JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue



# JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

# Use of Plastic waste in Flexible Pavement Road Construction

# Rutvik Padasala<sup>1</sup>, Patel Prajjval<sup>1</sup>, Ronak Modi<sup>2</sup>

- 1. Final year students, Department of Civil Engineering, U.V.Patel College of Engineering, Ganpat University, Kherva
- 2. Assistant Professor, Department of Civil Engineering, U.V.Patel College of Engineering, Ganpat University, Kherva

Abstract: Using recycled plastic waste in production of a pavement helps in financial savings and conservation of herbal Sources in addition to solve problem of disposal of large amount of waste materials produced every year. The waste plastic and its disposal are a main risk to the surroundings, which ends up in pollutants and international warming. The utilization of plastic waste in bituminous mixes complements its homes and its electricity in addition; it's going to also be an answer to plastic disposal & various defects in pavement viz., potholes, corrugation, ruts, and so forth. So, this plastic waste should be reused to put off the danger to the surroundings. One such reuse can be in the construction of bendy pavements. Plastic covered aggregates have proved to provide higher resistance to abrasion and wear and tear. This challenge will behaviour a look at on recycling plastic waste and blending it with bitumen to put roads in India and examine with the environmental and monetary situations some of those substances are exceedingly less expensive and offer extra strength as compared to conventional road materials. In order that one will have a step towards in addition precise facts about those materials and hence be able to implement on field this will absolutely improve the extent of production.

Keywords: Flexible Pavement, Plastic waste, Aggregate.

# 1. Introduction

Plastic is wherever in the present way of life. It is utilized for bundling, safeguarding, serving, and in any event, discarding different types of customer products. With the modern transformation, mass creation of merchandise began and plastic appeared to be a less expensive what's more compelling natural substance. Today, every essential area of the economy beginning from farming to bundling, auto, building development, been practically reformed by the uses of correspondence or InfoTech has plastics. Plastic in various structure is found, which is poisonous in nature. It is ordinarily gathered both metropolitan and provincial regions. It makes stagnation of water and related cleanliness issues. Plastic squander peril to the climate. Plastic waste can be reused beneficially in the development of roads [1].

The majority of the cleared streets in our nation have granular sub base and base; bituminous base and wearing courses. Plastic is an exceptionally adaptable material. Because of the modern insurgency, and its huge scope creation plastic appeared to be a less expensive and compelling unrefined substance. Today, every fundamental area of the economy beginning from agribusiness to bundling, auto, gadgets, electrical, building development, correspondence areas has been basically altered by the uses of plastics. Plastic is a non-biodegradable material and scientists saw that as the material can stay on earth for a very long time without corruption. A few investigations have demonstrated the wellbeing danger brought about by ill-advised removal of plastic waste. Plastics, a flexible material and a companion to average person become an issue to the climate after its utilization. Removal of an assortment of plastic and elastic squanders in an eco-accommodating way is the pushed region of the present examination. Looking forward the situation of present way of life a total restriction on the utilization of waste plastic can't be put, albeit the waste plastic taking the substance of a villain for the present and what's to come age. Yet, the utilization of waste plastics in street development is acquiring significance these days since plastic streets perform better compared to standard ones and the plastic waste viewed as a contamination threat, can see as its use [2].

Any country's advancement is straightforwardly reliant upon framework. India is on the limit of a significant forward push in the field of transportation framework. Throughout recent many years, traffic volumes have expanded, requesting from asphalt engineers, more grounded and durable asphalts. New techniques for asphalt configuration are being created to work on the presentation of streets. New materials are being utilized to supplant the old ones to work on the sturdiness, strength, feel and economy [3].

# 2. Objective of work

- To recognize the ideal extent of waste plastic to be included the bitumen blend for getting the required strength.
- To reduce the disposal problem of plastics.

# 3. Scope of the work

With expanding populace and industrialization, request of different improvement projects, development of different modern constructions, building and streets have become significant. for proficient and ideal plan comprehension of the conduct of road surface is of prime significance. the extent of present review is:

- To use squander materials as an asphalt fixing (as bitumen modifier).
- To limit a dangerous atmospheric devotion, ozone depleting substances and contamination.

### 4. Literature Review

They have mentioned that, the Quantitative changes in Viscosity, Softening Point, Penetration Value, Marshal Stability and DSR test. which is used to describe the viscous and elastic behaviour of the modified bitumen at different temperature. According to the study it is observed that, blending different level of plastic in bitumen shows positive outcome on the exact test done during this paper. The vacillation of test information with different level of plastic blended in bitumen is switching around to ideal level then it either shows adverse outcome or stays unaltered. In the current investigation of various lab test, the ideal plastic substance was viewed as 8% by weight of bitumen [5].

The plastic creation over the world has crossed 400 million tons and the reusing of plastic is just 10%. Different tests are being directed to work on the properties of bituminous street. The new headway in that study is utilization of waste plastic in road development. Plastic road has less dampness ingestion than typical roads. Toughness of road is increments when contrasted with typical road. The hotness treatment of plastic may prompt arrival of hurtful gases to air [7].

