CFD Analysis of Biomass Gasification Using Bubbling Fluidized Bed Gasification Technique

Jay J. Makhana1, Umang J. Patadiwala2, Dharmendra Sapariya3

1Student, Department of Mechanical Engineering, M. Tech (CAD/CAM), INDUS University, Ahmedabad, Gujarat, India.
2Professor, Department of Mechanical Engineering, INDUS University, Ahmedabad, Gujarat, India.
3Professor, Department of Mechanical Engineering, INDUS University, Ahmedabad, Gujarat, India.

Abstract: The bubbling fluidized bed gasifier is the one most important technology of the gasification through which biomass fuel like Municipal Solid Waste (MSW) is incompletely burnt in the presence of air and then converted into high calorific value gases. The capabilities of bubbling fluidized bed gasifier are affected by feedstocks characteristics, process parameters and design parameters. CFD simulation have been done for improvement of process parameters for Municipal Solid Waste and Sugarcane Bagasse. CFD simulations are carried for a cylinder-shaped bubbling fluidized bed with a static bed height of 0.665m with 0.144m diameter of reactor chamber and 1.46m reactor height. The gas-solid hydrodynamics and gasification process inside a fluidized-bed biomass gasifier are calculated using the CFD solver ANSYS-FLUENT 20.0. A 2-D rectangular model based on Eulerian-Eulerian approach attached with granular kinetic theory has been established to simulate the bed hydrodynamics for the BFBG where volume fraction, bed pressure drops and velocities has been focused using ANSYS Fluent software. The effects of particle properties, gas velocity and temperature of bed material within the reactor has been examined approximately for simulation which provides a significant basis for detailed design of BFBG.

Keywords: Bubbling Fluidized Bed, Gasification, Municipal Solid Waste, Sugarcane Bagasse Syngas, CFD, ANSYS/FLUENT

I. INTRODUCTION

The bubbling fluidized bed gasifier is more efficient technology through which the gasification process takes place. In fluidization process, the grinding or small particles react as fluid when it is pass through moving fluid. Design parameters such as biomass feeding systems, air supply systems and ash removal systems also affect the performance of bubbling gasifiers. To increasing the mixing rate of air and fuel also affected the performance of the gasifier by using perforated plate distributors. The biomass like Municipal Solid Waste (MSW) is one of the renewable energy sources, which helps in power generation. India is the 7th largest country in the world covering 328 million hectares and is adequately equipped with renewable energy sources. Among renewable energy sources, biomass plays a major role especially in rural areas, as it is a major source of energy for many Indian households. Biomass can be used as a source of energy through thermal or biological conversion channels into a range of useful energy products such as heat, electricity, hydrogen, liquid fuels and fusion gas.

II. DESIGN OF BUBBLING FLUIDIZED BED GASIFIER

The gasifier design was derived from various literatures and the reference books. The model was developed separately for each velocity parameters. (Kunii, D., Levenspiel, O., & Levenspiel, O. 1990, Ifin, N. E. 2001)

