BUTTERFLY SPECIES RICHNESS AND DIVERSITY IN SELECTED AREAS OF THOOTHA, PALAKKAD DISTRICT, KERALA, INDIA

1Anjali PS and 2Dhivya R
1Post Graduate Student, 2Assistant Professor,
1, 2PG and Research Department of Zoology, Nirmala College for Woman, Coimbatore, Tamilnadu, India.

Abstract: A preliminary study on the diversity of butterflies was carried out in Thootha village Palakkad district Kerala, India from September 2020 to January 2021. A number of 26 butterfly species that belong to 5 families were recorded through visual observations of their wing patterns, color and also referring to field guides. The family Nymphalidae was the dominant among the five families with 12 (46%) species followed by family Lycanidae comprising of 6 (23%) species. The family Pieridae comprised of 4 (15%) species and both family Papilionidae and family Hesperidae with 2 (8%) species each. Common grass yellow (Eurema hecabe) and Psyche (Leptosia nina) are the most observed butterfly followed by common four ring (Ypthima huebneri). Some rare butterflies such as Plain tiger (Danaus chrysippus) and Spotless grass yellow (Eurema laeta) were observed with a minimum count.

Index Terms - Butterfly, Species richness, Bioindicators, Biodiversity.

I. INTRODUCTION

Insects comprises of more than half of earth’s species diversity (May, 1992). Butterflies are the foremost tantalizing and delightful creatures among the insect group, they are an often regarded as ‘Flagship species’ (Gowda et al., 2011). Butterflies come under the order Lepidoptera, which belongs to phylum Arthropoda and the class Insecta. The word Lepidoptera means ‘Scale wings’. They are one among the foremost beautiful and striking species of insect on the earth and they are playing a very crucial role in the ecosystem as well as human health. They are commonly mentioned as “insects of the sun” because of their eye-catching color and delicate charisma (Haroon, 2016).

Butterflies are most commonly and widely appreciated for their aesthetic value and are important as ecological indicators (Chakravarthy et al., 1997) and “flagship taxa” in biodiversity inventories (Lawton et al., 1998). Butterflies are good biological indicators of habitat quality and also general environmental health (Larsen, 1988; Kocher and Williams, 2000; Sawchik and Dufrence, 2005). They often respond to disturbances and changes within the habitat quality and landscape structure variations. They may severely suffer by the environmental variations and changes within the forest structure, as they are closely hounded into plants (Pollard, 1991; Blair, 1999). Healthy biological communities depend on insects as herbivores, pollinators, seed dispersal, predators and prey and butterflies are one of them (Tiple et al., 2009). Butterflies show a broad variety of all species compared to the other invertebrates. As a prey to birds, bats and other insectivorous animals, they play a significant part in the food chain (Dwari et al., 2017).

Butterflies can also be used as umbrella species (the species whose protection serves to protect many co-occurring species) for conservation planning and management (Betrus et al., 2005). Butterflies accomplish pollination, a keystone ecological process in natural sustainability throughout the planet. As both adults and larvae depend on vegetation for development, they involve themselves in complex feeding relationships with green plants. Adult butterflies require a succession of adequate nectar resources. Nectar provides energy for flight, which is significant to find mates and to disperse the species. Butterfly larvae are typically host specific and often show a “Botanical instinct”. Closely related butterfly species choose closely related plants. Butterflies prove to be the best rapid indicators of habitat quality and they are also considered as the sensitive indicators of climatic change (Venkata Ramana, 2010).

II. MATERIALS AND METHODS

2.1 Study area

Present study on Butterfly diversity was carried out in Thootha, Palakkad (Dis), Kerala. Thootha is a beautiful village that includes the natural beauty of Palakkad and Malappuram, and is located near the Thootha River which flows across the two districts. The geographical location of this study area is 10° 54.92333’N and 76°17.77833’ E. This study area is near to the Thoothapuzha and is surrounded by different types of vegetation and small forest patches.

2.2 Sampling

A weekly random survey on butterfly diversity was carried out from September 2020 to January 2021. The study was carried out either from 8:00 AM to 11 AM or 3:00 PM to 5:00 PM. Every habitat in and around of this area was covered by random observations as well as opportunistic sampling during walking through the roads village path, agricultural lands, residential vegetation etc. Butterflies were observed, captured, photographed, identified and released immediately at the spot of capture. The photographs were taken by using mobile phone, Vivo 1811. In difficult cases the specimen were collected using an aerial sweep net and transferred to plastic bottle and brought back to the home for detailed identification.

2.3 Identification

Butterflies were primarily identified directly in the field and photo documented. Species identity was done with the assistance of the field guides by Kunte (2000) and Kehimkar (2008). Taxonomy and nomenclature that was updated by Kunte et al., (2011) was very useful for identification. The field guide - Butterflies of Western Ghats by Raju Kasambe, (2018) also helped in the identification of butterfly species in the present study.

