser) and infrared.

Lasers require less energy, but need line-of-sight for

communication and are sensitive to atmospheric conditions.

Infrared, like lasers, needs no antenna but it is limited in its

broadcasting capacity. Radio frequency-based

communication is the most relevant that fits most of the

WSN applications. WSNs tend to use license-free

communication frequencies: 173, 433, 868, and 915 MHz;

and 2.4 GHz. The functionality of both transmitter and

receiver are combined into a single device known as a

transceiver. Transceivers often lack unique identifiers. The

operational states are transmit, receive, idle, and sleep.

Current generation transceivers have built-in state machines

that perform some operations automatically.

Most transceivers operating in idle mode have a power

consumption almost equal to the power consumed in receive

mode.[6] Thus, it is better to completely shut down the

transceiver rather than leave it in the idle mode when it is

not transmitting or receiving. A significant amount of power

is consumed when switching from sleep mode to transmit

mode in order to transmit a packet.

TRANSCEIVER STATES

TRANSCEIVERS CAN BE PUT INTO DIFFERENT

OPERATIONAL STATES, TYPICALLY:

• Transmit

• Receive

• Idle – ready to receive, but not doing so

SOME FUNCTIONS IN HARDWARE CAN BE SWITCHED

OFF, REDUCING ENERGY CONSUMPTION A LITTLE

• Sleep – significant parts of the transceiver are switched

off • Not able to immediately receive something

• Recovery time and startup energy to leave sleep state can

be significant

EXTERNAL MEMORY

Sensor nodes may also have a storage unit or debugging

unit. The storage unit is an external memory device that

works as a secondary memory, keeping a data log from an

energy perspective, the most relevant kinds of memory are

the on-chip memory of a microcontroller and Flash

memory—off-chip RAM is rarely, if ever, used. Flash

memories are used due to their cost and storage capacity.

http://www.jetir.org/
http://en.wikipedia.org/wiki/ISM_band
http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Optical_communication
http://en.wikipedia.org/wiki/Optical_communication
http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Line-of-sight_propagation
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Broadcasting
http://en.wikipedia.org/wiki/MHz
http://en.wikipedia.org/wiki/GHz
http://en.wikipedia.org/wiki/Transmitter
http://en.wikipedia.org/wiki/Receiver_(radio)
http://en.wikipedia.org/wiki/Transceiver
http://en.wikipedia.org/wiki/State_machines
http://en.wikipedia.org/wiki/State_machines
http://en.wikipedia.org/wiki/State_machines
http://en.wikipedia.org/wiki/Sensor_node#cite_note-6
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/RAM

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004612 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 820

Memory requirements are very much application

dependent. Two categories of memory based on the

purpose of storage are: user memory used for storing

application related or personal data, and program

memory used for programming the device. Program

memory also contains identification data of the device if

present.

POWER SOURCE

A wireless sensor node is a popular solution when it is

difficult or impossible to run a mains supply to the

sensor node. However, since the wireless sensor node

is often placed in a hard-to-reach location, changing

the battery regularly can be costly and inconvenient. An

important aspect in the development of a wireless sensor

node is ensuring that there is always adequate energy

available to power the system. The sensor node

consumes power for sensing, communicating and data

processing. More energy is required for data

communication than any other process. The energy cost

of transmitting 1 Kb a distance of 100 metres (330 ft)

is approximately the same as that used for the execution

of 3 million instructions by a 100 million instructions

per second/W processor. Power is stored either in

batteries or capacitors. Batteries, both rechargeable and

non-rechargeable, are the main source of power supply

for sensor nodes. They are also classified according to

electrochemical material used for the electrodes such as

NiCd (nickel-cadmium), NiZn(nickel-zinc), NiMH

(nickel-metal hydride), and lithium-ion. Current sensors

are able to renew their energy from solar sources,

temperature differences, or vibration. Two power

saving policies used are Dynamic Power

Management (DPM) and Dynamic Voltage Scaling

location, changing the battery regularly can be costly

and inconvenient. An important aspect in the

development of a wireless sensor node is ensuring that

there is always adequate energy available to power the

system. The sensor node consumes power for sensing,

communicating and data processing. More energy is

required for data communication than any other process.