<table>
<thead>
<tr>
<th>Design Parameters</th>
<th>Equations</th>
<th>Sand</th>
<th>MSW</th>
<th>Bagasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum fluidization velocity U_{mf}</td>
<td>$U_{mf} = \frac{d^2 (\rho_f - \rho_g) g \epsilon^3}{150 + \mu \epsilon^2}$</td>
<td>0.073(m/s)</td>
<td>0.17(m/s)</td>
<td>0.083(m/s)</td>
</tr>
<tr>
<td>Terminal Velocity U_t</td>
<td>$U_t = d_p \left[\frac{4 (\rho_f - \rho_g) g \epsilon^2}{225 \rho_g \mu} \right]^{1/3}$</td>
<td>3.22(m/s)</td>
<td>2.41(m/s)</td>
<td>2(m/s)</td>
</tr>
<tr>
<td>Fluidization Velocity U_{inf}</td>
<td>$H = \frac{1 + \frac{10.97 \rho_p (U_t - U_{inf})^{2/3} \rho_p \epsilon^3 d_p \rho_p d_p \epsilon^3}{U_{mf}^2 p_1^{2/3} \epsilon^3 p_2}}}{p_1}$</td>
<td>0.48(m/s)</td>
<td>0.63(m/s)</td>
<td>0.50(m/s)</td>
</tr>
<tr>
<td>Characterizing the fluidization in the reactor</td>
<td>$u^* = \left[\frac{\rho_p^2}{d_p \mu (\rho_f - \rho_g) g} \right] d_p \left[\frac{\rho_g (\rho_f - \rho_g) g}{\mu^2} \right]^{1/3}$</td>
<td>0.16</td>
<td>1.13</td>
<td>0.35</td>
</tr>
<tr>
<td>Shugging Velocity U_{sl}</td>
<td>$\frac{U_{sl}}{U_{mf}} = \frac{0.07 (gD)^{0.8}}{D - 2.51 \cdot D^{0.2}}$</td>
<td>15.63(mm/s)</td>
<td>16.65(mm/s)</td>
<td>25.70(mm/s)</td>
</tr>
<tr>
<td>Bed Height for Stable Slugging Z_s</td>
<td>$H_s = \frac{0.13 \cdot D^{0.175}}{Z_s}$</td>
<td>95.69(cm)</td>
<td>95.69(cm)</td>
<td>95.69(cm)</td>
</tr>
<tr>
<td>Bed Height</td>
<td>$L_{mf} = \frac{L}{1 + \frac{10.97 \rho_p (U_t - U_{mf})^{2/3} \rho_p \epsilon^3 d_p \rho_p d_p \epsilon^3}{U_{mf}^2 p_1^{2/3} \epsilon^3 p_2}}$</td>
<td>14.60(cm)</td>
<td>14.96(cm)</td>
<td>14.70(cm)</td>
</tr>
<tr>
<td>Reactor Diameter</td>
<td>$D_{car} = \frac{6.0 \cdot 10^{-3} \cdot S \cdot P}{14.4(cm)}$</td>
<td>14.4(cm)</td>
<td>14.4(cm)</td>
<td>14.4(cm)</td>
</tr>
<tr>
<td>Reactor Height</td>
<td>$L = \frac{Q}{(\tau)^2 + d^2}$</td>
<td>1.44(m)</td>
<td>1.44(m)</td>
<td>1.44(m)</td>
</tr>
</tbody>
</table>

Table 1. Fluidization Calculation
Combustion Calculation for MSW and Bagasse

<table>
<thead>
<tr>
<th></th>
<th>Ultimate analysis (wt. %)</th>
<th>Empirical Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSW</td>
<td>C: 35.1 H: 4.7 O: 16.1 N: 1.4 S: 0.2</td>
<td></td>
</tr>
<tr>
<td>Bagasse</td>
<td>C: 59.335 H: 6.259 O: 33.750 N: 0.656 S: 0.02</td>
<td></td>
</tr>
</tbody>
</table>

Proximate analysis (wt. %)

<table>
<thead>
<tr>
<th></th>
<th>MC</th>
<th>VM</th>
<th>FC</th>
<th>ASH</th>
<th>HHV (MJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSW</td>
<td>45.8</td>
<td>51.1</td>
<td>6.3</td>
<td>42.6</td>
<td>15.3</td>
</tr>
<tr>
<td>Bagasse</td>
<td>9.577</td>
<td>72.181</td>
<td>14.341</td>
<td>3.9</td>
<td>24.47</td>
</tr>
</tbody>
</table>

Table 2. Ultimate and Proximate analysis of MSW

<table>
<thead>
<tr>
<th>Material</th>
<th>Airflow Rate (kg/hr)</th>
<th>Biomass Flow Rate(kg/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSW</td>
<td>13 to 15</td>
<td>10</td>
</tr>
<tr>
<td>Bagasse</td>
<td>13 to 15</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3. Mass Flowrate of Biomass and Air

The distributor plate sits at the bottom of the reactor, it allows for the gasses to enter the reactor and fluidize the bed as well as provide support for the bed inside the reactor. The Primary function of the distributor plate is to distribute the fluidizing gas uniformly for the design of the fluidized bed a perforated distributor plate was chosen for ease and convenience.

<table>
<thead>
<tr>
<th></th>
<th>Number of Orifice (m²)</th>
<th>Diameter of Orifice (mm)</th>
<th>Triangular Pitch (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Criteria</td>
<td>32</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>for Distributor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Distributor Plate Design

The cyclone was designed using the Lapple method, as outlined in Air Pollution Control, A Design Approach. The Lapple method determined the optimum dimensions for different types of cyclones in relation to the body diameter of the cyclone so the results can be applied for general use.

