STUDY OF ARSENIC CONTAMINATION IN DISTRICT GHAZIPUR (U.P.), INDIA

*1Nirbaya Asthana and 2Anil Kumar Dwivedi

1Research Scholar of Pollution and Environment Assay Research Laboratory (PEARL), Department of Botany, D.D.U. Gorakhpur University, Gorakhpur-273009, U.P., India
Email: nirbhayaasthana@gmail.com

2Professor, Department of Botany, D.D.U. Gorakhpur University, Gorakhpur-273009, U.P., India
Email: anil.k.dwiwedi@gmail.com

Abstract: In recent decades, arsenic contamination in ground water and its impact to human life have been one of the serious problems of every country. The contamination of drinking water supplies with natural occurring arsenic is major health problem. In the present paper, authors have studied the arsenic contamination in district Ghazipur (U.P.), India. The complete study is divided in three categories of arsenic namely Category-I (satisfactory), Category-II (risky) and Category-III (critical). For this, authors selected twelve study sites of district Ghazipur with two types of samples from shallow water and deep (India mark II) water. Results are presented in the tabular form and show that all twelve study sites (Ghazipur City, Rajapur, Bara, Dandimorh, Gauspur, Saidpur, Mohammadabad, Karanda, Reotipur, Zamania, Karkatpur and Dharmarpur) of district Ghazipur (U.P.), India lie under Category-III and the ground water of Ghazipur City, Rajapur, Bara, Dandimorh, Gauspur, Saidpur, Mohammadabad, Karanda, Reotipur, Zamania, Karkatpur and Dharmarpur is not fit for drinking without processing.

Keywords: Arsenic; Samples; Ghazipur; Wagtech Digital Arsenator

Introduction: One of the major causes for neurological problems, skin cancer, skin eczema, sensory disorder, pulmonary insufficiency, hypertension, acute renal failure, leukemia and peripheral vascular disease is consumption of arsenic contaminated water. The process of the development of human body is also affected by consuming contaminated arsenic water. Acharyya [1] discussed the source and mobilization process of arsenic contamination in ground water which affecting major parts of the Southern West Bengal and Western Chattisgarh. Bates et al. [2] studied the bladder cancer due to arsenic in drinking water. Bhattacharjee et al. [3] determined the metal contents in the groundwater of Sahebgunj district, Jharkhand, India, with special reference to arsenic. Arsenic exposure through groundwater to the rural and urban population in the Allahabad-Kanpur track in the upper Ganga plain was discussed by Chakraborti et al. [4].
Chatterjee et al. [5] discovered ground water contamination by arsenic in the residential area of Behala, Calcutta due to industrial pollution. Chatterjee et al. [6] studied the effect of arsenic in groundwater in six districts of West Bengal, India and determined that arsenic species are present in the drinking water and urine of the affected people of West Bengal. Chaudhary et al. [7] examined the ground water contamination in Ludhiana, Punjab, India. Chaurasia et al. [8] gave a review on finger print of arsenic contaminated water in India. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water was discussed by Chen et al. [9].

Chowdhury et al. [10] calculated ground water arsenic contamination in Bangladesh and West Bengal, India. Das et al. [11] analyzed arsenic in ground water in six districts of West Bengal, India. Das et al. [12] studied the effect of arsenic in ground water in six districts of West Bengal, India and determined that arsenic concentration was present in drinking water, hair, nail, urine, skin scale and liver tissues (biopsy) of the affected people of six districts of West Bengal, India. Dhar [13] showed that arsenic contamination of ground water is a major public problem in Bangladesh. A review of the arsenic cycle in natural waters was given by Ferguson and Gavis [14]. Keya [15] discussed the mental health of arsenic victims in Bangladesh.

Mandal and Suzuki [16] gave a review on the topic arsenic round the world. A case study of arsenic pollution of groundwater in parts of West Bengal was given by Mukopadhyay and Ghosh [17]. Nahar [18] examined some villages of Bangladesh and gave the impact of arsenic contamination in groundwater of these villages. Worldwide occurrences of arsenic in ground water were studied by Nordstorm [19]. Safiullah [20] gave an overview on the arsenic pollution in the groundwater in Bangladesh. Sarker and Mohiudin [21] discussed the impact of arsenic contamination in ground water on the socio-economic and cultural life of the people of Bangladesh.

Arsenic contamination and its management were studied by Singh et al. [22]. Smedley and Kinniburgh [23] gave a review on the source, behavior and distribution of arsenic in natural waters. Smith et al. [24] determined that the people of Bangladesh are affected by many skin diseases due to contamination of drinking water by arsenic and very much needed for public health emergency. Tripathi and Dwivedi [25] studied the effect of arsenic in groundwater of adjoining areas of Gorakhpur district (U.P.), India. Wyllie [26] gave an investigation of the source of arsenic in well water.

Singh and Singh [27] discussed the problem of arsenic contamination in ground water of Ballia, Uttar Pradesh state, India. Katiyar and Singh [28] exposed the existence of arsenic in drinking water of the population of Ballia district and determined its correlation with blood arsenic level. Saxena et al. [29] studied the source mineral for the release of arsenic in the groundwater of Karanda block, Ghazipur District, Uttar Pradesh. Seasonal variation of arsenic concentration in groundwater in Ghazipur District of Uttar Pradesh was studied by Azam [30]. Kumar et al. [31] quantified the Arsenic in groundwater in the
middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. Pandey et al. [32] reviewed the Arsenic pollution scenario in eastern UP, India.