The energy cost of transmitting 1 Kb a distance of 100

metres (330 ft) is approximately the same as that used

for the execution of 3 million instructions by a 100

million instructions per second/W processor. Power is

stored either in batteries or capacitors. Batteries, both

rechargeable and non-rechargeable, are the main source

of power supply for sensor nodes. They are also

classified according to electrochemical material used for

the electrodes such as NiCd (nickel-cadmium),

NiZn(nickel-zinc), NiMH (nickel-metal hydride), and

lithium-ion. Current sensors are able to renew their

energy from solar sources, temperature differences, or

vibration. Two power saving policies used are

Dynamic Power Management (DPM) and Dynamic

Voltage Scaling (DVS).[7] DPM conserves power by

shutting down parts of the sensor node which are not

currently used or active. A DVS scheme varies the power

levels within the sensor node depending on the non-

deterministic workload. By varying the voltage along with

the frequency, it is possible to obtain quadratic reduction in

power consumption.

Table 1: Energy per volume (Joule per cubic centimeter):

Table 2. Energy scavenging – overview

SENSORS

Sensors are hardware devices that produce a measurable

response to a change in a physical condition like temperature

or pressure. Sensors measure physical data of the parameter

to be monitored. The continual analog signal produced by

the sensors is digitized by an analog-to-digital converter and

sent to controllers for further processing. A sensor node

should be small in size, consume extremely low energy,

operate in high volumetric densities, be autonomous and

operate unattended, and be adaptive to the environment. As

wireless sensor nodes are typically very small electronic

devices, they can only be equipped with a limited power

source of less than 0.5-2 ampere-hour and 1.2-3.7 volts.

Sensors are classified into three categories: passive, omni-

directional sensors; passive, narrow-beam sensors; and

active sensors. Passive sensors sense the data without

actually manipulating the environment by active probing.

They are self powered; that is, energy is needed only to

amplify their analog signal. Active sensors actively probe

the environment, for example, a sonar or radar sensor, and

they require continuous energy from a power source.

Narrow-beam sensors have a well-defined notion of

direction of measurement, similar to a camera. Omni-

directional sensors have no notion of direction involved in

their measurements.

The overall theoretical work on WSNs works with passive,

omni- directional sensors. Each sensor node has a certain

area of coverage for which it can reliably and accurately

report the particular quantity that it is observing. Several

sources of power consumption in sensors are: signal

sampling and conversion of physical signals to electrical

ones, signal conditioning, and analog-to-digital conversion.

Spatial density of sensor nodes in the field may be as high as

http://www.jetir.org/
http://en.wikipedia.org/wiki/Power_consumption
http://en.wikipedia.org/wiki/Power_consumption
http://en.wikipedia.org/wiki/Nickel-cadmium_battery
http://en.wikipedia.org/wiki/Nickel-zinc_battery
http://en.wikipedia.org/wiki/Nickel-metal_hydride_battery
http://en.wikipedia.org/wiki/Nickel-metal_hydride_battery
http://en.wikipedia.org/wiki/Lithium-ion_battery
http://en.wikipedia.org/wiki/Solar_energy
http://en.wikipedia.org/w/index.php?title=Dynamic_Power_Management&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Dynamic_Power_Management&action=edit&redlink=1
http://en.wikipedia.org/wiki/Vibration_powered_generator
http://en.wikipedia.org/w/index.php?title=Dynamic_Power_Management&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Dynamic_Power_Management&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Dynamic_Power_Management&action=edit&redlink=1
http://en.wikipedia.org/wiki/Dynamic_Voltage_Scaling
http://en.wikipedia.org/wiki/Dynamic_Voltage_Scaling
http://en.wikipedia.org/wiki/Nickel-cadmium_battery
http://en.wikipedia.org/wiki/Nickel-zinc_battery
http://en.wikipedia.org/wiki/Nickel-metal_hydride_battery
http://en.wikipedia.org/wiki/Lithium-ion_battery

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004612 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 821

20 nodes per cubic meter.

3. COMPARATIVE ANALYSIS

 Due to the multi-threaded semantics, every

Mantis program must have stack space

allocated from the system heap, and locking

mechanisms must be used to achieve mutual

exclusion of shared variables. In contrast,

Contiki uses an event based scheduler without

preemption, thus avoiding allocation of multiple

stacks and locking mechanisms. Preemptive

multi-threading is provided by a library that can

be linked with programs that explicitly require

it.