<table>
<thead>
<tr>
<th>Cyclone Separator Design</th>
<th>in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of Cyclone Shell (Dc)</td>
<td>147</td>
</tr>
<tr>
<td>Outlet Pipe Diameter (De)</td>
<td>40</td>
</tr>
<tr>
<td>Height of Inlet Pipe (Hc)</td>
<td>76.5</td>
</tr>
<tr>
<td>Width of Inlet Pipe (Bc)</td>
<td>39.75</td>
</tr>
<tr>
<td>Length of Cylindrical Shell and Conical Shell (Lc) & (Zc)</td>
<td>295</td>
</tr>
<tr>
<td>Vertical Distance of the Outlet pipe from inlet pipe (Sc)</td>
<td>18.375</td>
</tr>
<tr>
<td>Diameter of Ash Bin (Jc)</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 5. Cyclone Separator Design Parameters

<table>
<thead>
<tr>
<th>Property</th>
<th>Sand</th>
<th>MSW</th>
<th>Bagasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Size (µm)</td>
<td>385</td>
<td>2500</td>
<td>850</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>2650</td>
<td>100.62</td>
<td>389</td>
</tr>
<tr>
<td>Porosity (ε)</td>
<td>0.46</td>
<td>0.60</td>
<td>0.64</td>
</tr>
<tr>
<td>Sphericity (ø)</td>
<td>0.78</td>
<td>0.55</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table 6. Properties of Sand and MSW

III. COMPUTATIONAL METHOD

ANSYS FLUENT is utilized for simulation wherein 2nd segregated first order implicit unsteady solver is utilized for multiphase calculations. The usage of Eulerian - Eulerian multiphase version, fashionable k-ε dispersed Eulerian multiphase model with standard wall functions are used. Gas is taken as continuous phase while sand particles are taken as dispersed phase. Kinetic theory of granular flow has been applied to sand particles. Syamlal O’Brien drag model of interphase interaction (Solid-Gas) is used. The bed material considered for the analysis is sand, an inert material. Bed fluidizing medium is air.

IV. GOVERNING EQUATIONS

CFD ANSYS Fluent 20.0 Eulerian-Eulerian multiphase model is applied for simulation of a 2D bed containing MSW and Bagasse particles of mean diameter 2.5 mm and 0.85 mm, while the gas moves upwardly in the bed. To predict the bed hydrodynamics, air is considered the primary phase while MSW and Bagasse are considered secondary or discrete phase. The particles are assumed as a continuum phase so kinetic theory of granular flow (KTGF) is applied. The conservation equations for gas and solid phases are given below. (Abd-Rabbo, M. A., Sakr, R. Y., Mohammad, M. A., & Mandour, M. M. 2019)
Volume Fraction

\[\varepsilon_g + \varepsilon_s = 1 \]

Conservation of Mass

Gas:
\[
\frac{\partial (\varepsilon_g \rho_g \overrightarrow{v}_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g \overrightarrow{v}_g \overrightarrow{v}_g) = 0
\]

Solid:
\[
\frac{\partial (\varepsilon_s \rho_s \overrightarrow{v}_s)}{\partial t} + \nabla \cdot (\varepsilon_s \rho_s \overrightarrow{v}_s \overrightarrow{v}_s) = 0
\]

Conservation of Momentum

Gas:
\[
\frac{\partial (\varepsilon_g \rho_g \overrightarrow{v}_g \overrightarrow{v}_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g \overrightarrow{v}_g \overrightarrow{v}_g) = -\varepsilon_g \nabla P + \nabla \cdot (\varepsilon_g \rho_g \overrightarrow{v}_g \overrightarrow{v}_g) + K_{gs}(\overrightarrow{v}_g - \overrightarrow{v}_s)
\]

Solid:
\[
\frac{\partial (\varepsilon_s \rho_s \overrightarrow{v}_s \overrightarrow{v}_s)}{\partial t} + \nabla \cdot (\varepsilon_s \rho_s \overrightarrow{v}_s \overrightarrow{v}_s) = -\varepsilon_s \nabla P + \nabla \cdot (\varepsilon_s \rho_s \overrightarrow{v}_s \overrightarrow{v}_s) + K_{gs}(\overrightarrow{v}_g - \overrightarrow{v}_s)
\]

The stress tensors

Gas:
\[
\overrightarrow{T}_g = \varepsilon_g \mu_g \nabla \cdot \overrightarrow{v}_g + \varepsilon_g \mu_g \overrightarrow{v}_g \overrightarrow{v}_g - \frac{2}{3} \varepsilon_g \mu_g \nabla \cdot \overrightarrow{v}_g
\]

