L(3,1) - LABELING FOR SOME EXTENDED DUPLICATE GRAPHS

P.Indira¹, B.Selvam², K.Thirusangu³

¹Research Scholar, S.I.V.E.T College, University of Madras, Chennai, India
¹Department of Mathematics, St.Thomas College of Arts and Science, Chennai, India,
²,³Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai-600 073, India.

Abstract: In this paper, we investigate the extended duplicate graph of triangular snake graph and quadrilateral snake graph admits L(3,1) - labeling.

AMS Subject Classification: 05C78.

Keywords: Duplicate graph, Extended duplicate graph, Triangular snake graph, Quadrilateral snake graph, L(3,1) - labeling.

1. Introduction

Graph labeling is one of the most important area in graph theory. The concept of graph labeling was introduced by Rosa in 1967 [4]. For a dynamic survey of various graph labeling we refer to J.A.Gallian[3]. Griggs and Yen[5] defined L(2,1) labeling of the graph G=(V,E) where f is a function which assigns labels to every u,v∈V from the set of positive integer such that |f(u) – f(v)| ≥ 2 if d(u,v) = 1 and |f(u) – f(v) | ≥ 1 if d(u,v) = 2.

E.Sampthkumar [1] introduced the concept of duplicate graph. Thirusangu et al.[2] have introduced the concept of extended duplicate graph. G.J.Chang and D.Kuo et al., on L(d,1)-Labeling of graphs. In L(3,1)-labeling of a graph G=(V,E) where f is a function which assigns label to every u,v∈V from the set of positive integer such that |f(u)-f(v)| ≥3 if d(u,v) = 1 and |f(u) – f(v) | ≥ 1 if d(u,v) = 2. The L(3,1) labeling number, λ(G) of G is the smallest number λ such that G has an L(3,1) labeling with λ as the maximum label.

2. Preliminaries

In this section, we give the basic definitions which are relevant to this paper. Let G(V,E) be a finite, simple and undirected graph with p vertices and q edges.

Definition:2.1 Triangular snake

A triangular snake TSₘ is obtained from a path u₁, u₂, …, uₘ₊₁ by connecting uᵢ and uᵢ₊₁ to a new vertex vᵢ, for 1 ≤ i ≤ m, where ‘m’ is the number of edges of the path.
Definition: 2.2 Quadrilateral snake graph

A quadrilateral snake QS_m is obtained from a path u_1,u_2,u_3, \ldots, u_n by joining u_i and u_{i+1} to two new vertex v_i and w_i respectively and then joining v_i and w_i, $1 \leq i \leq n-1$, where ‘m’ is the number of edges of the path. In general, a quadrilateral snake has $3m+1$ vertices and $4m$ edges.

Definition: 2.3 Duplicate graph

A Simple graph G with vertex set V and edge set E. The duplicate graph of G is $DG = (V_1, E_1)$ where the vertex set $V_1 = V \cup V'$ and $V \cap V' = \emptyset$ and $h : V \rightarrow V'$ is bijective. The edge set E_1 of DG is defined as the edge $ab \in E$ iff both edges ab' and $a'b$ are in E_1.

Definition: 2.4 Extended duplicate graph of triangular snake

Let $DG = (V_1,E_1)$ be a duplicate graph of the triangular snake graph $G(V,E)$. Extended duplicate graph of triangular snake is obtained by adding the edge $v_2v'_2$ to the duplicate graph and it is denoted by $EDG(TS_m)$. Clearly it has $4m+2$ vertices and $6m+1$ edges, where ‘m’ is the number of edges.

