JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

AN OVERVIEW OF HERBAL ANALGESICS FROM DIFFERENT GEOGRAPHICAL LOCATIONS.

Rutuja Gorde^{1*}

¹Amrutvahini College of pharmacy, Sangamner

Dr. D. P. hase^{2*}

Research Guide, Amrutvahini College Of Pharmacy, Sangamner

Corresponding author Details

Name of author: Rutuja Gorde Contact no: 7972101520

Email- gorderb2123@gmail.com

Address- Amrutvahini college of Pharmacy, Sangamner.

Abstract:

Pain is a distressing feeling caused by damage to different tissues. Consequently the person reacts, and tries to remove the painful stimulus. On the other hand, prostaglandins contribute to the emergence of pain. However, there are many side effects associated with the administration of nonsteroidal anti-inflammatory drugs. However, there are medicinal plants with anti-inflammatory therapeutic effects with low or no side effects. It is important to document the ethnobotanical knowledge and applications of anti-inflammatory medicinal plants from selected countries representing different regions. These compounds are formed and secreted by Cyclogenase-2 or COX-2 enzymes. It is through inhibiting these enzymes that most of the analgesic medications act. The present study constitutes an updated review on plants with analgesic and anti-inflammatory activity with special emphasis on those plants found in different geographical locations. Regarding the importance of research about pain and the effort in increasing awareness in this respect and also regarding the problems caused by using opioid medications, it is necessary to find herbal medications.

Keywords: inflammation, inflammatory conditions, Herbal, plant potentials.

Introduction:

Pain emerges when a tissue is damaged. It causes the individual to react and try to get rid of the painful stimulus. It may be stated that pain comprises of three parts: sensory, emotional and affective. Illness, inflammation and damage to the central and the peripheral nervous system leads to significant changes in pain pathways, increase in excitability, and change in gene manifestations, enzymes and receptors.1 Prostaglandins also contribute to the induction of pain. These compounds have important inter-cell effects and may be released under specific physiological and pathological conditions into the blood flow. Prostaglandins are formed by an enzyme called cyclooxygenase 2 (COX-2). This enzyme is secreted by damaged cells and induces the feeling of pain through

connecting to the receptors related to G-proteins and increasing CAMP amount in the cells. As suffering pains causes mental discomfort, humans have always sought a way to remove or decrease pain. 2 Nowadays one of the ways to control pain is using non-steroid anti-inflammatory medications. Although their analgesic effect is induced relatively fast but this side effect is one of their limiting factors in using them. For instance these medications cause stomach dysfunction, dizziness, blurred vision, skin rash, pruritus and liver damage.1 Furthermore, non-steroid anti-inflammatory medications cost a lot of expense. Therefore researchers are looking for less expensive herbal medications and side less side effects; thus the analgesic effects of many medications have been investigated. Using herbal medications has been popular since antiquity. In the past decade, there also has been a significant rise in the usage of these medications among people.

The increase in the resistance of pathogens toward chemical medications and also their side effects are one of the chief reasons for pharmaceutical companies, doctors and the public to adopt herbal medications for treatment. Therefore secondary ingredients in herbs may serve as good replacements for synthetic drugs. Finding and introducing herbs with medicinal properties such as analgesic properties is necessary and may lay the ground for the treatment of various disorders and complications and opens up new horizons for scientists and researchers. 3 One of the many analysesic ingredients are flavonoids. Flavonoids are polyphenol ingredients that may cross the blood-brain barrier and modulate pain centrally through different mechanisms, such as affecting opioid GABA, alpha 2 adrenergic and inhibiting the enzymes involved in inflammation.4 Researches also show that flavonoids reduce intercellular calcium through inhibiting the activity of N-methyl-D-aspartate receptors and as a result inhibiting the activity of the enzyme, synthesizing nitric oxide and a2-phosphpolipease related to calcium and manifest its analgesic properties by decreasing NO and prostaglandins. For instance, flavonoids in tarragon decrease pain through their protective properties operating against oxidative stress caused by hyperglycemia and ingredients with similar properties to benzodiazepines.5 Regarding the importance of research about pain and the effort in raising awareness in this respect and also regarding the problems caused by using opioid medications, is necessary to try to find herbal medications. Thus, this study aims to investigate and review some of the scientific findings on analgesic effects and probable active ingredients and possible analgesic effect mechanisms of these herbs.

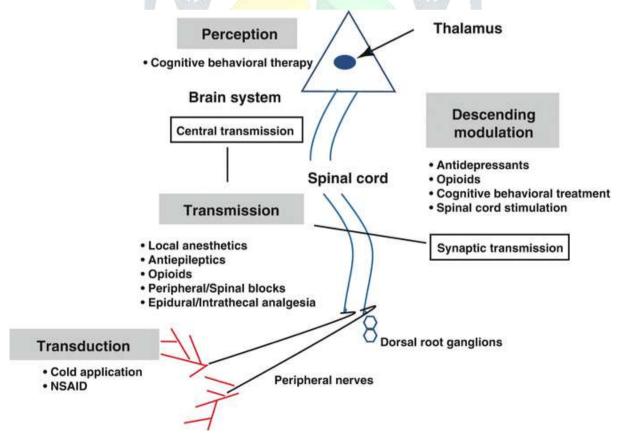


Figure 1: Pain and analgesics pathway

The experience of pain as we currently understand it can be broadly divided into four steps: transduction, transmission, modulation, and perception 1 (Figure 2). Transduction involves the stimulation of nociceptors at tissue sites by various noxious stimuli. Transmission carries the induced action potentials via fast A-delta and slower C fibres to the dorsal horn of the spinal cord, and further on to the thalamus and finally the cerebral cortex. Modulation of nociceptive signals occurs by stimulation of descending inhibitory pathways from the brain and brainstem, thereby altering afferent signals that eventually reach the brain to be interpreted. 3 Perception of nociceptive signals is very complex, and occurs primarily in the somatosensory, prefrontal, insular, and cingulate cortices Pain management can be targeted at any of the above pathways (or combinations thereof) and the most suitable treatment modality will be determined by the type of pain, patient and disease factors, drug characteristics, efficacy, and tolerability. This 3-part series on analgesics will cover different classes of treatments used in pain management, and will discuss the mechanisms of action and place in therapy of the nonsteroidal anti-inflammatory drugs (NSAIDs), paracetamol, and topical analgesics (Part 1), opioids, tramadol, and tapentadol (Part 2), and antidepressants and anticonvulsants (Part 3)