Solid:
\[
\overrightarrow{T}_s = \varepsilon_s \mu_s \nabla \cdot \overrightarrow{v}_s + \varepsilon_s \mu_s \overrightarrow{v}_s \overrightarrow{v}_s + \varepsilon_s \mu_s \overrightarrow{v}_s \overrightarrow{v}_s - \frac{2}{3} \varepsilon_s \mu_s \nabla \cdot \overrightarrow{v}_s
\]

Conservation of Energy

Gas:
\[
\frac{\partial (\varepsilon_g \rho_g H_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g \overrightarrow{v}_g H_g) = \nabla \cdot (\varepsilon_g \rho_g \overrightarrow{v}_g \overrightarrow{v}_g) - h_{gs}(T_s - T_g)
\]

Solid:
\[
\frac{\partial (\varepsilon_s \rho_s H_s)}{\partial t} + \nabla \cdot (\varepsilon_s \rho_s \overrightarrow{v}_s H_s) = \nabla \cdot (\varepsilon_s \rho_s \overrightarrow{v}_s \overrightarrow{v}_s) - h_{gs}(T_s - T_g)
\]

Syamlal O’Brien drag model
\[
K_{gs} = \frac{3}{4} \varepsilon_g \rho_g H_g \mu_g \left(\frac{\varepsilon_s}{\varepsilon_g} \right) \frac{R_{a}}{\overrightarrow{v}_s - \overrightarrow{v}_g}
\]

Table 7. Governing Equations

V. GEOMETRY AND MESH AND 3D CAD MODEL

![Fig 1. 2D Geometry of BFBG With Dimensions Fig 2. Mesh geometry and Closer View](image)

![Fig 3. 3D CAD Model of BFBG](image)

<table>
<thead>
<tr>
<th>Element Size (mm)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Elements</td>
<td>13430</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>13880</td>
</tr>
</tbody>
</table>

Table 8. Mesh Details

VI. SOLUTION PROCEDURE

ANSYS FLUENT 20.0 is used to solve the above problems. Phase Couple SIMPLE algorithm is used for Pressure-Velocity communication. The Second Order Implicit scheme is used for non-compliant formats and a fast algorithm is used to classify the words it contains. Each simulation was performed in 2 s and the average time was performed between 0.5 s to 2 s. A small step of 1x10-3 s time is used to avoid instability. 2000 Number of time steps used in simulation.

VII. RESULTS AND DISCUSSION

In this study, CFD simulation were performed to validate the hydrodynamics of gas-solid multiphase flow in the bubbling fluidized bed gasifier model. This validation is required for the efficient operation of the control system in this separation process and for the construction of another temperature model. The hydrodynamic behavior of the BFBG was analyzed by monitoring the contour of the solid volume fraction section, the air sand velocity magnitude profile and the pressure profile. The distribution of a fraction of the volume on a bed filled with sand, MSW and Bagasse particles compared to three air velocities, 0.19, 0.22 and 0.30 m / s using the Syamlal and O'Brien drag model is shown in Fig. 3 and 10.
It can be seen in Figure 4 which increases the air velocity vs bed height over time. The Void fraction also increases with the increase of the bed in the reactor. The production of small bubbles due to the ingress of air from the bottom of the gasifier is achieved in the early stages of simulation. Bubbles rise up against a wall and grow in an axial direction, either when exiting or meeting small bubbles that form large until they reach the top of the bed. MSW particles are most commonly found in the middle and upper parts of the bed. The movement of the MSW across the bed was centered mainly on the center line of the reactor and below the region near the wall.

Fig 5 shows the simulation results of MSW void fraction vs Bed Height at different air inlet velocities, with increasing air inlet velocity, void fraction also increases. At the start of the simulation, waves of voidage are created, which travel through the bed and subsequently break to form bubbles as the simulation progresses.
Fig 6. MSW Velocity Magnitude at Different air Inlet Velocities

Fig 6 shows velocity magnitude of MSW at different air inlet velocities. At low velocities like 0.19 solid particles going downward below distributor plate as the velocity increase solid particles of MSW going upward direction above distributor plate. As shown in Fig 7 at 0.19 m/s air inlet velocity it increases up to 0.65 at middle of bed height comparing to other velocities.

Fig 7. Graph of MSW velocity magnitude vs Bed Height at Different Inlet Air Velocities

Fig 8. Air Velocity Magnitude at Different air Inlet Velocities

Fig 8 and 9 shows air inlet velocities in bed height. As increase in velocity it shows various graph plots. At the end of bed height velocity increase between 0.25 to 0.40 m/s.