Definition: 2.5 Extended duplicate graph of quadrilateral snake

Let $DG = (V_1,E_1)$ be a duplicate graph of the quadrilateral snake graph $G(V,E)$. Extended duplicate graph of quadrilateral snake graph is obtained by adding the edge $v_2v'_2$ to the duplicate graph and it is denoted by $EDG(QS_m)$. Clearly it has $6m+2$ vertices and $8m+1$ edges, where ‘m’ is the number of edges.
Definition : 2.6 \(L(2,1) \) – Labeling

An \(L(2,1) \) labeling or distance two labeling of a graph \(G \) is a function \(f \) from the vertex set \(V(G) \) to the set of all non-negative integers such that \(|f(x) - f(y)| \geq 2 \) if \(d(x, y) = 1 \) and \(|f(x) - f(y)| \geq 1 \) if \(d(x, y) = 2 \). The \(L(2,1) \) labeling number \(\lambda(G) \) of \(G \) is the smallest number \(k \) such that \(G \) has an \(L(2,1) \) labeling with max\{\(f(v), v \in V(G) \)\} = \(k \).

Definition : 2.7 \(L(3,1) \) – Labeling

Let \(G \) be a graph with set of vertices \(V \) and set of edges \(E \). Let \(f \) be a function \(f: V \rightarrow \mathbb{N} \), where \(f \) is an \(L(3,1) \)-labeling of \(G \) if, for all \(u, v \in V \), \(|f(u) - f(v)| \geq 3 \) if \(d(u,v) = 1 \) and \(|f(u) - f(v)| \geq 1 \) if \(d(u,v) = 2 \).

Definition : 2.8

The difference between maximum and minimum values of \(f \) for all possible \(f \) is called span of the labeling, and it is denoted by \(\lambda_{3,1}(G) \) or \(\lambda(G) \) or \(\lambda \), positive integer \(\lambda \) to be used to label a graph \(G \) by \(L(3,1) \)-labeling.

3. MAIN RESULTS

3.1: \(L(3,1) \)-LABELING FOR TRIANGULAR SNAKE GRAPH \(EDG(TS_m) \), \(m \geq 1 \)

Here, we present an algorithm and prove the existence of \(L(3,1) \)-labeling for \(EDG(TS_m) \).

Algorithm-1

Procedure - [\(L(3,1) \)-labeling for \(EDG(TS_m) \), \(m \geq 1 \)]

\(V \leftarrow \{ v_1, v_2, v_3, \ldots, v_{2m}, v_{2m+1}, v'_1, v'_2, v'_3, \ldots, v'_{2m}, v'_{2m+1} \} \)

\(E \leftarrow \{ e_1, e_2, e_3, \ldots, e_{3m}, e_{3m+1}, e'_1, e'_2, \ldots, e'_{3m} \} \)

\(v_1 \leftarrow 0, v_2 \leftarrow 7, v_3 \leftarrow 6, v_4 \leftarrow 1, v_5 \leftarrow 8 \)

\(v'_1 \leftarrow 0, v'_2 \leftarrow 3, v'_3 \leftarrow 4, v'_4 \leftarrow 1, v'_5 \leftarrow 9 \)

for \(i = 0 \) to \((m-3)/4\) do

\(v_{6+8i} \leftarrow 0; v_{7+8i} \leftarrow 2; v'_{6+8i} \leftarrow 5; v'_{6+8i} \leftarrow 3 \)

end for

for \(i=0 \) to \((m-4)/4\) do

\(v_{8+8i} \leftarrow 6; v_{9+8i} \leftarrow 9; v'_{8+8i} \leftarrow 6; v'_{9+8i} \leftarrow 10 \)

end for

for \(i=0 \) to \((m-5)/4\) do

\(v_{10+8i} \leftarrow 0; v_{11+8i} \leftarrow 1; v'_{10+8i} \leftarrow 5; v'_{11+8i} \leftarrow 4 \)

end for
for i = 0 to (m-6)/4 do
 \(v_{12+8i} \leftarrow 7; v_{13+8i} \leftarrow 10; v'_{12+8i} \leftarrow 6; v'_{13+8i} \leftarrow 11 \)
end for
end procedure

Theorem 3.1: The extended duplicate graph of triangular snake graph admits \(L(3,1) \)-labeling and its number \(\lambda(G) \) is 11.