2.4 Data analysis

www.jetir.org (ISSN: 2349-5162)
The butterflies observed in each survey were identified up to species level and tabulated. The occurrence status was decided on the number of encounters of species in the study sites: rare (R) - 1 to 2 sightings; Occasional (O) - 5 to 10 sightings; Common (C) - 11 to 16 sightings in the study area.

III. RESULTS AND DISCUSSION

Butterflies are referred to as ‘flying jewels’ in nature and are considered as charismatic species with multiple functional roles, and colours and many of which are recognized as ecosystem services for the well being of human beings (Kurtz et al., 2001; Nelson, 2007; Guiney and Oberhauser, 2008). Results of Butterfly diversity was depicted in the Table 1 & Fig 1 to 26. From the results of the present study, a total of 26 butterfly species belonging to 5 families were recorded through visual observations of their wing color, patterns and also referring to field guides. The family Nymphalidae was the dominant among the five families with 12 (46 %) species (Fig 1 to 12) followed by family Lycanidae comprising of 6 (23 %) species (Fig 13 to 18). The family Pieridae comprised of 4 (15 %) species (Fig 19 to 22) and both family Papilionidae (Fig 23 & 24) and family Hesperiidae with 2 (8%) species (Fig 25 & 26) each.

Table 1: Butterfly Diversity in the Selected Study Site

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Scientific name</th>
<th>Common name</th>
<th>Family</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danaus chrysippus</td>
<td>Plain tiger</td>
<td>Nymphalidae</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>Orsotriaena medus</td>
<td>Nigger</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Melanitis leda</td>
<td>Common evening brown</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Mycalesis perseus</td>
<td>Common bush brown</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>Mycalesis patnia</td>
<td>Glad-eye bushbrown</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>Neptis hylas</td>
<td>Common sailor</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>Hypolimnas bolina</td>
<td>Blue moon butterfly</td>
<td>Nymphalidae</td>
<td>O</td>
</tr>
<tr>
<td>8</td>
<td>Janonia iphita</td>
<td>Chocolate pansy</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>Tirumala limniace</td>
<td>Blue tiger</td>
<td>Nymphalidae</td>
<td>O</td>
</tr>
<tr>
<td>10</td>
<td>Ypthima huebneri</td>
<td>Common Four-ring</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>Ypthima baldus</td>
<td>Common five-ring</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>Euploea core</td>
<td>Common crow</td>
<td>Nymphalidae</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>Cigaritis vulcanus</td>
<td>Common silverline</td>
<td>Lycaenidae</td>
<td>O</td>
</tr>
<tr>
<td>14</td>
<td>Jamides celeno</td>
<td>common cerulean</td>
<td>Lycaenidae</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>Loxura atymnus</td>
<td>Yamfly</td>
<td>Lycaenidae</td>
<td>R</td>
</tr>
<tr>
<td>16</td>
<td>Talicada nyseus</td>
<td>Red Pierrot</td>
<td>Lycaenidae</td>
<td>R</td>
</tr>
<tr>
<td>17</td>
<td>Castalius rosimon</td>
<td>Common Pierrot</td>
<td>Lycaenidae</td>
<td>C</td>
</tr>
<tr>
<td>18</td>
<td>Zizeeria karsandra</td>
<td>Dark grass blue</td>
<td>Lycaenidae</td>
<td>C</td>
</tr>
<tr>
<td>19</td>
<td>Catopsilia pomona</td>
<td>Common emigrant</td>
<td>Pieridae</td>
<td>C</td>
</tr>
<tr>
<td>20</td>
<td>Eurema hecabe</td>
<td>Common grass yellow</td>
<td>Pieridae</td>
<td>C</td>
</tr>
<tr>
<td>21</td>
<td>Eurema laeta</td>
<td>Spotless grass yellow</td>
<td>Pieridae</td>
<td>R</td>
</tr>
<tr>
<td>22</td>
<td>Leptosia nina</td>
<td>Psyche</td>
<td>Pieridae</td>
<td>C</td>
</tr>
<tr>
<td>23</td>
<td>Graphium sarpedon</td>
<td>Common bluebottle</td>
<td>Papilionidae</td>
<td>O</td>
</tr>
<tr>
<td>24</td>
<td>Papilio polytes</td>
<td>Common mormon</td>
<td>Papilionidae</td>
<td>O</td>
</tr>
<tr>
<td>25</td>
<td>Suastus gremius</td>
<td>Indian palm bob</td>
<td>Hesperiidae</td>
<td>O</td>
</tr>
<tr>
<td>26</td>
<td>Oriens goloides</td>
<td>Ceylon dartlet</td>
<td>Hesperiidae</td>
<td>R</td>
</tr>
</tbody>
</table>
Fig 1: Danaus chrysippus
Fig 2: Orsotriaena medus
Fig 3: Melanitis leda
Fig 4: Mycalesis perseus
Fig 5: Mycalesis patina
Fig 6: Neptis hylas
Fig 7: Hypolimnas bolina
Fig 8: Junonia iphita
Fig 9: Tirumala limniace
Fig 10: Ypthima huebneri
Fig 11: Ypthima baldus
Fig 12: Euploea core
Fig 13: *Cigaritis vulcanus*
Fig 14: *Jamides celeno*
Fig 15: *Loxura atymnus*