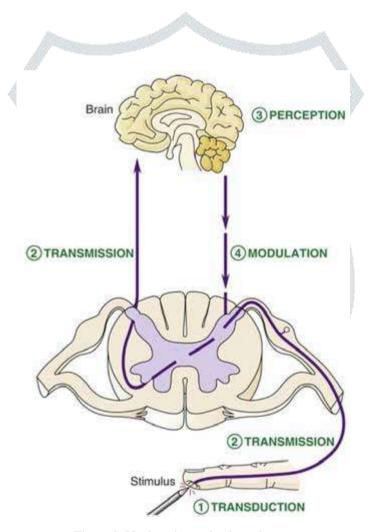


Figure 2: Nociceptive and pain pathways

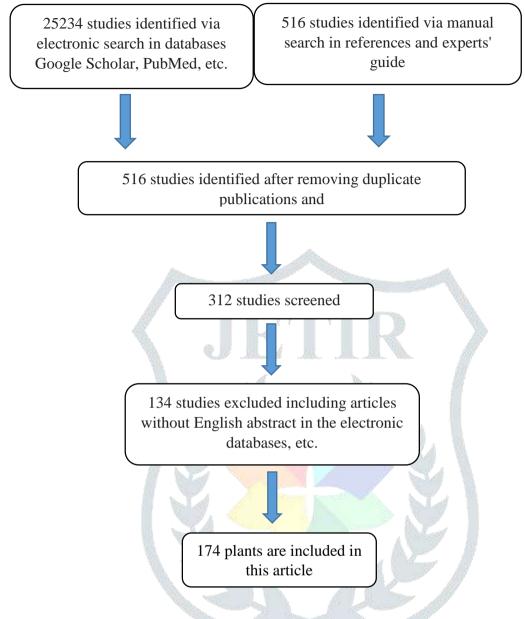


Figure 3: Flow diagram for the study review

Plants with central analgesic activity:

An analgesic is a drug that selectively relieves pain by acting on the CNS or on peripheral pain mechanisms without significantly altering consciousness.

Table 1: Plants with central analgesic activity

Family Part

Sr. No	Plant	Family	Part used	Place	Ref.
1	Caralluma tuberculata	Asclepiadaceae	Dried entire plant	Pakistan	[25]
2	Carthamus tinctorius	Asteraceae	Flowers	Saudi Arabia	[25]
3	Cedrus deodara	Pinaceae	Wood essential oil	India	[25]
4	Celastrus paniculatus	Celastraceae	Dried flowers	Pakistan	[23]

5	Centella asiatica	Apiaceae	Dried entire plant	India	[26]
6	Chasmanthera dependens	Menispermaceae	Fresh leaf	Nigeria	[27]
7	Chelidonium majus	Papaveraceae	Entire plant	Austria	[27]
8	Chrozophora verbascifolia	Euphorbiaceae	Dried aerial parts	Egypt	[27]
9	Cinnamomum zeylanicum	Lauraceae	Dried bark	Jordan	[27]
10	Citrullus colocynthis	Cucurbitaceae	Aerial parts	Saudi Arabia	[27]
11	Clematis chinensis	Ranunculaceae	Dried root	Taiwan	[27]
12	Cleome viscose	Capparidaceae	Dried seed	Jamaica	[27]
13	Clerodendrum infortunatum	Verbenaceae	Entire plant	India	[27]
14	Clitoria ternatea	Fabaceae	Dried aerial parts	India	[27]
15	Cocculus pendulus	Menispermaceae	Seed	Saudi Arabia	[28]
16	Commiphora molmol	Burseraceae	Gun-resin	Italy	[28]
17	Cordia francisci	Boraginaceae	Dried leaf	Italy	[28]
18	Cordia martinicensis	Boraginaceae	Freeze-dried leaf	Italy	[28]
19	Cordia myxa	Boraginaceae	Leaf	Italy	[28]
20	Cordia ulmifolia	Boraginaceae	Freeze-dried leaf	Italy	[28]
21	Cucumis trigonus	Cucurbitaceae	Dried fruit	India	[28]
22	Culcitium canascens	Asteraceae	Dried aerial parts	Peru	[29]
23	Curcuma zedoaria	Zingiberaceae	Dried rhizome	Taiwan	[29]
24	Cuscuta chinensis	Convolvulaceae	Dried entire plant	India	[29]
25	Cyathea nilgirensis	Cyatheaceae	Aerial parts	India	[29]
26	Cymbopogon schoenanthus	Poaceae	Entire plant	Saudi Arabia	[29]
27	Cystoseira usneoides	Cystoseiraceae	Dried thallus	Spain	[29]
28	Datisca cannabina	Datiscaceae	Dried flowers- seed	India	[29]
29	Desmodium canadense	Fabaceae	Dried entire plant	USSR	[30]
30	Dioclea grandiflora	Fabaceae	Dried rootbark	Brazil	[30]
31	Diodia scandens	Rubiaceae	Dried entire plant	Nigeria	[30]
32	Dolichos falcatus	Fabaceae	Dried root	China	[31]

33	Ducrosia ismaelis	Apiaceae	Essential oil	Saudi Arabia	[31]
34	Egletes viscosa	Asteraceae	Flower essential oil	Brazil	[32]
35	Elaeagnus kologa	Elaeagnaceae	Aerial parts	India	[33]
36	Elaeocarpus canitrus	Elaeocarpaceae	Fruit	India	[33]
37	Eriobotrya bengalensis	Rosaceae	Aerial parts	India	[33]

Plants with Peripheral analgesic activity.

Diseases, inflammation, and damage to peripheral and central nervous system cause obvious changes in pain pathways such as increase in stimulation and change in expression of genes and new molecules such as neurotransmitters, enzymes, and receptors. Certain pains in long term cause mental and psychological adverse effects. Therefore, human has been always seeking for a solution to remove or relieve pain.

Table 2: Plants with Peripheral analgesic activity.

Sr. No	Plant	Family	Part used	Place	Ref.	
1	Melaleuca elliptica	Myrtaceae	Fresh aerial part	Egypt	[36]	
2	Melaleuca styphelioides	Myrtaceae	Dried leaf	Egypt	[36]	
3	Mentha piperita	Lamiaceae	Dried leaf	Jordan	[36]	
4	Mikania cordata	Asteraceae	Root	India	[36]	
5	Morinda citrifolia	Rubiaceae	Decorticated root	France	[36]	
6	Morus alba	Moraceae	Rootbark	Japan	[36]	
7	Mucuna pruriens	Fabaceae	Dried fruit	Africa	[37]	
8	Myrica nagi	Myricaceae	Dried stembark	India	[37]	
9	Myrtus communis	Myrtaceae	Dried leaf	Iraq	[37]	
10	Nepeta caesarea	Lamiaceae	Aerial part	Turkey	[37]	
11	Nepeta italica	Lamiaceae	Leaf essential oil	Turkey	[37]	
12	Neurolaena lobata	Asteraceae	Dried aerial parts	Brazil	[37]	
13	Nigella sativa	Ranunculaceae	Seed oil	India	[38]	
14	Nyctanthes arbor-tristis	Verbenaceae	Shade dried leaf	India	[39]	
15	Ocimum sanctum	Lamiaceae	Shade dried leaf	India	[40]	
16	Oplopanax elatus	Araliaceae	Root essential oil	China	[41]	
17	Origanum onites	Lamiaceae	Essential oil	Turkey	[41]	
18 Paeonia moutan		Paeoniaceae	Dried root bark	South Korea	[41]	
19	Panax ginseng	Araliaceae	Leaf	Japan	[41]	
20 Panax ginseng		Araliaceae	Dried root	India	[41]	

21	Panax pseudoginseng	Araliaceae	Dried leaf	China	[41]
22	Pancratium maritimum	Amaryllidaceae	Dried bulb	Turkey	[41]
23	Paullinia cupana	Sapindaceae	Dried seed	Brazil	[42]
24	Peganum harmala	Zygophyllaceae	Dried entire plant	Iraq	[43]
25	Persea americana	Lauraceae	Dried seed	Brazil	[44]
26	Photinia serrulata	Rosaceae	Dried branches	Taiwan	[45]
27	Phyla nodiflora	Verbenaceae	Dried leaf	Africa	[46]
28	Phyllanthus niruri	Euphorbiaceae	Dried entire plant	Brazil	[47]
29	Phyllanthus sellowianus	Euphorbiaceae	Dried entire plant	Brazil	[47]
30	Phyllanthus tenellus	Euphorbiaceae	Dried entire plant	Brazil	[47]
31	Phyllanthus urinaria	Euphorbiaceae	Dried entire plant	Brazil	[47]

Analgesic Activity of some Indian medicinal plants

Table 3: Analgesic Activity of some Indian medicinal plants

S. No	Botanical Name (Common Name)	Family	Region	Chemical Constituent	Activity	Ref
1	Acacia catechu (Katha)	Leguminosae	India	Tannins catechin, quercetin, catechuic acid.	Anti- inflammatory	[16]
2	Clerodendrum phlomidis (Arni)	Verbanaceae	India	Alkaloids, glycosides, saponins, tannins.	Analgesic	[17]
3	Phyllanthus niruri (Gulf-leaf flower)	Phyllanthacea e	India	Flavonoids, sterols, alkaloids, phyllanthin, hypophyllanthin.	Antiinflammator y, analgesic.	[19]
4	Sterculia foetida (Jangli badam)	Sterculiaceae	India	Fat, cycloprenoid fatty acids.	Antiinflammator y, analgesic.	[20]
5	Amaranthus spinosus (Prickly amaranth)	Amaranthace ae	India	α-spinasterols octacosanoate and saponin.	Antiinflammator y	[21]
6	Hibiscus tiliaceus (Beach Hibiscus)	Malvaceae	India	Vanillic acid, syringic acid, β- sitosterol, Quercitin etc.	Anti- inflammatory	[22]
7	Pletranthus amboinicus (Maxican mint)	Lamiaceae	India	terpinene, myrcene, limonene, eugenol, carvacrol.	Anti- inflammatory	[23]