Proof: Let \(TS_m \) be the triangular snake graph and \(EDG(TS_m) \) be the extended duplicate graph of triangular snake graph.

Define the set of vertices and edges are

\[
V(G) = \{v_1, v_2, v_3, \ldots, v_{2m}, v'_{1}, v'_{2}, v'_{3}, \ldots, v'_{2m}, v'_{2m+1}\}
\]

\[
E(G) = \{e_1, e_2, e_3, \ldots, e_{3m}, e_{3m+1}, e'_{1}, e'_{2}, \ldots, e'_{3m}\}
\]

Let \(V(G) = V_1(G) \cup V_2(G) \),

Where \(V_1 = \{ v_i / 1 \leq i \leq 2m+1 \} \)

\(V_2 = \{ v'_i / 1 \leq i \leq 2m+1 \} \)

For \(V_1 \) and \(V_2 \), we define a mapping \(f: V(G) \rightarrow \mathbb{N} \cup \{0\} \) such that \(|f(x) - f(y)| \geq 3 \) if \(d(x,y) = 1 \) and \(|f(x) - f(y)| \geq 1 \) if \(d(x,y) = 2 \).

Using algorithm 1, the vertices \(v_1, v_2, v_3, v_4, v_5, v'_{1}, v'_{2}, v'_{3}, v'_{4} \) and \(v'_{5} \) receive the labels 0, 7, 6, 1, 8, 0, 3, 4, 1 and 9 respectively;

i) \(f(v_{6+8i}) = 0 \) and \(f(v'_{6+8i}) = 5 \) for \(1 \leq i \leq (m-3)/4 \)

ii) \(f(v_{7+8i}) = 2 \) and \(f(v'_{7+8i}) = 3 \) for \(1 \leq i \leq (m-3)/4 \)

iii) \(f(v_{8+8i}) = 6 \) and \(f(v'_{8+8i}) = 6 \) for \(1 \leq i \leq (m-4)/4 \)

iv) \(f(v_{9+8i}) = 9 \) and \(f(v'_{9+8i}) = 10 \) for \(1 \leq i \leq (m-4)/4 \)

v) \(f(v_{10+8i}) = 0 \) and \(f(v'_{10+8i}) = 5 \) for \(1 \leq i \leq (m-5)/4 \)

vi) \(f(v_{11+8i}) = 1 \) and \(f(v'_{11+8i}) = 4 \) for \(1 \leq i \leq (m-5)/4 \)

vii) \(f(v_{12+8i}) = 7 \) and \(f(v'_{12+8i}) = 6 \) for \(1 \leq i \leq (m-6)/4 \)

viii) \(f(v_{13+8i}) = 10 \) and \(f(v'_{13+8i}) = 11 \) for \(1 \leq i \leq (m-6)/4 \)

Thus all the vertices are labeled.

Now to prove that \(L(3,1) \)-labeling number \(\lambda(G) \) is 11.

Case 1: Let \(x, y \) be any two vertices in \(V_1(G) \).

Subcase (i): For \(m = 1 \)

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \) such that \(x = v_{m+1} \), \(y = v_{m+2} \) then \(f(x) = 7 \) and \(f(y) = 6 \), \(d(x,y) = 2 \). Therefore \(d(x,y) + |f(x)-f(y)| = 2+|7-6| = 2+1 = 3 \geq 3 \).
Subcase (ii): For \(m = 2 \)

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \) such that \(x = v_{m+2} \), \(y = v_{m+3} \) then \(f(x) = 1 \) and \(f(y) = 8 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 7 = 9 \geq 3 \).

Subcase (iii): For \(m = 4n - 1 \), \(n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \) such that \(x = v_{6+8i} \), \(y = v_{7+8i} \) then \(f(x) = 0 \) and \(f(y) = 2 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 2 = 4 \geq 3 \).

