
© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010533 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 128

An approach Towards Real Time Operating Systems

Structures for Automation Application

Dr. Kishor Madhukar Dhole

Assistant Professor, Department of Computer Science,

Seth Kesarimal Porwal College,Kamptee,Nagpur,MS,India-441001

ABSTRACT
Over the beyond 25 years, advances in semiconductor production have caused smaller and faster computers, which in turn has st imulated

the development of “smarter” laboratory gadgets which can manipulate complex networks of gadgets and method big quantities of

information speedy and reliably. As extra capability is driven right down to laboratory gadgets and personal computer systems, the

sophistication needed to control external resources, events, and records grows. In a few instances, only real time running systems

(RTOSs) can meet the time and aid constraints of such systems. Whether you write your personal software program for lab automation,

write middleware to help communicate among packages, or use off-the-shelf software, it's miles useful to recognize when a RTOS is an

appropriate platform on your software. This paper affords an overview of RTOSs, the criteria wanted for their evaluation, and examples

of standard RTOSs. Our principal motive is to allow the reader to understand simple principles of actual-time structures and to stimulate

in addition research into their unique properties inside the context of laboratory automation.

Keywords

Real-time systems laboratory automation operating systems smart gadgets, Real-time operating structures (RTOSs), Interposes

communication (IPC), multilevel queue (MLQ)

1. Introduction:
Real-time operating structures (RTOSs) are often used to

develop programs for systems with complicated time and

useful resource constraints. This state of affairs regularly

typifies laboratory automation in which one or greater

computers ought to synchronize the activities among one

or extra instruments related to time, method, or precedent

constraints. Time constraints would possibly encompass

actions including “blend for as a minimum x seconds” or

“warmness at one hundred °C for 1 min”. Process

constraints circumstance sports, for instance, “choose x

and region at y” or “rotate 30°”. In addition, precedent

constraints along with “earlier than”, “at some point of”,

“after”, and their complements add similarly complexity

to system manipulate. Fortunately, RTOSs offer the vital

capabilities to handle the demanding time, method, and

precedent constraints regularly associated with such

structures [1].

RTOSs are deterministic by way of layout, which permits

them to fulfill time limits associated with outside

occasions using a confined set of assets. Advances in

present day development tools and frameworks have

made RTOSs handier to developers of all tiers.

Developing applications for RTOSs was a activity for the

maximum skillful builders no longer handiest due to the

complexity of the utility, but additionally because of the

need to apply in-circuit emulators or very state-of-the-art

cross-improvement platforms. Advances in equipment,

languages, and frameworks, but, have made the

improvement of packages for actual-time systems less

difficult. In the following sections, we have a look at

positive important factors of RTOSs [2].This paper is

organized as follows. The next section, Characteristics of

RTOSs, gives an overview of RTOS concepts and

important traits. The segment evaluating an RTOS

presents information which can assist inside the

evaluation of RTOSs. The segment A Survey of RTOSs

affords a precise of to be had RTOSs and describes a

number of the functions for RT-Linux and Windows CE.

The final segment, Conclusion, gives recommendation on

subsequent steps.

2 Characteristics of RTOSS

There are many characterizations for “actual-time device”

and the term is often used ambiguously because real-time

structures have such differing time constraints. For

instance, a few real-time structures handiest need the

application to satisfy common time closing dates, with

small variability, whilst processing external activities.

This is probably the case whilst controlling mixing or

heating tactics or inside the case of show techniques.

Critical actual-time structures, however, have very strict

time deadlines that should be met whenever, for example,

if controlled doses of radiation have to be added to a few

samples. The software for a crucial real-time machine

should have sufficient time to procedure an external

stimulus, referred to as the response time, within a

predetermined price under all feasible instances.

Laplante’s definition of a actual-time machine captures

the salient points. “A real-time machine is one whose

correctness includes both the logical correctness of the

outputs and their timeliness.”

What distinguish actual-time structures are their time

constraints. Real-time systems are categorized as tough,

firm, or soft structures. In hard actual-time structures, the

most crucial type, failure to fulfill its time constraints will

result in gadget failure (consider a nuclear reactor

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010533 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 129

manipulate device). In firm actual-time systems, the time

constraints must be met in maximum cases, but can

tolerate missing a low range of closing dates (recollect a

food processing plant control gadget). In gentle real-time

structures, the overall performance is degraded when time

constraints aren't met but the device will now not

catastrophically fail (this is regularly the case with actual-

time animation of visual shows). Usually an “everyday”

working machine (OS), with a few actual-time

capabilities, is suitable for firm and smooth real-time

applications but RTOSs are vital for hard actual-time

structures. The desire of OS will play an critical role in

the software layout and the way any difficult time

constraints will be met [3].An OS is the software that

manages the hardware assets of a laptop and affords an

abstraction layer among the hardware and the programs to

be able to be strolling inside the device. The OS can be

taken into consideration a resource manager as nicely as it

manages get admission to to all devices inside the gadget.