Fig 16: *Talicada nyseus*
Fig 17: *Castalius rosimon*
Fig 18: *Zizeeria karsandra*

Fig 19: *Catopsilia pomona*
Fig 20: *Eurema hecabe*
Fig 21: *Eurema laeta*

Fig 22: *Leptosia nina*
Fig 23: *Graphium sarpedon*
Fig 24: *Papilio polytes*
According to the results of the present study it was found that Nymphalidae and Lycaenidae were the most frequently sighted groups during this survey. Status of all species is categorized depending on the direct sightings during the survey, which showed that 15 species out of 26 species were common, 6 species were occasional and 5 species were rare. In four months duration from September 2020 to January 2021, Common grass yellow (Eurema hecabe) and Psyche (Leptosia nina) are the most observed butterfly followed by common four ring (Ypthima huebneri). Some rare butterflies such as Plain tiger (Danais chrysippus) and Spotless grass yellow (Eurema laeta) were observed with a minimum count. This variation in the counts is mainly due to seasonality, availability of host plants and adaptability character of the butterflies.

Butterflies are considered as indicators of ecosystem change and are used to predict various environmental alterations (Chhetri, 2010; Rakosy and Schmit, 2011). Pahari, (2018) revealed on the study of butterfly diversity in Haldia industrial zone that shows few numbers of butterfly species, less diversity and evenness indices when compared with the adjacent rural belt. And also recommend that industrialized areas are harmful places to the butterflies. Leon-Cortes, (2019) reported that the most diverse species of butterfly in the study area were belonging to Nymphalidae family with (31) species followed by Hesperidae (12), Pieridae (19) and Lycaenidae (16) respectively. One of the groups of animals with diverse species richness is insects which represent over 50% of terrestrial biodiversity. The butterflies are playing vital roles in the assaying of the environmental quality for a specific biotope (Kunte, 2000). Observations on the butterfly diversity provide information about the abundance shaped by the vegetation along the landscape and also the variations in the species richness (Harrington and Stork, 1995; Ockinger and Smith, 2006; Ockinger et al., 2006, 2009) and the species interactions.

In the present study family Nymphalidae was the dominant family comprising 12 species, and it constituted (46%) of total butterfly species. Nymphalidae was the most dominant butterfly family in terms of species composition (total of 12 species, 46%) followed by Lycaenidae, Pieridae, Papilionidae and Hesperidae. A study similar to the present study was carried out by Gupta et al., (2012) that explored 50 species of butterflies under five families by photographic documents of Sesa chalam Biosphere Reserve in Eastern Ghats of Andhra Pradesh in India. The families Lycaenidae and Nymphalidae were found to be dominant with 12 species and 20 species respectively. Six species such as Amblypodia anita, Euchrysops cneus, Euploea core, Hypolimnas bolina, Lampides boeticus and Pachliopta hector were observed. In the present study the family Nymphalidae was the dominant among the five families with 12 (46 %) species.

In the present study the areas with less human activity was found to have high species richness than the roadside plantations. This might be because of the degree of disturbance being more prominent in roadside plantation in term of human interference. The results of the present study may be due to occurrence of generalized and widespread herb and shrub species such as Lantana camara etc. which are considered to be the rich source of nectar for butterflies. Similarly, Tiple et al., (2007) also have reported that occurrence of butterfly species is influenced by the presence of rich source of nectar plant species. The secondary vegetation mainly Lantana camera, Eupatorium odoratum, Mikania spp, etc are known to be very good nectar food for many butterfly species. This observation of present study is quite significant and it emphasizes the importance of the conservation of biological diversity of a region.

IV. CONCLUSION

The present study revealed that Family Nymphalidae showed maximum species richness comprising of 12 species, followed by Lycaenidae, Pieridae and least in Papilionidae and Hesperidae. Maximum butterfly species was observed in the month of September and least in January. It is a preliminary study and a lot of research is necessary in this regard and further collections are essential for getting a detailed record of the butterfly diversity. Development of standard monitoring procedures for assessing the environmental stability in this area is needed. Butterflies are indicators of a healthy environment and healthy ecosystems.

Due to lack of suitable management, unsustainable utilization of natural resources, deforestation and urbanization, uncontrolled use of pesticides, in-organic manures, environmental pollution leads to the destruction of host plant might be adversely affect the existence of both insects and floral diversity of the area. Planting of endemic trees and plants supporting the local wildlife will help to protect at least the common species from not going on to the verge of extinction. In addition, further research will be needed for documentation of butterfly species which will help in future conservation of butterflies in the area.

REFERENCE

Biodiversity inventories indicator taxa and... J. Bombay Nat. Acad. of Sciences. A study on the distribution pattern and conservation of amphibians in Sikkim, India. Terrestrial Arthropod Reviews -

Kunte, K. 2000. Butterflies of Peninsular India. Universities Press (Hyderabad) and Indian Academy of Sciences (Bengaluru), pp. 270.