Subcase (iv): For \(m = 4n \), \(n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \) such that \(x = v_{6+8i} \), \(y = v_{7+8i} \) then \(f(x) = 0 \) and \(f(y) = 2 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 2 = 3 \geq 3 \).

Subcase (v): For \(m = 4n + 1 \), \(n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \) such that \(x = v_{8+8i} \), \(y = v_{9+8i} \) then \(f(x) = 6 \) and \(f(y) = 1 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 3 = 5 \geq 3 \).

Subcase (vi): For \(m = 4n + 2 \), \(n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \) such that \(x = v_{10+8i} \), \(y = v_{11+8i} \) then \(f(x) = 7 \) and \(f(y) = 10 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 3 = 5 \geq 3 \).

Case 2: Let \(x \) and \(y \) be any two vertices in \(V_2(G) \).

Subcase (i): For \(m = 1 \)

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \) such that \(x = v'_{m+1} \), \(y = v'_{m+2} \) then \(f(x) = 3 \) and \(f(y) = 4 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 1 = 3 \).

Subcase (ii): For \(m = 2 \)

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \) such that \(x = v'_{m+2} \), \(y = v'_{m+3} \) then \(f(x) = 1 \) and \(f(y) = 9 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 8 = 10 \geq 3 \).

Subcase (iii): For \(m = 4n - 1 \), \(n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \) such that \(x = v'_{6+8i} \), \(y = v'_{7+8i} \) then \(f(x) = 5 \) and \(f(y) = 3 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 2 = 4 \geq 3 \).

Subcase (iv): For \(m = 4n \), \(n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \) such that \(x = v'_{8+8i} \), \(y = v'_{9+8i} \) then \(f(x) = 6 \) and \(f(y) = 10 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 4 = 6 \geq 3 \).

Subcase (v): For \(m = 4n + 1 \), \(n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \) such that \(x = v'_{10+8i} \), \(y = v'_{11+8i} \) then \(f(x) = 5 \) and \(f(y) = 4 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 1 = 3 \).

Subcase (vi): For \(m = 4n + 2 \), \(n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \) such that \(x = v'_{12+8i} \), \(y = v'_{13+8i} \) then \(f(x) = 6 \) and \(f(y) = 11 \), \(d(x, y) = 2 \). Therefore \(d(x, y) + |f(x) - f(y)| = 2 + 5 = 7 \geq 3 \).
Case 3: Let x and y be any two vertices in $V_1(G)$ and $V_2(G)$.

Subcase (i): For $m=1$

Let x and y be any two adjacent vertices on $V_1(G)$ & $V_2(G)$ such that $x = v_{m+1}$, $y = v'_{m+1}$ then $f(x) = 7$ and $f(y) = 3$, $d(x,y) = 1$. Therefore $d(x,y) + |f(x) - f(y)| = 1 + |7 - 3| = 1 + 4 = 5 \geq 3$.

Subcase (ii): For $m=2$,

Let x and y be any two adjacent vertices on $V_1(G)$ and $V_2(G)$ such that $x = v_{m+2}$, $y = v'_{m+3}$ then $f(x) = 1$ and $f(y) = 9$, $d(x,y) = 1$. Therefore $d(x,y) + |f(x) - f(y)| = 1 + |1 - 9| = 1 + 8 = 9 \geq 3$.

Subcase (iii): For $m=4n-1$, $n \in \mathbb{N}$.

Let x and y be any two adjacent vertices on $V_1(G)$ & $V_2(G)$ such that $x = v_{6i+8i}$, $y = v'_{7i+8i}$ then $f(x) = 0$ and $f(y) = 3$, $d(x,y) = 1$. Therefore $d(x,y) + |f(x) - f(y)| = 1 + |0 - 3| = 1 + 3 = 4 \geq 3$.