The main aim of this paper is to determine the effect of arsenic contamination in district Ghazipur (U.P.), India.

Material and Methods: Twelve sites (Ghazipur City, Rajapur, Bara, Dandimorh, Gauspur, Saidpur, Mohammadabad, Karanda, Reotipur, Zamania, Karkatpur and Dharmarpur) were selected from the district Ghazipur (U.P.), India for this study. There are two types of samples namely Shallow and Deep (India Mark II) of water are taken from each study sites. Total twenty four samples were collected. Samples were collected during the summer seasons in the months of June 2019 to August 2019 because in this time period water label remains lower. Authors have considered following important precautions in collecting the samples of water.

- Water samples were collected in neat, clean and transparency plastic bottles with tight bottles cap.
- Gloves were used by authors when collecting these samples.
- Samples were collected after ten minutes operating the pumps in order to get the fresh water.
- Samples were kept in dark places to avoid direct sunlight because some changes might

All the collected samples are tested for arsenic determination in “Pollution and Environment Assay Research Laboratory (PEARL)” of D.D.U. Gorakhpur University, Gorakhpur (U.P.), India under the supervision of Anil Kumar Dwivedi. The reading of arsenic obtained using “Wagtech Digital Arsenator” (see Figure 1) which has 1 ppb-500 ppb (parts per billion) range and present in the “Pollution and Environment Assay Research Laboratory (PEARL)” of D.D.U. Gorakhpur University, Gorakhpur (U.P.), India.
Results and Discussion: For better understanding of the results, authors divided the arsenic concentration in the three categories namely Category-I (satisfactory), Category-II (risky) and Category-III (critical) (see Table: 1). Results of our twelve study sites obtained after analyzed the twenty four samples of water (Shallow and Deep) are presented in the Table: 2. Results depict that all twelve study sites (Ghaziipur City, Rajapur, Bara, Dandimorh, Gauspur, Saidpur, Mohammadabad, Karanda, Reotipur, Zamania, Karkatpur and Dharmarpur) lie under Category-III and the ground water of Ghazipur City, Rajapur, Bara, Dandimorh, Gauspur, Saidpur, Mohammadabad, Karanda, Reotipur, Zamania, Karkatpur and Dharmarpur is not fit for drinking without processing. Results of the present study have close agreement with the results of the papers [29-32].
Table: 1 Categories of Arsenic Concentration

<table>
<thead>
<tr>
<th>Category Name</th>
<th>Range of Arsenic Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category-I (satisfactory)</td>
<td><0 ppb to <5 ppb</td>
</tr>
<tr>
<td>Category-II (risky)</td>
<td>5 ppb to ≤10 ppb</td>
</tr>
<tr>
<td>Category-III (critical)</td>
<td>>10 ppb</td>
</tr>
</tbody>
</table>

Table: 2 Arsenic Levels of Water Samples of the Twelve Selected Study Sites

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Name of Study Site</th>
<th>Water Depth</th>
<th>Category-I (satisfactory)</th>
<th>Category-II (risky)</th>
<th>Category-III (critical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ghazipur City</td>
<td>Shallow</td>
<td>224</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rajapur</td>
<td>Shallow</td>
<td>178</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bara</td>
<td>Shallow</td>
<td>94</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dandimorh</td>
<td>Shallow</td>
<td>40</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gauspur</td>
<td>Shallow</td>
<td>271</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Saidpur</td>
<td>Shallow</td>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mohammadabad</td>
<td>Shallow</td>
<td>22</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Karanda</td>
<td>Shallow</td>
<td>46</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reotipur</td>
<td>Shallow</td>
<td>17</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Zamania</td>
<td>Shallow</td>
<td>36</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Karkatpur</td>
<td>Shallow</td>
<td>255</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep (India Mark II)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion: Results of the present study indicate that

- Ground water, shallow as well as in the deep bore well of district Ghazipur (U.P.), India are not safe for the purpose of drinking.
- The water of shallow bore wells is very harmful for residents of district Ghazipur (U.P.), India.
- The problem of arsenic contamination in the ground water at Ghazipur City, Rajapur, Karkatpur and Dharmarpur is a very serious problem for district Ghazipur (U.P.), India.
- The deep ground water of Gauspur, Saidpur and Reotipur can be used for drinking until some preventive measures taken for the purification of water.
- The deep ground water of Mohammadabad is at the border line of Category-III (critical).

Recommendation: On the basis of the study, it is recommended that

- The shallow ground water of all twelve study sites (Ghazipur City, Rajapur, Bara, Dandimorh, Gauspur, Saidpur, Mohammadabad, Karanda, Reotipur, Zamania, Karkatpur and Dharmarpur) of district Ghazipur (U.P.), India is not fit for drinking.
- Government should take some strict action for this issue and should also set up water purifier as many as possible at district Ghazipur (U.P.), India.

Acknowledgements: Authors are thankful to the Head, Department of Botany, D.D.U. Gorakhpur University, Gorakhpur, U.P., India for providing the required infrastructure and facilities for conducting the experiments.

Conflict of Interests: There is no conflict of interest between the authors.

References:

