ON RADIO SQUARE DIFFERENCE Dd-DISTANCE NUMBER OF CYCLE RELATED GRAPHS

¹K.John Bosco, ²G.Vishma George
 ¹Assistant professor, ²Research scholar
 Department of Mathematics,
 St.Jude's college, Thoothoor,
 Tamil Nadu, India.

Abstract

A Radio square difference Dd-distance labeling of a connected graph G is an injective function f from the vertex set V(G) to N such that for two distinct vertices u and v of G, $D^{Dd}(u,v) + |[f(u)]^2 - [f(v)]^2| \ge 1 + diam^{Dd}(G)$, where $D^{Dd}(u,v)$ denote the Dd-distance between u and v and also $diam^{Dd}(G)$ denotes the Dd-diameter of G. The radio square difference number of G, $rsdn^{Dd}(G)$ is the maximum label assigned to any vertex of G. The radio square difference number of G, $rsdn^{Dd}(G)$ is the maximum value of G. In this paper we find the radio square difference number of some basic graph.

Keywords. Dd-distance, SD labeling, Radio labeling, Radio square difference Dd-distance number.

Introduction

First introduced the idea of graph theory by Euler. By a graph G = (V(G), E(G)) we mean a finite undirected graph without loops or multiple edges. Let V(G) and E(G) denotes the vertex set and edge set of G. The order and size of G are denoted by P and Q respectively. In 2001, Chatrant et al.[1] defined the concept of radio labelling of G. Radio labelling of graphs is motivated by restrictions inherent in assigning channel frequencies for radio transmitters.

The Dd-distance was introduced by A. Anto Kinsely and P. Siva Ananthi [2]. For a connected graph G, the Dd-length of a connected u-v is defined as $D^{Dd}(u,v)=D(u,v)+\deg(u)+\deg(v)$. The Dd-radius denoted by $r^{Dd}(G)$ is the minimum Dd-eccentricity among all vertices of u and v of G. That is $r^{Dd}(G)=\min\{e^{Dd}(G)\colon v\in V(G)\}$. Similarly the Dd-diameter $D^{Dd}(G)$ is the maximum D^{Dd} eccentricity among all vertices of G. We observe that for any two vertices u, v of G. We have $d(u,v)\leq D^{Dd}(u,v)$. The equality holds if and only if u and v are identical. If G is any connected graph then the Dd-distance is metric on the set of vertices of G. We can check easily $r^{Dd}(G)\leq D^{Dd}(G)\leq 2r^{Dd}(G)$. The concept of square difference labelling was introduced by J. Shiama in 2012.

The Radio Dd-distance was introduced by K. John Bosco and T. Nicholas in 2017. We introduce the concept of radio square difference Dd-distance in this paper.

Definition 1.1.

The concept of radio square difference Dd-distance coloring is a function $f:V(G) \to N$ such that $D^{Dd}(u,v) + |f(u)^2 - f(v)^2| \ge diam^{Dd}(G) + 1$ where $diam^{Dd}(G)$ is the maximum color assigned to any vertex of G. It is denoted by $rsdn^{Dd}(G)$.

Theorem 1.2

The Radio square difference Dd-distance number of a cycle graph C_n , $rsdn^{Dd}(C_n) = n$.

Proof:

Let
$$\{v_1, v_2, \dots, v_n\}$$
 be the vertex set, $E(C_n) = \{v_i v_{i+1}, v_1 v_n / i = 1, \dots, n-1\}$.
Then $D^{Dd}(v_i, v_{i+1}) = n+3$, $v_i, v_{i+1} \in V(C_n)$, $D^{Dd}(v_i, v_j) = n$, $1 \le i, j \le n, i \ne j$, so $diam^{Dd}(C_n) = n+3$.

Then radio square difference Dd-distance condition becomes

$$D^{Dd}(v_i, v_j) + \left| f(v_i)^2 - f(v_j)^2 \right| \ge diam^{Dd}(C_n) + 1 \text{ for any } v_i, v_j \in V(C_n),$$

Therefore, $f(v_i) = i, 1 \le i \le n$,

Hence, $rsdn^{Dd}(C_n) = n$.

Theorem 1.3

The radio square difference Dd-distance number of a gear graph K_n , $rsdn^{Dd}(G_n) = n$

Proof:

Let
$$\{v_0, v_1, ..., v_n\}$$
 and $\{u_1, u_2, ..., u_n\}$ are the vertex set where v_0 is the apex vertex and $E(G) = \{v_0 v_1, v_i u_i / i = 1, 2, ..., n\}$ be the edge set. $D^{Dd}(v_1, u_1) = 2n-1$, $D^{Dd}(v_0, v_1) = 3n + 2$. Then $diam^{Dd}(G_n) = 3n+2$.

Then radio square difference Dd-distance condition becomes

$$D^{Dd}(u,v) + |f(u)^2 - f(v)^2| \ge diam^{Dd}(G) + 1$$
, for any pair of vertices (u,v) where $u \ne v$.

Now,
$$D^{Dd}(v_0, v_1) + |f(v_0)^2 - f(v_1)^2| \ge diam^{Dd}(G_n) + 1.f(u_i) = n + i + 1, \ 1 \le i \le n.$$

Hence, $rsdn^{Dd}(G_n) = 2n + 1$.

Theorem 1.4

The *Dd*-radio square difference number of a crown graph, $rsdn^{Dd}(C_n \odot K_1) = 2n$.