Subcase (iv): For $m=4n$, $n \in \mathbb{N}$.

Let x and y be any two adjacent vertices on $V_1(G)$ & $V_2(G)$ such that $x = v_{8i+8i}$, $y = v'_{9i+8i}$ then $f(x) = 6$ and $f(y) = 10$, $d(x,y) = 1$. Therefore $d(x,y) + |f(x) - f(y)| = 1 + |6 - 10| = 1 + 4 = 5 \geq 3$.

Subcase (v): For $m=4n+1$, $n \in \mathbb{N}$.

Let x and y be any two non-adjacent vertices on $V_1(G)$ & $V_2(G)$ such that $x = v_{10i+8i}$, $y = v'_{11i+8i}$ then $f(x) = 0$ and $f(y) = 4$, $d(x,y) = 1$. Therefore $d(x,y) + |f(x) - f(y)| = 1 + |0 - 4| = 1 + 4 = 5 \geq 3$.

Subcase (vi): For $m=4n+2$, $n \in \mathbb{N}$.

Let x and y be any two adjacent vertices on $V_1(G)$ & $V_2(G)$ such that $x = v_{12i+8i}$, $y = v'_{13i+8i}$ then $f(x) = 7$ and $f(y) = 11$, $d(x,y) = 1$. Therefore $d(x,y) + |f(x) - f(y)| = 1 + |7 - 11| = 1 + 4 = 5 \geq 3$.

Thus, by continuing this process of x and y, we get

$$d(x,y) + |f(x) - f(y)| = \begin{cases}
\geq 3 & \text{if } d = 2 \\
\geq 4 & \text{if } d = 1
\end{cases}.$$

Hence, the extended duplicate graph of triangular snake graph admits $L(3,1)$-labeling and its number $\lambda(G)$ is 11.
Example 1: L(3,1)-labeling diagram in EDG(TS₅) and EDG(TS₆) is shown in figures (1) & (2)

3.2: L(3,1)-LABELING FOR QUADRILATERAL SNAKE GRAPH EDG(QSₘ), m ≥ 1

Here, we present an algorithm and prove the existence of L(3,1)-labeling for EDG(QSₘ).
Algorithm 2

Procedure – \([L(3,1)]\)-labeling for EDG(QSm), \(m \geq 1\)

\[V \leftarrow \{ v_1, v_2, v_3, \ldots, v_{3m}, v_{3m+1}, v'_1, v'_2, v'_3, \ldots, v'_{3m}, v'_{3m+1} \} \]

\[E \leftarrow \{ e_1, e_2, \ldots, e_{4m}, e_{4m+1}, e'_1, e'_2, e'_3, \ldots, e'_{4m} \} \]

\[v_1 \leftarrow 0, v'_1 \leftarrow 0 \]

for \(i = 0 \) to \((m-1)/3\) do

\[v_{2+9i} \leftarrow 6; v_{3+9i} \leftarrow 7; v_{4+9i} \leftarrow 4; v'_{2+9i} \leftarrow 3; v'_{3+9i} \leftarrow 1; v'_{4+9i} \leftarrow 4 \]

end for

for \(i = 0 \) to \((m-2)/3\) do

\[v_{5+9i} \leftarrow 1; v_{6+9i} \leftarrow 0; v_{7+9i} \leftarrow 8; v'_{5+9i} \leftarrow 7; v'_{6+9i} \leftarrow 5; v'_{7+9i} \leftarrow 8 \]

end for

for \(i = 0 \) to \((m-3)/3\) do

\[v_{8+9i} \leftarrow 1; v_{9+9i} \leftarrow 3; v'_{8+9i} \leftarrow 0; v'_{9+9i} \leftarrow 5; v'_{10+9i} \leftarrow 11 \]

end for

end procedure

Theorem 3.2: The extended duplicate graph of Quadrilateral snake graph admits \([L(3,1)]\)-labeling and its number \(\lambda(G)\) is 11.