Last, but no longer least, the OS is a coverage enforcer.

That is, the OS defines the guidelines of engagement

among the programs and sources. An OS is composed of

multiple software subsystems, and the core components

within the OS form its kernel. As depicted in Figures 1,

the OS gives several subsystems to manage the central

processing unit (CPU), primary reminiscence, and outside

gadgets. The OS additionally provides a software

programming interface (API), which defines the

regulations and interfaces that permit applications to OS

features and talk with the hardware and different software

programs. Most modern-day OSs aid the introduction of a

couple of threads in a manner. This allows for

improvement of complicated packages that assist

concurrency and might manage multiple asynchronous

events from external sources. A complete evaluation of

the design of contemporary OSs can be found in section

two, three, and four [5].

Figure1: OSs interface layer of abstraction between

the hardware and other applications [10].

An RTOS is an OS that supports applications that must

meet time constraints whilst providing logically correct

outcomes. RTOSs additionally offer the essential features

to guide real-time programs. They offer a deterministic

environment in which we can calculate, a priori, the

response time for the worst-case scenario. The IEEE

Portable Operating System Interface for Computer

Environments, POSIX 1003. Section Five presents a list

of basic services an RTOS need to aid. We list many of

these and discuss a few inside the context of laboratory

automation.

3. Asynchronous Input /Output (I/O):

The capacity to overlap application processing and

application initiated I/O operations. Improves application

performance and increases CPU utilization. This is

probably the case, for example, whilst the RTOS initiates

a request to a tool to start blending for 5 s, after which

actions on to creating a request to every other tool to start

heating to a hundred °C, while not having to look ahead

to the first request to be recounted or completed.

Synchronous I/O :

The capacity to guarantee return of the interface

process whilst the I/O operation is completed with

synchronous I/O. Allows a thread to dam and watch

for the processing of an I/O operation. Synchronous

I/O might be suited when control of the tool can best

be granted to 1 processor at a time, for instance, if a

robotic arm may be shared via a couple of thread.

Memory locking:

The capability to assure reminiscence house by

storing sections of a procedure that were now not

recently referenced on secondary reminiscence

devices. Allows fine grain of manipulate of which a

part of the application ought to stay in physical

memory to reduce the overhead associated with

transferring memory to disk. Memory locking might

be used to maintain in memory a thread that video

display units a essential system that requires on the

spot attention.
Semaphores:

An OS primitive that provides the ability to

synchronize the resource access by multiple

processes or threads needs semaphores.

Synchronization mechanisms are very important in

RTOSs to ensure that two threads do not try to use

the same resource simultaneously.

Shared memory:

The capacity to map not unusual physical space into

unbiased system with particular virtual space needs

shared memory. Commonly used to share statistics

among exclusive tactics or threads used in shared

memory could be utilized properly.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010533 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 130

Execution scheduling:

Ability to agenda multiple threads can be handle

using exception handling. Common scheduling

techniques include round-robin and priority-based

preemptive scheduling. Round-robin scheduling

might be used while there is a set of low criticality

duties that occur in a normal order. Preemptive

precedence scheduling is used in mission vital

structures in which one or more occasions may have

a excessive level of urgency.

Timers:

Timers enhance the capability and determinism of

the device. A system has to have at least one clock

device (device clock) to offer precise actual-time

offerings. Timers permit packages to installation

activities at predefined intervals or time.

Interposes communication (IPC):

IPC is a mechanism in which threads share data

wished for a particular utility. Common RTOS

verbal exchange strategies encompass mailboxes,
shared reminiscence, and queues.

Real-time files:

The capability to create and get right of entry to files

with deterministic performance demands for real

time files.

Real-time threads:
Real-time threads are schedulable entities of a real-time

application which have man or woman timeliness

constraints and can have collective timeliness constraints

when belonging to a runnable set of threads.In addition to

the POSIX, other basic requirements described on a

recent survey of RTOS [6] are the following:

Low overhead:

The context-switch times for threads and the OS

overhead should be minimal.