Fig 9. Graph of Air velocity magnitude vs Bed Height at Different Inlet Air Velocities

Fig 10. Pressure vs Bed Height at Different inlet Air Velocities

Fig 11. MSW Temperature vs Bed Height at Different inlet Air Velocities
Fig 10 shows pressure of air MSW mixture in bed height. Starting pressure at different air inlet velocities was same. But at the end of bed height, it shows variation between 22 to 40 Pascal. Fig 11 shows Temperature distribution of MSW particles Along the bed. It shows small variation about 390 k to 480 k at different inlet velocities.

Fig 12. Volume fraction distribution for the Bagasse particles using the Syamlal and O’Brien drag model with three inlet velocities 0.19 m/s, 0.22 m/s and 0.30 m/s.

Fig 13. Graph of MSW velocity magnitude vs Bed Height at Different inlet Air Velocities

Fig 14 & 13 shows Volume fraction distribution of sugarcane bagasse in the reactor bed. Bagasse particles tend to be mostly located in the left and middle regions of the bed. Bagasse movement across the bed was predominantly upwards at the reactor’s center-line and downwards in the near-wall region. Fig 14 and 15 shows velocity magnitude of bagasse at different air inlet velocities.
velocities. At velocities like 0.22 m/s solid particles velocity is increasing as the velocity increase solid particles of Bagasse going upward direction above distributor plate.

Fig 16. Air Velocity Magnitude at Different inlet Air Velocities

Fig 17. Graph of Air velocity magnitude vs Bed Height at Different air Inlet Velocities

Fig 16 and 17 shows air inlet velocities in bed height. As increase in velocity it shows various graph plots. At the end of bed height velocity increase between 0.19 to 0.35 m/s.

Fig 18. Pressure vs Bed Height at Different inlet Air Velocities

Fig 19. Bagasse Temperature vs Bed Height at Different inlet Air Velocities

Fig 18 shows pressure of air bagasse mixture in bed height. Starting pressure at different air inlet velocities was same. But at the end of bed height, it shows variation between 100 to 175 Pascal. Fig 19 shows Temperature distribution of bagasse particles Along the bed. It shows variation about 690 k to 780 k at different inlet velocities.
Fig 20. Volume fraction distribution for the Sand particles using the Syamlal and O’Brien drag model with three inlet velocities.

Fig 21. Graph of Sand volume fraction vs Bed Height at Different inlet Air Velocities

Fig 20 & 21 shows Volume fraction distribution of sand in the reactor bed. Sand particles were found to gather at the middle and bottom of the bed. This distribution showed a close correlation with the component’s density and size of particles.
Fig 24. Air Velocity Magnitude at Different air Inlet Velocities

Fig 25. Graph of Air velocity magnitude vs Bed Height at Different inlet Air Velocities

Fig 26. Graph of Pressure vs Bed Height at Different inlet Air Velocities

Fig 27. Sand Temperature vs Bed Height at Different Inlet Air Velocities

Fig 26 shows pressure of air sand mixture in bed height. Starting pressure at different air inlet velocities was same. But at the end of bed height, it shows variation between 300 to 650 Pascal. Fig 27 shows Temperature distribution of sand particles along the bed. It shows no variation because its small thermal conductivity.

VIII. CONCLUSION

The model and simulation of the CFD 2D is done as an accurate illustration of a real Lab-scale bubbling fluidized bed to be built for future work. These results suggest that CFD simulations using the drag model of Syamlal and O’Brien are able to capture hydrodynamics in a gasifier in a BFBG, so the planned model provides a useful basis for additional activities in further CFD simulation of the fire component. BFBG structures have shown that MSW particles are most commonly found in the middle and upper bed regions. Sand particles were found to combine in the middle and under the bed. Bagasse particles tend to be mostly located in the left and middle regions of the bed. Bagasse movement across the bed was predominantly upwards at the reactor’s center-line and downwards in the near-wall region. This distribution showed a close relationship with the size of the particles and the size of the particles. The light particles of MSW are separated at the top of the bed, and the heavy particles of MSW produce a better mixing character given its closest size to the sand. The small particles of MSW produced similar mixtures, due to their close proximity to sand particle size. Also, it was found that an increase in air velocity improved binary integration. The movement of the MSW across the bed was mainly upwards in the center of the reactor to the bottom of the region near the wall. The pressure across the bed height decreases due to sand and MSW particles in the air. No temperature differences occurred because the simulation time was only 2s. In the next study a BFBG lab scale model will be developed based on the design parameters and performance and compare the result with CFD data.

IX. REFERENCES

