G-Inverse of Lower Triangular Block Operator Matrix

USHA S, and SENTHILKUMAR D
ASSISTANT PROFESSOR, PROFESSOR,
DEPARTMENT OF MATHEMATICS,
SRI SHAKTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, COIMBATORE, INDIA

Abstract: Inside this paper, we probe the depictions of Drazin spectrum \(\sigma_d(M_C) \) and Generalized inverse and generalized Drazin inverse of lower triangular operator matrix on Banach space.

Keywords: Operator Matrices, Drazin spectrum, single-valued extension property, Generalized inverse, Drazin inverse.

I. INTRODUCTION

An operator \(T_1 \in L(X) \) is said to be a Drazin invertible if there exists a positive integer \(k \) and an operator \(S_1 \in L(X) \) such that \(T_1^kS_1T_1 = T_1^k \), \(S_1T_1S_1 = S_1 \) and \(T_1S_1 = S_1T_1 \). The Drazin spectrum is defined by \(\sigma_D(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Drazin invertible} \} \).

The Drazin invertible spectrum is defined by \(\sigma_d(T_1) = \{ \lambda \in \mathbb{C} : T_1 - \lambda I \text{ is not Drazin invertible operator} \} \).

The Drazin invertible operator is defined by an operator \(T_1 \in L(X) \) is said to be Drazin invertible if \(T_1 \) is both left and Right Drazin invertible.

It is well known that \(T \) is Drazin invertible if and only if \(T \) is of finite ascent and descent, which is also equivalent to the fact that \(T = R \oplus N \) where \(R \) is invertible and \(N \) nilpotent (see [16, Corollary 2.2]). Clearly, \(T_1 \) is Drazin invertible if and only if \(T_1^* \) is Drazin invertible. A bounded linear operator \(T_1 \in L(X) \) is said to have the single-valued extension property (SVEP, for short) at \(\lambda \in \mathbb{C} \) if for every open neighborhood \(\cup \) of \(\lambda \), the constant function \(f \equiv 0 \) is the only analytic solution of the equation \((T_1 - \mu)f(\mu) = 0 \) for all \(\mu \in \cup \).

We use \(S_1(T_1) \) to denote the open set where \(T_1 \) fails to have the SVEP and we say that \(T_1 \) has the SVEP if \(S_1(T_1) \) is the empty set, [12]. It is easy to see that \((T_1) \) has the SVEP at every point \(\lambda \in \sigma(T) \), where \(\sigma(T) \) denotes the set of all isolated points of \(\sigma(T) \). Note that (see [12])

\[
S_1(T_1) \subseteq \sigma_p(T_1) \quad \text{and} \quad \sigma(T_1) = S_1(T_1) \cup \sigma_s(T_1)
\]

Also, it follows from [15] if \(T \) is of finite ascent and descent then \(T_1 \) and have the SVEP. Hence \(S_1(T_1) \cup S_1(T_1^*) \subseteq \sigma_d(T_1) \).
For $\mathcal{T}_1 \in L(X), \mathcal{T}_2 \in L(Y)$ and $C \in L(Y, X)$ we denote by M_C the operator defined on $X \oplus Y$

$$by \quad M_C = \left[\begin{array}{cc} \mathcal{T}_1 & 0 \\ \mathcal{T}_3 & \mathcal{T}_2 \end{array} \right] \right].$$

In [11] it is proved that $\sigma(M_C) \cup [S_1(\mathcal{T}_1^*) \cap S_1(\mathcal{T}_2)] = \sigma(\mathcal{T}_1) \cup \sigma(\mathcal{T}_2)$. Numerous mathematicians were interested by the defect set $[\sigma(\mathcal{T}_1) \cup \sigma(\mathcal{T}_2)] \setminus \sigma(M_C)$.

See for instance [11, 13, 14] for the spectrum and the essential spectrum, [19] for the Weyl spectrum, [10] for the Browder spectrum and [9, 10] for the essential approximate point spectrum and the Browder essential approximate point spectrum. See also the references therein. For the Drazin spectrum, Campbell and Meyer [7] were the first studied the Drazin invertibility of 2×2 lower triangular operator matrices M_C where $\mathcal{T}_1, \mathcal{T}_2$ and \mathcal{T}_3 are n x n complex matrices. They proved that $\sigma_d(M_C) \subseteq \sigma_d(\mathcal{T}_1) \cup \sigma_d(\mathcal{T}_2)$.