Preemptive:

The RTOS have to be capable of preempt the

presently executing thread to give the CPU to a

higher-priority thread. Again, this option is wanted

to permit an urgent event (e.g., safe temperature

passed) to preempt an activity of lower criticality.

Deterministic synchronization:

Ability for multiple threads to communicate amongst

themselves inside a predictable time requires

deterministic synchronization.

Priority levels:
The RTOS ought to provide sufficient priority ranges to

allow for powerful application implementation. This

feature is vital in allowing bendy preemptive precedence

scheduling.

Predefined latencies:

The timing of API calls has to provide anticipated

latencies. This function is helpful while technique

steps, which include adding, blending, or heating,

want to be began inside a sure quantity of time of a

previous technique step [6].The capabilities of an

RTOS are necessary, however not sufficient, to

enforce a real-time system. Whether or not an RTOS

offers the necessary functions in your device is

worthless if the underlying hardware does not

provide the essential horsepower. The CPU speed,

the reminiscence get entry to speed, and the device

get admission to pace outline the capability velocity

of the underlying hardware. However, industrial and

laboratory automation software program can present

a tremendous processing load. Therefore, you want

to make sure that the hardware is able to assisting the

tough actual-time constraints and worst-case

situation to your completely loaded gadget

regardless of the underlying RTOS. Once the

hardware is proven to be suitable to your real-time

software, then you could evaluate the features of

RTOSs [7].

Figure 2: Real Time Operating System Structure

4. Evaluating an RTOS

Whether anyone can write their own software for lab

automation, write middleware to help communicate

between packages, or use off-the-shelf software

program, it's far useful to realize a way to choose the

right RTOS for your environment. Of path, the

primary query you should always bear in mind is that

if an off-the-shelf RTOS could be well matched with

the automation software which you want to host.

Many industrial RTOSs and automation software

program builders have such compatibility lists. An

actual-time application for an embedded system will

regularly require an RTOS with a completely small

footprint and little overhead. An actual-time software

going for walks on a PC or Mac can assist more

Application

Hardware

Real Time
Operating

System Kernel

Operating
System

Envirionment

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010533 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 131

complicated RTOSs that provide additional features

and sophisticated user interfaces. Both hardware and

software picks have to be taken into consideration

collectively while designing a actual-time system.

The gadget cost, the development time, and the

danger of fulfillment will depend upon the choices

you made. One of the maximum essential standards,

regularly neglected, while evaluating a RTOS is the

supply of improvement tools which includes actual-

time symbolic debuggers and suitable programming

language aid. The use of sophisticated IDE is

common these days. IDEs provide developers with

equipment and examples to quickly develop your

software, test it, and control extraordinary revisions.

Once developers emerge as familiar with the IDE,

their productivity will increase and the capacity to

paintings in a team environment improves. Some

improvement environments permit the consumer to

increase on one platform and installation to some

other. Obviously, growing within the same platform

facilitates seize problems quicker. On the opposite
hand, growing on a larger platform will permit the

use of sophisticated equipment so one can growth

productivity [7].The choice of programming

language relies upon in component at the talents of

the developers worried and whether the language is

supported with the aid of the RTOS development

environment. Training might be essential while the

use of a brand new language, however this extra

burden can be well worth it if the language is a part

of a framework that simplifies development and

presents functions frequently vital for real-time

applications.

Open supply RTOS can also lead to higher long-term

costs because of reliance on low-level improvement

gear and notably technical people. In summary, the

entire price of possession relies upon on each up-the

front and lengthy-time period costs of royalties,

support, maintainability, schooling, and consulting

services [9].In any case, the implementation of the

POSIX functions supplied in Characteristics of

RTOSs might be a very good place to begin, due to

the fact the first aspect you want to do is to pick out

between a thread- or technique-based RTOS. In

fashionable, context-transfer overhead between

threads within the identical method is lower than

while the threads are in different procedures. You

need to don't forget the overhead related to the

exceptional functions provided and questions

consisting of “what is the overhead related to

interrupt handlers and associated interrupt processing

threads?” Other considerations are the mutual

exclusion primitives and data alternate mechanisms

used for synchronization among threads and/or

strategies. Finally, the reminiscence control and

scheduler design have an effect on the performance

of applications in an RTOS and have to also be taken

into consideration all through the evaluation of

RTOSs [10].