8	Calotropis gigantea s (Crown flower)	Asclepiadaec eae	India	Calotropnaphthalen e, terpenes.	Anti- inflammatory	[24]
9	Leucas cephalotes (dronpushpi)	Labiatae	India	Alkaloides, terpenes, stigmasterol ,sterols.	Anti- inflammatory	[25]
10	Celosia argentia (Lalmurga)	Amaranthace ae	India	Stigmasterol, sitosterol, celosin A and B, fatty acids.	Anti- inflammatory	[26]
11	Holarrhena antidysenterica (Indrajao)	Apoynaceae	India	Alkaloid, Tannins & Flavanoids	Antiinflammator y, Analgesics	[27]
12	Tridex procumbens (Ghamra)	Asteraceae	India	flavonoids, procumbentin and quercetin,β- sitosterol	Antiinflammator y, Analgesics	[28]
13	Oxalis corniculata (Creeping oxalis)	Oxalidaceae	India	alkaloids, steroid, triterpenoids, tannins, flavonoids	Anti- inflammatory	[29]
14	Cassia sophera (Kasunda)	Caesalpiniace ae	India	flavonoids, glycosides	Anti- inflammatory	[30]
15	Cissus rependa (Pani bel)	Vitaceae	India	Alkaloids, glycosides, saponins, tannins.	Antiinflammator y, Analgesics	[31]
16	Kaempferia galangal (Aromatic ginger)	(Zingiberacea e)	India	ethyl-p- methoxycinnamate, methylcinnamate, Carvone etc	Antiinflammator y, Analgesics	[32]
17	Tanacetum artemisioides (Paloyo Zoon)	Asteraceae	India	Flavonoids	Antiinflammator y, Analgesics	[33]
18	Hedyotis puberula (Surbuli)	Rubiaceae	India	Iridoid glycosides	Antiinflammator y, Analgesics	[34]
19	Eucalyptus citriodora (lemon eucalyptus)	Myrtaceae	India	Terpenes, alkaloids, flavonoids, tannins, eucalyptol.	Antiinflammator y, Analgesics	[35]
20	Chococca brachiata	Rubiaceae	India	Steroids, phenolic compounds, ligans	Antiinflammator y, Analgesics	[35]
21	Cynara scolymus (Globe artichoke)	Asteraceae	India	Sesquiterpenes, flavone glycosides,	Antiinflammator y, Analgesics	[35]

				volatile oil.		
22	Elephantopus scaber (Elephant foot)	Asteraceae	India	Glycosides, stigmasterol, deoxyelephantopin	Antiinflammator y, Analgesics	[35]
23	Mikania glomerata (sprengel)	Asteraceae	India	Coumarins.	Antiinflammator y, Analgesics	[35]
24	Trianosperma tayaya (Mart)	Curcurbitacea e	India	Essential oil, diterpenoids, sesquiterpens	Antiinflammator y, Analgesics	[35]
25	Casearia sylvestris Swartz. (wild coffee)	Flacurteaceae	India	Alkaloids	Antiinflammator y, Analgesics	[35]
26	Marsypianthes chanaedrys (Konmonmi mawon)	Lamiaceae	India	Essential oil, germacrene D, beta caryophyllene	Antiinflammator y, Analgesics	[35]
27	Apuleia Leiocarpa (Grapia)	Leg-ceae	India	Flavons, phytosterols, flavonoids	Antiinflammator y, Analgesics	[35]
28	Dorstonia brasiliensis (Carapia)	Moraceae	India	Monoterpenoid susbstituted furocoumarin, phytosterol.	Antiinflammator y, Analgesics	[35]
29	Brunfelsia uniflora (Manaca)	Solanaceae	India	Alkaloids- franciscain, manain, scopoletin.	Antiinflammator y, Analgesics	[35]
30	Bauhinia racemosa (Kachnal)	Caesalpiniace ae	India	Flavonoids, saponins, glycosides, tannins.	Analgesic	[35]

Analgesic Activity of some Chinese medicinal plants:

Table 4: Analgesic Activity of some Chinese medicinal plants

Sr. No	Plant name	Family	Region	Activity	Ref.
1	Ligusticum chuanxiong Hort.	Umbelliferae	Chinese	Anti-inflammatory, Analgesics	[48]
2	Lonicera japonica Thunb.	Honeysuckle	Chinese	Anti-inflammatory, Analgesics	[48]
3	Magnolia biondii Pamp.	Magnoliaceae	Chinese	Anti-inflammatory, Analgesics	[48]
4	Morus alba L.	Moraceae	Chinese	Anti-inflammatory, Analgesics	[48]

5	Nelumbo nucifera Gaertn.	Nelumbonaceae	Chinese	Anti-inflammatory, Analgesics	[48]
6	Nigella glandulifera Freyn et Sint.	Ranunculaceae	Chinese	Anti-inflammatory, Analgesics	[48]
7	Oldenlandia diffusa (Willd.) Roxb.	Rubiaceae	Chinese	Anti-inflammatory, Analgesics	[48]
8	Ophiopogon japonicus (L.f.) Ker-Gawl.	Asparagaceae	Chinese	Anti-inflammatory, Analgesics	[48]
9	Paeonia veitchii Lynch	Paeoniaceae	Chinese	Anti-inflammatory, Analgesics	[48]
10	Paeonia lactiflora Pall.	Paeoniaceae	Chinese	Anti-inflammatory, Analgesics	[48]
11	Paeonia suffruticosa Andr.	Paeoniaceae	Chinese	Anti-inflammatory, Analgesics	[48]
12	Panax ginseng C. A. Mey.	Araliaceae	Chinese	Anti-inflammatory, Analgesics	[48]
13	Perilla frutescens (L.) Britt.	Lamiaceae	Chinese	Anti-inflammatory, Analgesics	[48]
14	Peucedanum praeruptorum Dunn	Apiaceae	Chinese	Anti-inflammatory, Analgesics	[48]
15	Polygonatum odoratum (Mill.) Druce	Asparagaceae	Chinese	Anti-inflammatory, Analgesics	[48]
16	Polygonum multiflorum Thunb.	Polygonaceae	Chinese	Anti-inflammatory, Analgesics	[48]
17	Poria cocos (Schw.) Wolf	Polyporaceae	Chinese	Anti-inflammatory, Analgesics	[48]
18	Psoralea corylifolia L.	Leguminosae	Chinese	Anti-inflammatory, Analgesics	[48]
19	Pueraria lobata (Willd.) Ohwi	Fabaceae	Chinese	Anti-inflammatory, Analgesics	[48]
20	Pyrola calliantha H. Andres.	Ericaceae	Chinese	Anti-inflammatory, Analgesics	[48]
21	Rehmannia glutinosa Libosch.	Orobanchaceae	Chinese	Anti-inflammatory, Analgesics	[48]
22	Rosa laevigata Michx.	Rosaceae	Chinese	Anti-inflammatory, Analgesics	[48]
23	Rubia cordifolia L.	Rubiaceae	Chinese	Anti-inflammatory, Analgesics	[48]
24	Salvia miltiorrhiza Bge.	Labiatae	Chinese	Anti-inflammatory, Analgesics	[48]