D. S. Djordjević and P. S. Stanimirović generalized the inclusion (1.3) to arbitrary Banach spaces [8].

Inclusion (1.3) may be strict.

The generalised inverse (for short G-Inverse) and generalised Drazin inverse (for short GD-Inverse). Presume T_n is a given lower triangular block matrix and X_n is an arbitrary upper triangular block matrix. The generalised Drazin inverse of a 2×2 block operator matrix

$T = \left(\begin{array}{cc} \mathcal{T}_1 & 0 \\ \mathcal{T}_3 & \mathcal{T}_2 \end{array} \right)$. Let X and K be separable, infinite dimensional, complex Banach spaces. Denote by $B(X, K)$ the set of all bounded linear operators from X into K. For an operator $T \in B(X, K), R(A), N(A)$ denote the range, the null space and the adjoint of A, respectively. For $T \in B(X, K)$, if there exists $T^+ \in B(X, K)$ satisfying the following four operator equation,

$T^+ T = T, T^+ T^+ = T^+, T^+ T = (T^+ T)^*, T^+ T = (T^+ T)^*$, then T^+ is called the G-Inverse of T. It is well known that has the G-inverse if and only if $R(T)$ is closed and the G-inverse of T is unique (see [16, 20, 24]).

1. Main results and its proof

Theorem 1.1

For $\mathcal{T}_1 \in L(X), \mathcal{T}_2 \in L(Y)$, and $\mathcal{T}_3 \in L(Y, X)$ we have

$$\sigma_d(M_C) \cup [S_1(\mathcal{T}_1^*) \cap S_1(\mathcal{T}_2)] = \sigma_d(\mathcal{T}_1) \cup \sigma_d(\mathcal{T}_2).$$

Proof

Since the inclusion $\sigma_d(M_C) \cup [S_1(\mathcal{T}_1^*) \cap S_1(\mathcal{T}_2)] \subseteq \sigma_d(\mathcal{T}_1) \cup \sigma_d(\mathcal{T}_2)$ always holds, it suffices to prove the reverse inclusion. Let $\lambda \in \sigma_d(\mathcal{T}_1) \cup \sigma_d(\mathcal{T}_2)$, without loss of generality, we can assume that $\lambda = 0$. Then M_C is of finite ascent and descent. Hence from [9, Lemma 2.1] we have A is of finite ascent and B is of finite descent. Also, by duality \mathcal{T}_1^* is of finite descent and \mathcal{T}_2^* is of finite ascent. For the sake of contradiction assume that

$$0 \notin S_1(\mathcal{T}_1^*) \cap S_1(\mathcal{T}_2).$$

Case 1. $0 \notin S_1(\mathcal{T}_1^*)$. Since M_C is Drazin invertible, then there exists $\varepsilon > 0$ such that for every λ

$$0 < |\lambda| < \varepsilon, M_C - \lambda I \text{ is invertible. Hence } \mathcal{T}_1 - \lambda I \text{ is right invertible. Thus } 0 \notin acc\sigma_{ap}(\mathcal{T}_1) = acc\sigma_s(\mathcal{T}_1^*).$$

If \mathcal{T}_1^* then \mathcal{T}_1^* is Drazin invertible and so \mathcal{T}_1 is. Now if $0 \notin \sigma(\mathcal{T}_1^*)$, since $\sigma(\mathcal{T}_1^*) = S_1(\mathcal{T}_1^*) \cup S_1(\mathcal{T}_1^*)$ Then

$$0 \text{ is an isolated point of } \sigma(\mathcal{T}_1^*).$$

Now \mathcal{T}_1^* is of finite decent and $0 \notin isos\sigma(\mathcal{T}_1^*)$. Hence it follows from [18, Theorem 10.5]

\mathcal{T}_1^* is Drazin invertible. Thus \mathcal{T}_1 is Drazin invertible. Since M_C is Drazin invertible it follows from [21, lemma 2.7] that \mathcal{T}_2 is also Drazin invertible which contradicts our assumption.