5. A Survey of RTOSS

There are over 30 RTOSs, which can be labeled as

open source versus industrial. Here we offer a

precise of the features of many of the top 10 RTOSs

indexed in a 2005 survey by using Embedded

System Design.The VxWorks commercial RTOS

from Wind River is the most extensively followed in

the embedded enterprise (e.g., it's far used on the

International Space Station). VxWorks become first

launched inside the early 1980s and gives a bendy

API with greater than 1800 techniques. The

development host can be Red Hat Linux, Solaris,

SuSE Linux, Windows 2000 Professional, or

Windows XP. VxWorks is available for all famous

CPU systems: x86, PowerPC, ARM, MIPS, 68K,
CPU 32, ColdFire, MCORE, Pentium, i960, SH,

SPARC, NEC V8xx, M32 R/D, RAD6000, ST 20,

and TriCore [11]. The kernel helps preemptive

precedence scheduling with 256 priority degrees and

spherical-robin scheduling. VxWorks is a

multithreading RTOS that gives deterministic

context switching and supports semaphores and

mutual exclusion with inheritance. This RTOS

additionally affords message queues and Open-well-

known Transparent IPC for high-velocity

communications among threads [12].

6. Windows CE RTOS

The Windows CE RTOS is a commercial RTOS

evolved within the overdue Nineteen Nineties by

using Microsoft. Windows CE has a small footprint

and might run in underneath a megabyte of memory.

There exist three foremost development systems

(Windows Mobile, SmartPhone, and Portable Media

Center) that allow builders to apply characteristic-

rich gear to expand packages for ×86 and different

architectures. Windows CE can have as much as 32

approaches lively with a couple of threads in each

method. The scheduler helps spherical-robin or

precedence-based preemptive scheduling with 256

priorities ranges, and makes use of the concern

inheritance protocol for managing priority inversion.

Large elements of Windows CE are available in

supply shape. Windows CE supports OS

synchronization primitives inclusive of critical

sections, mutexes, semaphores, occasions, and

message queues to permit thread to control get

admission to share sources. A precise characteristic

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010533 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 132

of Windows CE is the idea of fibers. A fiber is a unit

of execution that should be manually scheduled

through the software. A fiber is an execution unit

that runs within the context of the thread that

schedules it. A thread can agenda multiple fibers but

they're no longer preemptively scheduled. The thread

schedules a fiber by way of switching to it from

every other fiber. The going for walks fiber assumes

the identity of the thread. Fibers are beneficial in

situations where the software wishes to time table its

personal threads [13].

The most extensively followed loose, open supply

RTOS, eCos (embedded Configurable operating

machine) turned into launched in 1986. ECos

provides a graphical-configuration tool and a

command line-configuration device to customize and

adapt the RTOS to meet application-specific

requirements. This feature allows the person to set

the OS to the preferred reminiscence footprint and

overall performance requirements. Development

hosts are Windows and Linux and the supported
target processors are x86, PowerPC, ARM, MIPS,

Altera NIOS II, Calmrisc16/32, Freescale 68k

ColdFire, Fujitsu FR-V, Hitachi H8, Hitachi SuperH,

Matsushita AM3x, NEC V850, and SPARC. The

eCos kernel can be configured with the bitmap

scheduler or the multilevel queue (MLQ) scheduler.

Both schedulers assist precedence-based totally

scheduling with up to 32 priority degrees. The

bitmap scheduler is truly greater green and handiest

allows one thread consistent with priority level. The

MLQ scheduler permits a couple of threads to run at

the identical priority. First in, first out (FIFO) or

spherical-robin is used to time table threads with the

same precedence. The eCos RTOS helps OS

primitives along with mutexes, semaphores,

mailboxes, and occasions for synchronization and

communiqué between threads

[14][15].Contemporary OSs which includes Linux

and Windows XP, known as XP Embedded, also

have extensions that permit them to support real-time

packages. But these OS are simplest appropriate for

large actual-time systems due to footprint required.

On the opposite hand, there may be no need to apply

specialized equipment and there are a big number of

builders who can quickly learn how to make use of

the actual-time capabilities [16].