25	Santalum album L.	Santalaceae	Chinese	Anti-inflammatory, Analgesics	[48]
26	Saposhnikovia divaricata (Turcz.) Schischk.	Apiaceae	Chinese	Anti-inflammatory, Analgesics	[48]
27	Scutellaria baicalensis Georgi	Lamiaceae	Chinese	Anti-inflammatory, Analgesics	[48]
28	Scutellaria barbata D. Don	Lamiaceae	Chinese	Anti-inflammatory, Analgesics	[48]
29	Satsstrea japonica (Thunb.) De.	Menispermaceae	Chinese	Anti-inflammatory, Analgesics	[48]
30	Spatholobus suberectus Dunn.	Leguminosae	Chinese	Anti-inflammatory, Analgesics	[48]
31	Stephania tetrandra S. Moore	Menispermaceae	Chinese	Anti-inflammatory, Analgesics	[48]
32	Tribulus terrestris L.	Zygophyllaceae	Chinese	Anti-inflammatory, Analgesics	[48]
33	Trichosanthes kirilowii Maxim.	Cucurbitaceae	Chinese	Anti-inflammatory, Analgesics	[48]
34	Typha angustifolia L.	Typhaceae	Chinese	Anti-inflammatory, Analgesics	[48]
35	Typhonium giganteum Engl.	Araceae	Chinese	Anti-inflammatory, Analgesics	[48]
36	Xanthium sibiricum Patr.	Asteraceae	Chinese	Anti-inflammatory, Analgesics	[48]
37	Zingiber officinale Rosc.	Zingiberaceae	Chinese	Anti-inflammatory, Analgesics	[48]

Table 5: Analgesic Activity of some Iranian medicinal plants

No	Plant name	Scientific name	Mechanism	Family	Ref.
1	Ben sorkh	Allium jesdanum	Central analgesic activities and effect on opioid receptors	Lilaceae	[49]
2	Karafs	Apium graveolens	Inhibition of cyclo-oxygenase	Umbelliferae	[49]
3	Tarkhoun	Artemisia dracunculus	Presence of flavonoids and substances with benzodiazepines property	Asteraceae	[49]
4	Dermaneh	Artemisia herba alba	Stimulation of GABA A receptors	Artemisia	[49]
5	Artemisia	Artemisia siberi Besser	Inhibition of calcium release, blocking of receptor, TRPA1, inhibition of	Dermaneh dashti	[49]

			synthesis of NO, cytokines, and prostaglandin E2		
6	Zereshk	Berberis vulgaris L.	Opioid system	Berberidaceae	[49]
7	Zenyan	Carum copticum	Effect of essential fatty acids	Umbelliferae	[49]
8	Lauraceae	Cinnamomum zeylanicum	Inhibition of NO synthesis, inhibition of TNF and COX2, inhibition of prostaglandins, and stimulation of opioids receptors	Darchin	[49]
9	Gole hasrate- barfi	Colchicum szovitsii Fisch& C.A.Mey	Anti-inflammatory effects and opioid pathways	Colchicaceae	[49]
10	Geshniz	Coriandrium sativum		Verbenaceae	[49]
11	Zaefaran	Crocus sativus	Potential inhibition of NMDA receptors and NO synthesis	Iridaceae	[49]
12	Zireh sabz	Cuminum cyminum L.	4 2	Apiaceae	[49]
13	Tatoureh	Datura stramonium L.	Strengthening of opioid system and decrease of peripheral and central pain-causing mediators	Solanaceae	[49]
14	Bilhar	Dorema aucheri	Inhibition of synthesis of NO and NMDA receptors and stimulation of opioid and adrenergic system	Umbelliferae	[49]
15	Shabnam khorshid	Drosera spatulata	Activity of nucleus paragigantocellularis	Droseraceae	[49]
16	senjed	Elaeagnus angustifolia	Inhibition of proinflammatory mediators and NMDA receptors	Elaeagnacea	[49]
17	Shirmal	Euphorbia helioscopia	Effect of flavonoids and steroids	Euphorbiaceae	[49]
18	Razianeh	Foeniculum vulgare	Serotonergic and histaminergic receptors	Apiaceae	[49]
19	Glosium	Glaucium grandiflorum	Alkaloids	Papaveraceae	[49]
20	Shirin bayan	Glycyrrhiza glabra	Inhibition of white blood cells migration and production of inflammatory mediators in neutrophils	Fabaceae	[49]

21	Kangar	Gundelia tournefortii L.	Serotonergic, gabanergic, and adrenergic and inflammatory processes	Asteraceae	[49]
22	Razak	Humulus lupulus L.	Opioid receptors	Cannabaceae	[49]
23	Nang dane	Hyoscyamus niger	Cholinergic and opioid mechanisms	Solanaceae	[49]
24	Alafe chay	Hypericum perforatum	Inhibition of COX1 and 5-LO enzymes	Hypericaceae	[49]
25	Gerdou	Juglans regia	Inhibition of COX1 enzyme, inhibition of calcium release, cholinergic,	Juglandaceae	[49]

