COMPARISION OF DIFFERENT TYPESS OF DRUGS USED IN COVID WAVE-1& WAVE-2

M.MEGHANA, K.KRISHNA (PHARM-D)

Department of pharmacy, A.M Reddy memorial college of pharmacy, petlurivaripalem, Narasaraopet.

ABSTRACT

Retrospective observational study design, to compare and determine better therapeutically active against corona viruses according to both (1st wave & 2nd wave) protocol drugs. The number of COVID-19 cases in India is increasing day by day. There is no properly lincensed drugs for COVID-19 but a symptomatic and supportive therapy is provided by world health organization (WHO), international council of medical research (ICMR), food and drug administration (FDA), & the national institute for healthcare and excellence (NICE), the National center for disease control (NCDC) this committee monitoring & ensuring proper essential health services to the COVID patients. This study aims to evaluate the drugs used in first wave with the second wave drugs and compare the most benefit able drug in COVID-19 patients.

KEY WORDS – retrospective comparative study design, COVID-19, 1st wave drugs protocol & 2nd wave drugs protocol

INTRODUCTION

COVID-19 is a transferrable disease and it was 1st reported in December 2019 in Wuhan china and global spreads worldwide and become a world pandemic. COVID-19 is contagious severe respiratory illness. Which caused by SARS-COV-2 (severe acute respiratory syndrome corona viruses-2)

S.No	Risk factor	Reasons	
1.	Obesity	Due to overweight & obesity	
		condition the patients may	
	1	experience impaired immune	
	1 325	function and then decreased	
	1.5	lung capacity and ventilation	
		difficult and hence it worsen	
		outcomes from COVID19	
2.	Smoking	During COVID19 condition	
		with smoking which can	
		enhance ACE2 expression	
3.	Pregnancy	During COVID19 with	
		pregnancy which increase risk	
		of blood clots & increase	
		H1N1 influenza	
4.	Diabetes	Drugs like dipeptidyl-peptide-	
		4 inhibitors which promote	
		ACE enzyme to sarscov-2	
5.	Cardiovascular	Disease like heart failure,	

	disease	hypertension, cardiomypathesis
	arsouso	, during this conditions drugs
		like ACE inhibitors, ARBS
		which leads increase
		susceptibility to sarscov-2
6.	Cerebrovascular	During stroke conditions
	disease	coagulopathy is associated
		COVID-19
		(abnormal clot impaired)
7.	Pulmonary diseases	Disease like COPD, asthma,
		pneumonia during this
	1	condition like acute
		exacerbations is associated
		COVID-19 &
		bronchodilations are also
		increase risk of viral spread
	120	Pneumonia + COPD increases
		expression of ACE-2 receptor
		in small airways
8.	More	Drugs can weaken the immune
	immunosuppressive	system so increase
	agents intake	susceptibility of COVID19
	(HIV,cancer)	
9.	Liver diseases	People with cirrhosis (liver
		scarring) conditions there is a
		risk of COVID19 symptoms
		because increase in ALT &

		AST levels in liver
10.	Renal disease	Older adults and people with
		kidney diseases also have
		higher risk
11.	Fungal infections	Increase spread of candida
		auras during COVID19 is very
		pandemic

In COVID19 condition there is immune dysfunction which activates resulting to local inflammation of monocytes dendritic cells, natural killers, T-Cells and B cells. And signs like lymphopenia, increase interleukin-6, D-dimer, LDH levels, increases transaminase. Increase C-reactive protein, and increased ferritin. symptoms like loos of taste, shortness of breath, difficulty in breathing, muscle aches, sore throat, runny nose, nausea, vomiting, fever, cough, diarrhea, persistent chest pain, blue-coloured nails, lips, depending on their skin. So symptomatic treatment is given to patient like immunodulatory, antivirals, corticosteroids, painkiller, multivitamins etc., there is no proper therapeutically guidelines this pandemic corona virus disease