Proof:

Let
$$V(C_n \odot K_1) = \{v_i, u_i/i, j = 1, 2, ..., n\}$$
 be the vertex set and

$$E(C_n \odot K_1) = \{v_i \ v_j / i = 1, 2, 3, ..., n\}$$
 be the edge set. Then $D^{Dd}(v_1, v_2) = n + 5$, $D^{Dd}(v_n, u_1) = n + 4$, $D^{Dd}(u_1, u_2) = n + 3$. So $diam^{Dd}(C_n \odot K_1) = n + 5$

Then radio square difference *Dd*-distance condition becomes

$$D^{Dd}(u,v) + |f(u)^2 - f(v)^2| \ge diam^{Dd}(G) + 1$$

Now,
$$D^{Dd}(u, v) + |f(u)^2 - f(v)^2| \ge diam^{Dd}(C_n \odot K_1) + 1$$

for any $u, v \in V(C_n \odot K_1)$, $u \neq v$.

Then,
$$f(v_i) = i$$
, $i \le i \le n$ and $f(u_j) = n + j$, $1 \le j \le n$,

Hence, $rsdn^{Dd}(C_n \odot K_1) = 2n$.

Theorem 1.5:

The radio square difference number of a Helm graph, H_n , $rsdn^{Dd}(H_n)$ =2n+1 , n \geq 3.

Proof:

Let $\{v_0, v_1, ..., v_n\}$ and $\{u_1, u_2, ..., u_n\}$ are the vertex set, where v_0 is the apex vertex

and
$$E(G) = \{v_0v_1, v_iu_i / i = 1, 2, ..., n\}$$
 be the edge set.

$$D^{Dd}(v_0, v_1) = 2n + 4, D^{Dd}(u_1, u_2) = n + 4, D^{Dd}(v_n, u_1) = n + 6.$$

Then $diam^{Dd}(H_n) = 2n+4$. The radio square difference Dd-distance condition,

 $D^{Dd}(u,v) + |f(u)^2 - f(v)^2| \ge diam^{Dd}(H_n) + 1$ for any pair of vertices (u,v) where $u \ne v$.

Now,
$$D^{Dd}(v_0, v_1) + |f(v_0)^2 - f(v_1)^2| \ge diam^{Dd}(H_n) + 1$$
,

Then,
$$f(v_i) = i + 1$$
 and $f(u_i) = n + i + 1, 1 \le i \le n$

Hence, $rsdn^{Dd}(H_n) = 2n + 1$.

Theorem 1.6

The radio square difference Dd-distance number of a wheel graph W_n ,

$$rsdn^{Dd}(W_n) = \begin{cases} n+1, & \text{if } n \leq 7 \\ \frac{1}{2}(3n-5), & \text{if } n \text{ is odd } n > 7 \\ \frac{1}{2}(3n-4), & \text{if } n \text{ is even } n \geq 8 \end{cases}$$

Proof:

Let $V(W_n) = \{v_0, v_1, v_2, ..., v_n\}$ be the vertex set where v_0 is the central vertex and $E(K_{1,n}) = \{v_0v_i/i = 1, 2, 3, ..., n\}$ be the edge set $D^{Dd}(v_0, v_i) = n + 2$, $D^{Dd}(v_i, v_{i+1}) = 4$, $1 \le i \le n$. so $diam^{Dd}(W_n) = n + 2$. By radio square difference Dd-distance condition,

$$D^{Dd}(u,v) + |f(u)^2 - f(v)^2| \ge diam^{Dd}(G) + 1$$
, for any pair of vertices (u,v) where $u \ne v$

Now,
$$D^{Dd}(u, v) + |f(u)^2 - f(v)^2| \ge diam^{Dd}(W_n) + 1$$

Case (a) n is odd

For
$$(v_0, v_1)$$
, $D^{Dd}(v_0, v_1) + |f(v_0)^2 - f(v_1)^2| \ge diam^{Dd}(W_n) + 1$.

Then,
$$f(v_i) = \frac{n-1}{2} + i - 2$$
, $1 \le i \le n$

Case (b) n is even

Then,
$$f(v_i) = \frac{n}{2} + i - 2, 1 \le i \le n$$

Hence
$$rsdn^{Dd}(K_{1,n}) =$$

$$\begin{cases} n+1, if & n < 7 \\ \frac{3}{2}(n-1), & if n \text{ is odd } n \geq 7 \\ \frac{1}{2}(3n-4), & if n \text{ is even } n \geq 8 \end{cases}$$

Reference:

- [1] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1009.
- [2] G. Chatrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labelling of graphs," *Bulletin of the Institute of Combinatorics and its Applications*, Vol. 33, pp.77-85, 2001.
- [3] G. Chatrand, D. Erwin, and P. Zhang, Graph labeling problem suggested by FM channel restrictons, Bull. Inst. Combin.Appl.,43, 43-57(2005).
- [4] C. Fernandaz, A. Flores, M. Tomova, and C. Wyels, The Radio Number of Gear Graphs ,arXiv:0809.2623, September 15, (2008).
- [5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 19 (2012) #Ds6.
- [6] W.K. Hale, Frequency assignment: Theory and applications, Proc, IEEE 68 (1980), pp. 1497-1514.
- [7] J. Shiama, "Square difference labelling for some graphs", International journal of Computer Applications (0975-08887) volume 44-No-4 April 2012.
- [8] Anto Kinsley and Siva Ananthi P, 2017 "Dd-Distance in Graphs", Imperical Journal of Interdisciplinary Research (IJIR), Vol-3 Issue -2, ISSN:2454-1362, http://www.onlinejournal.in
- [9] Reddy babu, D., Varma, P.L.N., D-distance in Graphs, Golden Research Thoughts, 2(2013), 53-58.
- [10] T. Nicholas and K. John Bosco, Radio Mean D-Distance labelling of some graphs, International Journal of Engineering and Scientific Research Vol.5 Issue 2, February 2017.