Table 6: Analgesic Activity of some Turkish medicinal plants

Sr. No	Plant name	Collected parts	Collection sites	Use/Mechanism	Ref.
1	Anchusa azurea Miller var. azurea	Herb	Ankara, Kurtbogazi po	Anti-inflammatory, Analgesics	[50]
2	Arceuthobium oxycedri (DC.) Bieb.	Whole	Kastamonu, Kuzey mahallesi	Anti-inflammatory, Analgesics	[50]
4	Calluna vulgaris L.	Herb	Trabzon, Su" rmene, C, amburnu vicinity	Anti-inflammatory, Analgesics	[50]
5	Daphne oleoides Schreber	Herb	C, ankırı, Ilgaz, Rock tombs	Anti-inflammatory, Analgesics	[50]
6	Isatis glauca Aucherx	Herb	Ankara, Go" lbasi	Anti-inflammatory, Analgesics	[50]
7	Boiss. subsp. glauca	Herb	C, ankırı, Ilgaz, Rock tombs	Anti-inflammatory, Analgesics	[50]
8	Laurus nobilis L.	leaf	Antalya, Lara	Anti-inflammatory, Analgesics	[50]
9	Daphne oleoides Schreber	Seed	Ezenteri, ezanteri	Anti-inflammatory, Analgesics	[50]
10	Prunella vulgaris L.	Herb	Ankara, Kurtbogazi pond	Anti-inflammatory, Analgesics	[50]
11	Ranunculus tricophyllus	Herb	Ankara, Sariyer dam	Anti-inflammatory, Analgesics	[50]
12	Rumex crispus L.	Herb	Ankara, Kizilcahamam, Gu ["] vem village	Anti-inflammatory, Analgesics	[50]
13	Scabiosa rotata Bieb.	Herb	Ankara, Kurtbogazi pond	Anti-inflammatory, Analgesics	[50]

14	Tamus communis L.	Root	Aydin, Kusadasi,	Anti-inflammatory,	[50]
			Davutlar village	Analgesics	

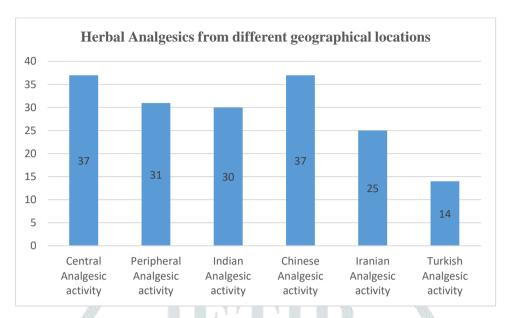


Figure 1: plants from different region

The data of this review article indicated that 174 medicinal plants from India, Chinese, Iran, and Turkish are used as analgesic, 37 plants are screened for showing analgesic activity, 31 plant are show peripheral analgesic activity, 30 plants from India, 37 plants from Chinese, 25 plants from Iranian, 14 plants from Turkish.

Conclusion:

The aim of this review was to examine scientific studies on anti-inflammatory activities of selected medicinal plants in use in different regions of Africa. In this review, different plants from selected countries in the various geographical region (India, Chinese, Iran, and Turkish) were identified. It can be seen that African countries are repository of medicinal plants that are readily available and used in the treatment and management of various disease conditions, including inflammatory conditions affecting the teaming population. Several drugs are available both in developed and developing countries, for treatment and management of inflammatory conditions; however, many of these drugs are associated with adverse effects. Africans who majorly depend on medicinal plants to meet their health needs believe that orthodox drugs are associated with severe side effects, hence many people in mentioned countries, especially those living in poor-resource setting, use medicinal plants in the treatment of inflammation and pain. Many studies have been performed in different (India, Chinese, Iran, and Turkish) countries to evaluate the analgesic activities of medicinal plants and to validate their use in traditional medicine. Plants have the capability to synthesize various forms of phytochemical compounds as secondary metabolites, many of which have been identified and continue to be relevant in the treatment of disease conditions. Further research on plants with analgesic activities is needed since a great percentage of traditional healers across India, Chinese, Iran, and Turkish may have important information of plants that have not been researched.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author biography

I graduated with a degree in B. pharmacy from Savitribai phule Pune University in 2020 and have a keen interest in Pharmacognosy and their applications to healthcare dilemmas. I am currently a M. Pharmacy student at Savitribai phule Pune University looking at novel drug delivery system which gives targeted drug delivery.

Acknowledgements

I would like to thank Prof. Dr. D. P. Hase sir for her help and assistance in writing this manuscript. I would also like to thank Dr M.J. Chavan Principal of Amrutvahini College of pharmacy, Sangamner for his support on the manuscript.

Reference:

- [1] Halder, S., Anand, U., Nandy, S., Oleksak, P., Qusti, S., Alshammari, E. M., El-Saber Batiha, G., Koshy, E. P., & Dey, A. (2021). Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. In *Saudi Pharmaceutical Journal* (Vol. 29, Issue 8, pp. 879–907). Elsevier B.V. https://doi.org/10.1016/j.jsps.2021.07.003.
- [2] Rauf, A., Jehan, N., Ahmad, Z., & Mubarak, M. S. (2017). Analgesic Potential of Extracts and Derived Natural Products from Medicinal Plants. In *Pain Relief From Analgesics to Alternative Therapies*. InTech. https://doi.org/10.5772/intechopen.68631
- [3] Hl, R., Kumar, V., Hs, Y., Vm, C., & Kumar Bp, S. (2009). AN OVERVIEW OF HERBAL MEDICINE Anti osteoporosis activity of Berberis aristata in OVX rats View project AN OVERVIEW OF HERBAL MEDICINE. In *Article in International Journal of Pharmaceutical Sciences* (Vol. 1, Issue) https://www.researchgate.net/publication/343194624
- [4] Pandey, R., Tiwari, R. K., & Shukla, S. S. (2016). Omics: A newer technique in herbal drug standardization and quantification. In *Journal of Young Pharmacists* (Vol. 8, Issue 2, pp. 76–81). EManuscript Services. https://doi.org/10.5530/jyp.2016.2.4
- [5] Regulatory Situation of Herbal Medicines A worldwide Review The evaluation of these products and ensuring their safety and efficacy through registration and regulation present important challenges. (n.d.).
- [6] Sellami, M., Slimeni, O., Pokrywka, A., Kuvačić, G., Hayes, L. D., Milic, M., & Padulo, J. (2018). Herbal medicine for sports: A review. In *Journal of the International Society of Sports Nutrition* (Vol. 15, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12970-018-0218-y
- [7] van Rensburg, R., & Reuter, H. (2019). An overview of analgesics: Nsaids, paracetamol, and topical analgesics part 1. In *South African Family Practice* (Vol. 61, pp. S4–S10). AOSIS (pty) Ltd. https://doi.org/10.1080/20786190.2019.1610228.
- [8] Aleebrahim-Dehkordy, E., Tamadon, M. R., Nasri, H., Baradaran, A., Nasri, P., & Beigrezaei, S. (2017). Review of possible mechanisms of analgesic effect of herbs and herbal active ingredient. In *Journal of Young Pharmacists* (Vol. 9, Issue 3, pp. 303–306). EManuscript Services. https://doi.org/10.5530/jyp.2017.9.60
- [9] Oguntibeju, O. O. (2018). Medicinal plants with anti-inflammatory activities from selected countries and regions of africa. In *Journal of Inflammation Research* (Vol. 11, pp. 307–317). Dove Medical Press Ltd. https://doi.org/10.2147/JIR.S167789.
- [10] Pongprayoon U, Baekstrom P, Jacobsson U, Lindstrom M, Bohlin L. Compounds inhibiting prostaglandin synthesis isolated from Ipomoea pescaprae. Planta Med. 1991;57(6):515–518.
- [11] Gupta OC, Rizvi SA, Gupta PC. Chemical examination of a phytosterolin from the seeds of Ipomoea fistulosa. Planta Med. 1971;20(2):72–177.
- [12] Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. Antioxidant activities, phenolic and carotene contents of sweet potato geneotypes with varying flesh colours. Food Chem. 2007;103(3):829–838.
- [13] Pongprayoon U, Baekstrom P, Jacobsson U, Lindstrom M, Bohlin L. Compounds inhibiting prostaglandin synthesis isolated from Ipomoea pescaprae. Planta Med. 1991;57(6):515–518.
- [14] Karawya MS, Ammar MM, Hifnawy MS, AL-Okbi SY, Mohamed DA, EL-Anssary AA. Phytochemical study and evaluation of the antiinflammatory activity of some medicinal plants growing in Egypt. Med J Islamic World Academy Sci. 2010;18(4):139–150.

- [15] Boubekri N, Belloum Z, Boukaabache R, et al. In vivo anti-inflammatory and in vitro antioxidant activities of Genista quadriflora Munby extracts. Der Pharmacia Lettre. 2014;6(1):1–7.
- [16] Patil SS, Bhide AA and Gorle AM, Anti-ulcer and Antiinflammatory studies on Acacia catechu, Indian Drugs, 47(2)February, 2010,50-53.
- [17] Srinivasa U, Neelakanta, Shabaraya AR and Rao VJ, Analgesic activity of Clerodendrum phlomidis stem bark, Indain Drugs,47(2)February, 2010,57-59.
- [18] Sathisha A, Udupa L, Raathanakar UP,Pai PG, Acharya SD and Shastry R, Anti-inflammatory and Analgesic activity of Phyllanthus niruri in Rodent models. Indian Drugs, 46(12) December, 2009,50-53.
- [19] ShaahbadkarGS, SwamyP, Gaikwad DR and Muttagi S, Antiinflammatory, Analgesic and Antimicrobial effects of Stercilia foetida L.seed cake, Indian Drugs, 47(1) January, 2010, 52-56.
- [20] Baral M, Chakraborty S, Chakraborty P, Evaluation of Anthelmintic and Anti-inflammatory activity of Amaranthus spinosus linn. International Journal of Current Pharmaceutical Research, 2(4), 2010, 44-47.
- [21] Narender, Kumar S, Kumar D and Kumar V, Antinociceptive and Anti-Inflammatory Activity of Hibiscus tiliaceus Leaves, International Journal of Pharmacognosy and Phytochemical Research, 1(1), 2009, 15-17.
- [22] Manjamalai A, Narala Y, Haridas A, Berlin Grace VM, Antifungal, Antiinflammatory and Gc Ms Analysis of Methanolic Extract of plectranthus Amboinicus Leaf, International Journal of Current Pharmaceutical Research, 3(2), 2011, 129-136.
- [23] Jagtap VA, Md Rageeb, Md Usman, Salunkhe PS, Gagrani MB, Anti-inflammatory Activity of Calotropis gigantea Linn. Leaves Extract on In-vitro Models, International Journal of Pharmaceutical review and Research, 1(2), August-october, 2010, 1-5.
- [24] Mathur A, Gupta V, Verma S, Singh SK, Prakash A, Prasad GBKS, Dua VK, Anti-Inflammatory Activity of Different Fractions of Leucas Cephalotes Leaves Extract, International Journal of Pharmaceutical review and Research, 1(3), February-April, 2011, 28-32.
- [25] Kadam SH, Dombe SA, Naikwadi PN, Patil SP, Lokhande VY. Anti- Inflammatory Activity of Celosia Argentea Leaves, International Journal of Drug Formulation & Research, 2 (1) Jan-Feb, 2011, 105-108.
- [26] Solanki R, Madat D, Chauhan K, Adeshara SP, Analgesic Activity of Holarrhena antidysenterica (Apoynaceae) Bark International Journal of Pharmacognosy and Phytochemical Research, 2(4), 2010, 5-7.
- [27] V.Vinoth Prabhu, G.Nalini, N.Chidambaranathan, S. Sudarshan Kisan, Evaluation Of Anti Inflammatory And Analgesic Activity Of Tridax Procumbens Linn Against Formalin, Acetic Acid And Cfa Induced Pain, International Journal Of Pharmacy And Pharmaceutical Sciences, 3(2), 2011, 126-130.
- [28] Sakat SS, Juvekar AR And Gambhire MN, InvitroAntioxidant And Antiinflammatoryactivity Of Methanol Extract of Oxalis Corniculata Linn, International Journal of Pharmacy and Pharmaceutical Sciences, 2(1), 2010, 146-155.
- [29] Nagore DH, Ghosh VK, Patil MJ, Wahile AM, In Vitro Antioxidant And In Vivo anti-inflammatory Activity of Cassia sophera Linn, International Journal Of Pharmacy And Pharmaceutical Sciences, 2(1), 2010, 114-121.
- [30] Harisha CR, Ashok BK, Acharya R, Sukla VJ, Ravishankar B., Anti Inflammatory And Analgesic Activity Of Roots And Stem Of Cissus Repeda Vahl. Pharmacognosy Journal, 21(18), 2010,7-54.
- [31] Vittalrao AM, Shanbhag T, Kumari KM, Bairy KL AndShenoy S, Evaluation of Antiinflammatory and Analgesic Activities of Alcoholic Extract Of Kaempferia Galanga In Rats, Indian J Physiol Pharmacol, 55 (1),2011, 13–24.
- [32] Bukhari IA, Khan RA, Gilani AU, Shah AJ, Hussain J, Ahmad VU, The analgesic, anti-inflammatory and calcium antagonist potential of Tanacetum artemisioides. Arch Pharm Res. 30(3), 2007 Mar,303-12.
- [33] Joseph JM, Sowndhararajan K, Manian S, Evaluation of Analgesic and Anti-inflammatory Potential of Heydyotis parberula (G.Don) R.Br. ex. Arn. in experimental animal models. Food Chem Toxicol, 48(7), 2010, July ,1876-80.