1st wave protocol drugs	2 nd wave protocol drugs
Immunomodulators	Anti-viral drugs
Hydroxychloroquine	Remdesivir
Corticosteroids	Corticosteroids

Dexamethasone	Methyl prednisolone	
	prednisolone	
	Dexamethasone	
Pain killers	Pain killers	
Acetaminophen	Acetaminophen	
Ibuprofen	Ibuprofen	
Paracetamol	Paracetamol	
-	2DG powder	
	Deoxy-D-glucose	
Other therapy	Other therapy	
Azithromycin	Enoxaparin sodium/	
Lopinavir + ritonavir	heparin(bloodclots)	
Ivermectin	Amphotericin	
Famotidine	(black fungus)	
Convalescent plasma	Ivermectin	
Ascorbic acid	Ascorbic acid	
(vitaminC)	(vitaminC)	
Zinc supplements	Zinc supplements	
Vitamin-D analogues	Vitamin-D analogues	

METHODS

Here in retrospective observational study design, let us consider corona patients as population and then 2 samples are drawn from population

ASSUMPTIONS DURING T-TEST

- 1. Population are normal
- 2. Samples are drawn independently

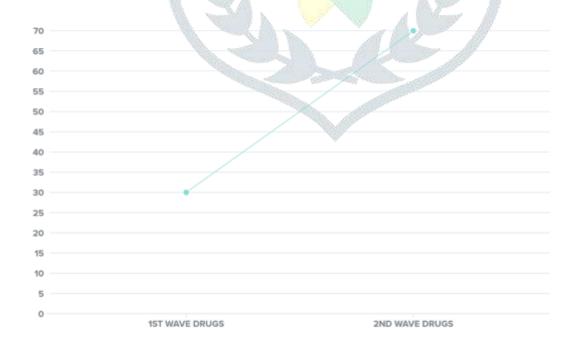
Sample-1:- given 1st protocol drugs

Sample-2:- given 2nd protocol drugs

Then comparision of both the samples with a parameteric paired T test

	Recover rate						
Patients	1	2	3	4	5	6	7
Drug A 1st protocol	14	20	24	11	21	29	28
Drug B 2 nd protocol	26	35	28	27	30	25	29

Here test whether there is any significant difference between two drugs of one percentage level of significance Here we consider Null hypothesis all sample are equal. Alternative hypothesis all sample are not equal

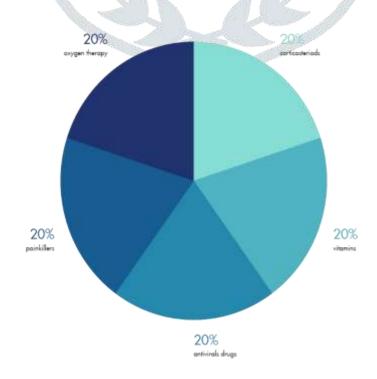

S.NO	Drug-A		Di=A-B	Di
	1 st protocol	2 nd protocol	115/	square
1.	14	26	-12	144
2.	20	35	-15	225
3.	24	28	-4	16
4.	11	27	-16	256
5.	21	30	-9	81
6.	29	25	4	16
7.	28	29	-1	1
			61	739

Here we will calculate d-= 8.7 and standard deviation value is 34.5 hence T value = 3.93

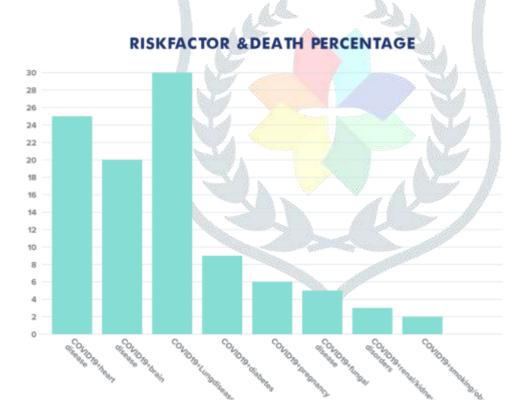
T calculated > Ttabulated value that is T 3.93 > T 3.25 and hence null hypothesis is rejected, so the given data in the both protocol doesn't shows similar therapeutically activity so alternatively hypothesis is accept so significant difference is present in between two protocol drugs according to observational study design, although major of symptoms of both waves are similar, but therefore than the 1st wave drugs, 2nd wave drugs shows more significant difference.