 Contiki’s event kernel is significantly larger

than that of TinyOS because of the different

services provided. While the TinyOS event

kernel only provides a FIFO event queue

scheduler, the Contiki kernel supports both

FIFO events and poll handlers with priorities.

 The experimental results show that MANTIS is

more predictable than TinyOS. Specifically, the

packet forwarding task execution time in

MANTIS has a low variation and is

independent of other activity such as the

sensing task. Thus, MANTIS would be

preferable in situations that need deterministic

and timely processing. However, as the

experiments show, the MANTIS system is not

as power-efficient as TinyOS. Thus, TinyOS

would seem preferable if energy consumption is

deemed to be of primary importance.

 The dynamic loading mechanism of LiteOS

follows the line of several previous efforts that

did not involve virtual memory such as TinyOS

(using XNP), SOS, and Contiki. Lalit Saraswat

et al Int J Engg Techsci Vol 1(1) 2010,41- 47

IJETS|www.techsciencepub.com/ijets 45

TinyOS' latency is much smaller than the others

because TinyOS' task creation simply means

assigning function pointer of a task to a ready

queue. It does not need memory to be allocated or

copied because TinyOS' scheduler is FIFO (non-

preemptive). However, MANTIS and

NanoQplus[8] operating systems requires

memory allocation of task control block.

 Nano-RK[5] supports power management

techniques and provides several power-aware

APIs for system use. While low-footprint

operating systems such as μC/OS support real-

time scheduling, they do not have support for

wireless networking.

 The Nano-RK is the most closely related work to

PAVENET OS. Nano-RK is a preemptive multitask

operating system supporting real-time tasks.

Additionally, Nano-RK is more portable than

PAVENET OS. However, Nano-RK has more context

switch overhead than PAVENET OS because Nano-

RK has to preserve CPU context by software. Nano-

RK needs several dozens of μs for task switching

whereas PAVENET OS needs several μs.

 Like PAVENET OS, MANTIS is a thread model

operating system. The difference between MANTIS

and PAVENET OS is the implementation of the

thread model. MANTIS uses time-sliced

multithreading, whereas the threading of PAVENET

OS is not time-sliced.

 TinyOS can port to PAVENET modules, but

PAVENET OS cannot port to MICA2[3] because of

its CPU specific architecture.

DESIGN CHALLENGES OF WSN

 Typically, severely energy constrained. •

 Limited energy sources (e.g., batteries). •

 Trade-off between performance and lifetime.

 Self-organizing and self-healing. •

 Remote deployments. ˆ

 Scalable. •

 Arbitrarily large number of nodes

 Heterogeneity. •

 Devices with varied capabilities. •

 Different sensor modalities. •

 Hierarchical deployments. ̂

 Adaptability. •

 Adjust to operating conditions and changes in

application requirements.

 Security and privacy. •

 Potentially sensitive information. •

 Hostile environments.

http://www.jetir.org/
http://www.techsciencepub.com/ijets

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004612 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 822

4. MEMORY MANAGEMENT ISSUES &

CHALLENGES

There are many issues & challenges that should be

considered while designing efficient memory

management system. In this section, we will see some of

the major concerns in this area.

VIRTUAL MEMORY

Many of the sensor nodes lack or have very limited

support for the address translation (MMU). As it is

power intensive operation & sensor nodes have very

limited power & storage capabilities, it is really

challenging to provide more memory to the applications

than assigned by the physical memory. Especially the

work done in virtual memory management for WSN is

very limited.[2]

SECONDARY STORAGE MANAGEMENT

As many emerging WSN applications require more

memory, and these applications require management of

large databases & real time traffic, the need for

secondary storage increases. In these types of

applications, data must be stored in the network, and

thus storage becomes a primary resource which, in

addition to energy, determines the useful lifetime and

coverage of the network. There are only few OSs that

provide a file system to manage secondary storage. So

the scalable(distributed) file system for WSNs to manage

secondary storage has to be designed for such

applications. The collaborative storage provides more

suitability to meet the goals of storage management.

SMALL FOOTPRINT

The storage capacity available on a sensor node is in

terms of few kilobytes due to which the OS has to be

designed with a very small footprint [8]. It is a

fundamental characteristic of a sensor Operating System.