Proof: Let QSm be the quadrilateral snake graph and EDG(QSm) be the extended duplicate graph of quadrilateral snake graph.

Define the set of vertices and edges are

\[V(G) = \{ v_1, v_2, v_3, \ldots, v_{3m}, v_{3m+1}, v'_1, v'_2, v'_3, \ldots, v'_{3m}, v'_{3m+1} \} \]

\[E(G) = \{ e_1, e_2, e_3, \ldots, e_{4m}, e_{4m+1}, e'_1, e'_2, e'_3, \ldots, e'_{4m} \} \]

Assume that \(V(G) = V_1 \cup V_2 \).

where \(V_1 = \{ v_i \mid 1 \leq i \leq 3m+1 \} \)

\[V_2 = \{ v'_i \mid 1 \leq i \leq 3m+1 \} \]

For \(V_1 \) and \(V_2 \), we define a mapping \(f: V(G) \rightarrow N \cup \{0\} \) such that \(|f(x) - f(y)| \geq 3\) if \(d(x,y) = 1 \) and

\[|f(x) - f(y)| \geq 1 \] if \(d(x,y) = 2 \).

Using the algorithm 2, the vertices \(v_1 \) and \(v'_1 \) receive the label 0;

i) \(f(v_{2+9i}) = 0 \) and \(f(v'_{2+9i}) = 3 \) for \(1 \leq i \leq (m-1)/3 \)

ii) \(f(v_{3+9i}) = 7 \) and \(f(v'_{3+9i}) = 1 \) for \(1 \leq i \leq (m-1)/3 \)

iii) \(f(v_{4+9i}) = 4 \) and \(f(v'_{4+9i}) = 4 \) for \(1 \leq i \leq (m-1)/3 \)

iv) \(f(v_{5+9i}) = 1 \) and \(f(v'_{5+9i}) = 7 \) for \(1 \leq i \leq (m-2)/3 \)
v) \(f(v_{6+9i}) = 0 \) and \(f(v'_{6+9i}) = 5 \) for \(1 \leq i \leq (m-2)/3 \)

vi) \(f(v_{7+9i}) = 8 \) and \(f(v'_{7+9i}) = 8 \) for \(1 \leq i \leq (m-2)/3 \)

vii) \(f(v_{8+9i}) = 1 \) and \(f(v'_{8+9i}) = 0 \) for \(1 \leq i \leq (m-3)/3 \)

viii) \(f(v_{9+9i}) = 3 \) and \(f(v'_{9+9i}) = 5 \) for \(1 \leq i \leq (m-3)/3 \)

ix) \(f(v_{10+9i}) = 11 \) and \(f(v'_{10+9i}) = 11 \) for \(1 \leq i \leq (m-3)/3 \)

Thus all the vertices are labeled.

Now to prove that \(L(3,1) \) labeling number \(\lambda(G) \) is 11.

Case 1: Let \(x,y \) be any two vertices in \(V_1(G) \).

Subcase (i): For \(m = 3n-2, n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \), such that \(x = v_{2+9i} \), \(y = v_{3+9i} \) then \(f(x) = 6 \), \(f(y) = 7 \) and \(d(x,y) = 2 \). Therefore \(d(x,y) + |f(x) - f(y)| = 2 + |6 - 7| = 2 + 1 = 3 \geq 3 \).

Subcase (ii): For \(m = 3n-1, n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \), such that \(x = v_{5+9i} \), \(y = v_{6+9i} \) then \(f(x) = 1 \), \(f(y) = 0 \) and \(d(x,y) = 2 \). Therefore \(d(x,y) + |f(x) - f(y)| = 2 + |1 - 0| = 2 + 1 = 3 \geq 3 \).