Recovery rate of second wave drugs is more than the 1st wave drugs

RECOVERY RATE OF BOTH 1st WAVE & 2nd WAVE


COMMON DRUGS USED IN BOTH WAVES (1&2)

The commonly used drugs in both the waves are corticosteroids, vitamins, painkillers, anti virals agents and oxygen therapy.


Common drugs	Frequency	Percentage
Corticosteroids	5	20%
Vitamin	5	20%
Painkillers	5	20%
Antiviral	5	20%
Oxygen therapy		20%
Total	20	100%

Risk factors	Death percentage
COVID + heart diseases	25%
COVID + brain diseases	20%
COVID + lung diseases	30%
COVID + diabetes	9%
COVID + pregnancy	6%
COVID + smoking/obesity	2%
COVID + liver/renal disorders	3%
COVID + fungal diseases	5%
	100%

CONCLUSION

According to this statistical analysis study although the majority of symptoms were similar in the both the waves but according results then the first wave drugs, second

wave drugs shows more effective less intensive when compare to 1st wave drugs. Currently whole world is in the starting of 3rd wave, timely interventions should strengenthened by using hand hygiene, and maintaining social distancing polices should be properly implemented to prevent from COVID19 infection.

REFERENCES

- 1.https://doi.org/101016/s2665-9913(20)303908
- 2. Clinical trials.gov identifer NCT 04334148
- 3. Effect of hydroxychloroquine on clinical status at 14days in hospitalised patients with COVID19 a randomized clinical trial. self WH, semlerMW, leitherLM, caseyJD, angusDC, browerRC, etal. JAMA.2020NOV9;e202240.doi:10.1001/jama.20202 2240.online ahead of print PMID-331656221.
- 4.https://doi.org/10.1093/cid/ciaa237
- 5. SpinnerCD, et al " effect of remedesivir vs standard care on clinical status at 11days in patients with moderate COVID19,a randomized clinical trials". JAMA2020 DOI:101001/JAMA2020.16349
- 6.doi10.1101/2020.11.18.20234468 googlescholar
- 7.doi:1038/fpsyg.2020.10385 googlescholar
- 8.doi:10380/10810730701615198 pubmed.
- 9. https://www.thehindu.com/news/international/f.d.aap proves-expanded-emergency use of remedesivir in moderate-COVID-19 patients/ article32470163

- https://www.health.harvard.edu/diseases-and-10. coniditions/treatment-for-COVID19
- https://www.scientificamerican.com/article/herewhat-we-know-about-the-most-toued-drugs-testedfor-covid-19
- 12. https://www.aifa.gov.it/en/-/online-il-rapporto- sull-uso-dei-farmacidurante-l-epidemia-COVID-19
- https://www.goodrx.com/blog/coronavirustreatment
- http://dx.doi.org/101136/thoraxjnl-2020-215095 14.
- Clinical and immunologic features in several 15. andmoderatecoronavirusedisease2019.J.clin.invest.(2 020)130:26209.10.1101/2020.02.16.20023903
- https://bit.ly/37dSB81
- https://www.medscape.com/view article/951356 17.
- https://www.cdc.gov/coronaviruse/2019-18. ncov/need-extra-precautions/peoplewithmedical conditions.html
- 19. https://doi.org/10.1002/hep4.1745
- https://www.kidney.org>corona viruses 20.
- https://cjasn.asn journals.org. 21.
- Epidermiological, clinical and virological 22. characteristics of 74 of coronavirusecases infecteddisease2019.(COVID-19)with gastrointestinal symptoms . gut. 2020 69:1002-9.10.1136/gutjnl-2020-320926