TASK SCHEDULING & RESOURCE SHARING

It provides the task environment for executing long

running application. The task scheduling can be either

event-driven or multi- threaded. Here also memory

management should be done in efficient way for memory

allocation between scheduled tasks. Another issue to be

considered is the resource sharing between executions of

multiple applications. For this, the efficient concurrency

control & memory protection mechanism should be

provided between these applications.

DYNAMIC MEMORY ALLOCATION

Data memory has been a very scarce resource in sensor

networks [2]. Thus, its efficient utilization is necessary.

Allocation of a memory to the dynamic data structures

becomes a challenging task on the sensor node as the

memory requirement varies depending on the size of the

data structure. WSN applications with increasing

application domains require efficient dynamic memory

allocation techniques to be designed.

REPROGRAMMING & MEMORY MANAGEMENT

Reprogramming & up-gradation of software’s on already

deployed nodes is challenging because of the fact that sensor

networks may be deployed in physically unattended

environment and often consist of few thousands of nodes.

Therefore, an already deployed sensor network must be

wirelessly reprogrammable irrespective of above problems

[2].

Reprogramming requires dynamic loading & unloading of

the software modules or individual services & proper

memory management policies like contiguous memory

allocation, de- allocating memory, and paging [3]. For these

policies to be enforced, proper APIs should be provided by

OS to support reprogramming.

5. FUTURE SCOPE

In this section, we will discuss some of the challenges where

further research work is required in this area: As new

application areas with real time traffic need more memory, the

sensor nodes with large secondary storage are required [6]. As

huge amount of data is collected & processed at the nodes, this

data has to be stored & maintained in large databases. So the

requirement of secondary memory management here is also

increased. To achieve this, much more improvement in file

system to manage the secondary storage & large databases is

required.

6. CONCLUSION

In this paper we examine Sensor node components with

various aspects and also investigate various memory

management issues and challenges in this regard examine

comparative analysis of various WSN OS. Describing Design

Challenges of WSN further investigations are required to give

stronger real time support & efficient memory management

techniques for WSNs. Much more attention is required for

resolving the problems in areas like WMSNs, integration of

WSN with cloud computing etc.

REFERENCES:

[1]. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.;

Cayirci, E. Wireless Sensor Networks: A Survey. Comput.

Netw. 2002, 38, 393- 422.

[2] http://www.comp.nus.edu.sg/~doddaven/cata.pdf

[3]. Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.;

Whitehouse, K.; Woo, A.; Gay, D.; Hill, J.; Welsh, M.;

Brewer, E.; Culler, D. Tinyos: An Operating System for

Sensor Networks; Available online:

http://dx.doi.org/10.1007/3-540-27139-2_7 (accessed on 17

April 2011).

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004612 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 823

[4]. Akyildiz, I.F.; Melodia, T.; Chowdhury, K.R. A

Survey on Wireless Multimedia Sensor Networks.

Comput. Netw. 2007, 51, 921-960.

[5]. Kim, H.; Cha, H. Multithreading Optimization

Techniques for Sensor Network Operating Systems. In

Proceedings of the 4th European Conference on Wireless

Sensor Networks, Delft, The Netherlands, January 2007;

pp. 293-308.

[6]. Klues, K.; Liang, C.J.M.; Paek, J.; Musaloiu, R.;

Levis, P.; Terzis, A.; Govindan, R. TOSThread: Thread-

Safe and Non-Invasive Preemption in TinyOS. In

Proceedings of the 7th ACM Conference on Embedded

Networked Sensor Systems, Berkeley, CA, USA, 4–6

November 2009; pp. 127-140.

[7]. Cooprider, N.; Archer, W.; Eide, E.; Gay, D.;

Regehr, J. Efficient Memory Safety for Tinyos. In

Proceedings of the 5th International Conference on

Embedded Networked Sensor Systems

(SenSys’07), New York, NY, USA, November 2007; pp.

205-218.

[8].http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber

=5462978& url=http%3A%2F%2Fieeexplore.ieee.org

ABOUT THE AUTHOR

J.David Sukeerthi Kumar , Received B.Tech degree

from Narayana Engineering college, Nellore (JNTU

Hyd), M.Tech from Rajeev Gandhi Memorial college of

Engineering and Technology (RGMCET),Nandyal

(JNTU Hyd) and persuing PhD from JNTU Anantapur.

Currently he is working as Assistant Professor in

Department of Computer Science and Engineering

Santhiram Engineering College, Nandyal.

http://www.jetir.org/