Subcase (iii): For \(m = 3n, n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_1(G) \), such that \(x = v_{8+9i} \), \(y = v_{9+9i} \) then \(f(x) = 1 \), \(f(y) = 3 \) and \(d(x,y) = 2 \). Therefore \(d(x,y) + |f(x) - f(y)| = 2 + |1 - 3| = 2 + 2 = 4 \geq 3 \).

Case 2: Let \(x,y \) be any two vertices in \(V_2(G) \).

Subcase (i): for \(m = 3n-2, n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \), such that \(x = v'_{2+9i} \), \(y = v'_{3+9i} \) then \(f(x) = 3 \), \(f(y) = 1 \) and \(d(x,y) = 2 \). Therefore \(d(x,y) + |f(x) - f(y)| = 2 + |3 - 1| = 2 + 2 = 4 \geq 3 \).

Subcase (ii): for \(m = 3n-1, n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \), such that \(x = v'_{5+9i} \), \(y = v'_{6+9i} \) then \(f(x) = 7 \), \(f(y) = 5 \) and \(d(x,y) = 2 \). Therefore \(d(x,y) + |f(x) - f(y)| = 2 + |7 - 5| = 2 + 2 = 4 \geq 3 \).

Subcase (iii): for \(m = 3n, n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two non-adjacent vertices on \(V_2(G) \), such that \(x = v'_{8+9i} \), \(y = v'_{9+9i} \) then \(f(x) = 0 \), \(f(y) = 5 \) and \(d(x,y) = 2 \). Therefore \(d(x,y) + |f(x) - f(y)| = 2 + |0 - 5| = 2 + 5 = 7 \geq 3 \).

Case 3: Let \(x \) and \(y \) be any two vertices in \(V_1(G) \) and \(v_2(G) \).

Subcase (i): for \(m = 3n-2, n \in \mathbb{N} \).

Let \(x \) and \(y \) be any two adjacent vertices on \(V_1(G) \) and \(V_2(G) \), such that \(x = v_{2+9i} \), \(y = v'_{3+9i} \) then \(f(x) = 6 \), \(f(y) = 3 \) and \(d(x,y) = 1 \). Therefore \(d(x,y) + |f(x) - f(y)| = 1 + |6 - 3| = 1 + 3 = 4 \geq 3 \).
Subcase (ii): for \(m = 3n-1, n \in \mathbb{N}. \)

Let \(x \) and \(y \) be any two adjacent vertices on \(V_1(G) \) and \(V_2(G) \), such that \(x = v_{5+9i} \), \(y = v'_{6+9i} \) then \(f(x)=1, f(y)=5 \) and \(d(x,y) = 1. \) Therefore \(d(x,y) + |f(x)-f(y)| = 1+|1-5| = 1+4 = 5 \geq 3. \)

Subcase (iii): for \(m = 3n, n \in \mathbb{N}. \)

Let \(x \) and \(y \) be any two adjacent vertices on \(V_1(G) \) and \(V_2(G) \), such that \(x = v_{8+9i} \), \(y = v'_{9+9i} \) then \(f(x)=1, f(y)=5 \) and \(d(x,y) = 1. \) Therefore \(d(x,y) + |f(x)-f(y)| = 1+|1-5| = 1+4 = 5 \geq 3. \)

Thus, by continuing this process of \(x \) and \(y \), we get

\[
d(x,y) + |f(x)-f(y)| = \begin{cases}
\geq 3 & \text{if } d = 2 \\
\geq 4 & \text{if } d = 1
\end{cases}
\]

Hence, the extended duplicate graph of quadrilateral snake graph admits \(L(3,1) \)-labeling and its number \(\lambda(G) \) is 11.

Example 2: \(L(3,1) \)-labeling diagram in \(\text{EDG}(QS_4) \) and \(\text{EDG}(QS_5) \) is shown in figures (3) & (4)
4. Conclusion

In this paper, we have presented algorithms and proved that the extended duplicate graph of triangular snake graph and quadrilateral snake graph admits $L(3,1)$-Labeling.

References