- [34] Silva J, Abebe W, Sousa SM, Duarte VG, Machadoand MIL, Matos MJA, Analgesic and antiinflammatory effects of essential oils of Eucalyptus, Journal of Ethnopharmacology, 89(2-3), 2003, 277-283.
- [35] Bettina M.Ruppett, Edna F.R. Peveria, Lilia C. Gonccalves and Nuno A. Pereira. Pharmacological screening of plants recommended by Folk medicine as anti-snake venom-1, analgesic and Antiinflammtory activities., Mem.Inst. Oswaldo Cruz, Rio de Janeiro, 86(II), 1991,203-205
- [36] Prabhu VV, Nalini G, Chidambaranathan N, Sudarshan Kisan S, Evaluation Of Anti Inflammatory And Analgesic Activity Of Tridax Procumbens Linn Against Formalin, Acetic Acid And Cfa Induced Pain Models, International Journal Of Pharmacy And Pharmaceutical Sciences, 3(2), 2011, 126-130.
- [37] awarkar A, Jangde CR, Thakre PD, Kadoo R and Shelu S, Analgesic Activity of Hibiscus rosa sinensis Linn in Rat, Veterinary World.2(9),2009,353-354.
- [38] Nikajoo Lt, Analgesic Activity Of Aqueous And Alcohol Root Extracts Of pergularia Daemia (Forsk.) Chiov. International Journal Of Pharmacy And Pharmaceutical Sciences, 1(1), 2009,33-37.
- [39] Vijay P and Vijayvergia R, Analgesic, anti-inflammatory and antipyretic activity of Cissus quadrangularis, Journal of Pharmaceutical Science and Technology. 2 (1), 2010, 111-118
- [40] Jayarama Reddy, Gnanasekaran D, Vijay D. and Ranganathan TV, In vitro studies on anti asthmatic, analgesic and anti convulsant activities of the medicinal plant Bryonia laciniosa.Linn, International Journal of Drug Discovery, 2(2), 2010, 01-10.
- [41] Amresh G, Zeashan H, Rao VC and Singh PN, Prostaglandin mediated anti-inflammatory and analgesic activity of Cissampelos pareira, Acta Pharmaceutica Sciencia, 49, 2007,153-160.
- [42] R. Vijayamirtharaj, S. Vincent and N. Senthilkumar, Analgesic activity of clerodendrum phlomidis linn. (Aerial parts), International Journal of Research in Pharmaceutical and Biomedical Sciences, 2 (1), 2011, 120-123.
- [43] Yadav S, Kulshreshtha M, Goswami M, Rao CV and Sharma V, Elucidation of Analgesic and Antipyretic activities of Ficus bengalensis linn. Leaves in rats, Journal of Applied Pharmaceutical Science 01 (01), 2011, 38-41.
- [44] Isnatin M, Ferdiyanto D and Sufi D, Analgesic activity of ethanolic extract of Manihot esculenta Crantz leaves in mice, Universa Medicina, 1(1), 2011,3-10.
- [45] Vikrama Chakravarthi.P. And Gopakumar.N, Evaluation of Analgesic Activity of Lotus Seeds (Nelumbo Nucifera) In Albino Rats, Veterinary World, 2(9), 2009, 355-357.
- [46] Verma A, Jana GK, Chakraborty R, Sen S, Sachan S, Mishra A, Analgesic Activity of Various Leaf Extracts Of Saraca indica Linn, Der Pharmacia Lettre, 2(3),2010,352-357.
- [47] Evangeline C. Amor, Jusal P. Quanico, Grace G. Perez, Analgesic activity of extracts of Kyllinga monocephala, Pharmaceutical Biology, 47(7), 2009, 624-627.
- [48] Chen, C. L., & Zhang, D. D. (2014). Anti-inflammatory effects of 81 Chinese herb extracts and their correlation with the characteristics of traditional Chinese medicine. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/985176
- [49] Parsaei, P., Bahmani, M., Karimi, M., & Naghdi, N. (2016). A review of analgesic medicinal plants in Iran Role of Immune Response in Different Clinical Expressions of Helicobacter pylori Infection View project Study on antimicrobial property of essential oils from Medicinal plants View project. https://www.researchgate.net/publication/301588891
- [50] Kupeli, E., Orhan, I., & Yesilada, E. (2007). Evaluation of some plants used in Turkish folk medicine for their anti-inflammatory and antinociceptive activities. Pharmaceutical Biology, 45(7), 547–555. https://doi.org/10.1080/13880200701498895