7. Conclusion

RTOSs has been frequently confined to embedded

systems. But greater currently, programs with real-

time necessities are being advanced for not unusual

platforms. As the need for real-time systems will

increase, you must understand the benefits and

obstacles of RTOSs so that you can make the nice

preference must be arise. When choosing a real-time

machine, one of the first matters that a person ought

to do is to discover the actual-time constraints and

categorize them as tough, company, or tender. If the

device does now not have any difficult time

constraints, then a present day OS might be

sufficient. But for a tough or firm real-time machine

need to remember the exchange-offs between the one

of a kind RTOSs and determine which one fits your

desires and your price range. Then, don't forget the

cost of possession of the RTOS, the hardware

platform, the improvement equipment, and most

importantly, if the RTOS can meet the cut-off date

constraints. Not all of the standards used for

assessment ought to have the same weight,

consequently, prioritize the most crucial functions

for the gadget.

References
1. Laplante P.A.,Real-Time Systems Design and Analysis.,(3rd

edition), Wiley, Hoboken, NJ (2004), p. xxi 505 p.
2. Tanenbaum A.S., Woodhull A.S.,Operating Systems: Design

and Implementation.
3. (3rd edition), Pearson Prentice Hall, Upper Saddle River,

NJ (2006), p. xvii,1054 p.
4. Stallings W.,Operating Systems: Internals and Design

Principles.(5th edition), Pearson Prentice Hall, Upper Saddle
River, NJ (2005), p. xiv,818 p.

5. Deitel H., Deitel P., Choffnes D,.Operating Systems.(3rd
edition), Prentice Hall (2004)

6. IEEE. Information Technology—Portable Operating System
Interface (POSLX)–Part 1: System Application: Program
Interface (API) [C Language]. 1996, ANSI/IEEE Std 1003.1.

7. Baskiyar S.,A survey of contemporary real-time operating
systems, Informatica, 29 (2005), pp. 233-240

8. Anderson, M. E. Selecting the right RTOS, a comparative
study. COSPA Knowledge Base, 2002.

9. Straumann, T. Open source real time operating systems
overview. 8th International Conference on Accelerator &
Large Experimental Physics Control Systems, San Jose,
California, 2001.

10. Stankovic J.A., Rajkumar R.,Real-time operating
systems,Real-Time Syst., 28 (2004), pp. 237-253

11. Lu, S., Halang, W. A., Gumzej, R. Towards platform
independent models ofreal time operating systems. 2nd
IEEE International Conference on Industrial Informatics,
2004.

12. Laplante P.A.,Criteria and an objective approach to selecting
commercial real-time operating systems based on published
information, Int. J. Comput. Appl., 27 (2) (2005), pp. 82-96

13. Mhatre P.N. Real time operating systems (RTOS), embedded
systems pocket Pc, embedded systems development
VxWorks, QNX, Windows
CE,PalmOS OneSmartClick.Com. http://www.onesmartclick
.com/rtos/rtos.html.Accessed November 26, 2006.

14. Real time operating systems Dedicated Systems
Encyclopedia. http://www.realtime-
info.be/encyc/buyersguide/rtos/rtosmenu.html.

15. Summary of Real-Time Improvements in Microsoft
Windows CE 3.0, Jan 2006.

http://www.jetir.org/
OneSmartClick.Com
http://www.onesmartclick.com/rtos/rtos.html
http://www.onesmartclick.com/rtos/rtos.html
http://www.realtime-info.be/encyc/buyersguide/rtos/rtosmenu.htm
http://www.realtime-info.be/encyc/buyersguide/rtos/rtosmenu.htm

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010533 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 133

http://www.microsoft.com/windows/embedded/ce/guide/f
eatures/rt30benefits.asp

16. Turley, J. Embedded systems survey: Operating systems up
for grabs. Embedded System Design 2012,
CMP,http://www.embedded.com/showArticle.jhtml?article
ID=163700590

17. Real-Time UML, Bruce Powell Douglass, Addison-Wellesley,
2018.

18. Windows CE Platform Builder documentation, Real time
Magazine, September 2019,

19. Test & Measurement World, Get a grip on performance
limits, Jan2020,
http://www.tmworld.com/articles/2001/01_grip_performa
nce.htm

20. http://www.microsoft.com/windows/embedded/ce/guide/
casestudies/gefanuc.asp

21. Mathews.Sys.Inc.,http://www.microsoft.com/windows/em
bedded/ce/guide.

http://www.jetir.org/
http://www.embedded.com/showArticle.jhtml?articleID=163700590
http://www.embedded.com/showArticle.jhtml?articleID=163700590
http://www.tmworld.com/articles/2001/01_grip_performance.htm
http://www.tmworld.com/articles/2001/01_grip_performance.htm