Case 2. $0 \notin S_1(\mathcal{T}_2^*)$, the proof goes similarly.
Theorem 1.2
Let \(T_1 \in B(X), T_2 \in B(K), T_3 \in B(K,X) \) and \(T_2 \) be invertible. Then 2 by 2 block operator valued matrix
\[
T = \begin{bmatrix} T_1 & 0 \\ T_2 & T_3 \end{bmatrix}
\]
is \(G \)-invertible if and only if \(R(T_1) \) is closed and
\[
\begin{bmatrix} T_1 & 0 \\ T_2 & T_3 \end{bmatrix} = \begin{bmatrix} I & T_2 \Delta T_2^* (I - T_1 T_2^+) \\ I & -T_2 \Delta T_2^* (I - T_1 T_2^+) \end{bmatrix} \Delta T_3^*
\]
Proof
Since
\[
\begin{bmatrix} T_1^* & T_2^* \\ 0 & T_3^* \end{bmatrix} \begin{bmatrix} I & T_2^* (T_1 T_3^*)^{-1} \\ 0 & -(T_3^*)^{-1} \end{bmatrix} = \begin{bmatrix} T_1^* & 0 \\ 0 & I \end{bmatrix}
\]
\(R(T^*) \) is closed if and only if \(R(T_1^*) \). This shows that \(T \) is invertible if and only if \(R(T) \) is closed.
In this case \(T \) has the form
\[
\begin{bmatrix} T_1 & 0 \\ T_2 & T_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & N(T_1) \\ 0 & 0 & 0 \\ T_{11} & T_{21} & T_3 \end{bmatrix} \begin{bmatrix} N(T_1) \\ 0 \\ K \end{bmatrix} \rightarrow \begin{bmatrix} N(T_1^*) \\ 0 \\ K \end{bmatrix}
\]
Where \(T_{11} \) as an operator from \(R(T_1^*) \) on to \(R(T) \) is invertible. Now \(N = \begin{bmatrix} 0 \\ T_{22} \end{bmatrix} \),
\(M = \begin{bmatrix} T_{11} & 0 \\ T_{21} & T_3 \end{bmatrix} \)
and
\[
\Delta = (T_2^* T_2 + T_3^* (I - T_1 T_3^*)) T_3^{-1} = (T_2^* T_2 + T_3^* T_3)^{-1}
\]
It is easy to check that
\[
\begin{bmatrix} T_1 & 0 \\ T_2 & T_3 \end{bmatrix}^+ = \begin{bmatrix} 0 & N^* \\ 0 & M \end{bmatrix} \begin{bmatrix} 0 & N \\ 0 & M \end{bmatrix}^{-1}
\]
\[
= \begin{bmatrix} 0 & (N^* N + M^* M)^{-1} N^* \\ 0 & (N^* N + M^* M)^{-1} M^* \end{bmatrix}
\]
\[
= \begin{bmatrix} 0 & T_1 T_2^* \Delta T_2^* \\ I & \Delta T_3^* \end{bmatrix} \begin{bmatrix} T_1^* - T_1 T_2^* T_3^* (I - T_1 T_3^+) \\ \Delta T_2^* (I - T_1 T_2^+) \end{bmatrix}
\]
Remark
In Theorem 1, if \(R(T_2) \) is closed, we can show that \(T \) is \(G \)-invertible if and only if
\(R((I - T_2^* T_2) T_3) (I - T_2^* T_2) \) is closed in a similar way. In this case, \(T^+ \) has a very complicated representation. But we can show that \(T^+ \) has the form as
\[
\begin{bmatrix} T_1 & T_3 \\ 0 & T_2 \end{bmatrix}^{(1)} = \begin{bmatrix} T_1^+ - T_1^+ T_3 T_3^+ & -T_1^+ T_3 T_2^+ \\ T_3^+ & T_2^+ - T_3^+ T_3 T_2^+ \end{bmatrix}
\]
Were \(T_3 = ((I - T_1 T_1^*) T_3 (I - T_2^* T_2)) \).
In addition, if \(T_1^+ T_2^* T_3^+ (I - T_2^* T_2) T_3^+ = 0 \) and \((I - T_2^* T_2 - T_3^+ T_3) T_3^+ T_2^+ = 0 \), a directly calculation can show that,
\[
\begin{bmatrix} T_1 & T_3 \\ 0 & T_2 \end{bmatrix}^{+} = \begin{bmatrix} T_1^+ - T_1^+ T_3 T_3^+ & -T_1^+ T_3 T_2^+ + T_1^+ T_3 T_3^+ T_3 T_2^+ \\ T_3^+ & T_2^+ - T_3^+ T_3 T_2^+ \end{bmatrix}
\]
(2) If we assume as well that \(R(T_3) \subset R(T_1) \) and \(R(T_3^+) \subset R(T_2^+) \), then \(T \) satisfies remark (1), and \(T_3 = (I - T_1 T_1^*) T_3 (I - T_2^* T_2) = 0 \). Then we have

References