They have mentioned that, the Removal of destroyed biomedical plastic waste (BMPW)by involving it in bituminous road construction. the work was restricted to the utilization of biomedical plastic waste just and it was completed by adding treated autoclaved needle plastic waste. So here in these studied comparisons between the two methods were done and the best method was suggested. Its smarter to utilize plastic covered totals than involving it as a modifier in bitumen. There by we can give solid, strong and eco-accommodating roads - which alleviate the earth from all kind of plastic-squander [8].

They have mentioned that, Utilize Non- Degradable Plastic, Carbon Rubber in Bitumen. And Compare the Strength Characters of Normal Bitumen And (Waste Plastic& Carbon Rubber) Added Bitumen 5% 7% 9%. In this project undertaking contrasted the ordinary bitumen properties and the waste plastic and waste levels bitumen at various rates. The ideal level of plastic and tires to be added is 7% [9].

They have mentioned that, soil test, design the flexible pavement, design the asphalt pavement with aggregate- plastic- bitumen mix, coat the aggregate with plastic and incorporate titanium di-oxide, test the bitumen and the modified bitumen. The plastic blended in with bitumen and totals is utilized for the better performance of the roads. The polymer covered on totals decreases the voids and dampness retention. The utilization of smoke spongy material (titanium di-oxide) by 10% of polymer content can lessen the vehicular contamination [10].

They have mentioned that, the optimum proportion of waste plastic to be added in the bitumen mix for getting the required strength. The research methodology for present study has adopted Six Marshall Stability tests will be ready out of which three will be with the plastic of changing rate (5%, 10%, and 15%) and three examples without plastic waste. investigation of the conduct of plastic waste changed BC, we can reason that the altered blend has further developed Marshall Characteristics. It is seen that Marshall Stability esteem increments with plastic substance and we saw that the Marshall Flow esteem diminishes upon expansion of polythene [2].

# 5. Methodology

# 5.1 Materials

The materials used for carrying out the present research are:

- 1. Aggregates
- 2. Bitumen
- 3. Plastic waste

# 5.2 Basic Process

• Segregation: Plastic waste gathered from different sources should be isolated from other waste. Maximum thickness is 60 microns.



Fig.1. Segregation of plastic

- Cleaning process: Plastic squanders get cleaned and dried.
- Shredding process: Will be shredded or cut into little piece. the different types of plastic wastes are mixed together.



Fig.2. Cleaning & Shredding of plastic

• Collection process: The plastic waste holding in 2.36 mm is gathered.



Fig.3. (2.36 mm) plastic

### 5.3 Field Trials

• Dry process: Hot bitumen is added an than Shredded plastic waste is added.



Fig.4. Dry process

- Wet process:
- Squander Plastics by Direct Blending in With Hot Bitumen at 160°C.
- Mechanical Stirrer Is Required.
- Expansion Of Stabilizers and Appropriate Cooling.
- Since The Wet Process Require a Lot of Investment and Bigger Plants.
- Not Regularly Utilized

# 6. Test Result

Physical Test on Plastic Waste Modified Bitumen

# **6.1 Penetration Test:**

In this test, different level of plastic (%) was added to the first bitumen. The test showed the variety of entrance esteem with the different rate of plastic adjusted bitumen and it introduced that consistency increments with expansion of plastic.

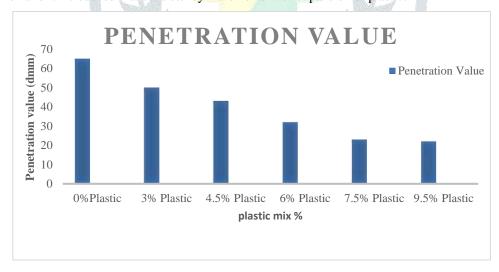



Chart.1. Penetration value with plastic mixed Bitumen

# **6.2 Softening Point:**

In this test, different level of plastic was added to the first bitumen. The test showed the variety of mellowing point with the different rates of plastic altered bitumen. The fact that softening point makes it seen increments with the rising measure of plastic substance (%).

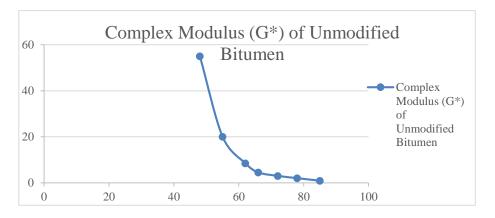



Chart.2. Softening point with different plastic content

# 6.3 specific gravity test:

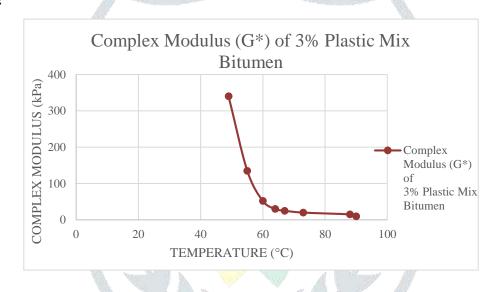



Chart.3. Graph of Complex Modulus (G\*) and temperature of Unmodified Bitumen

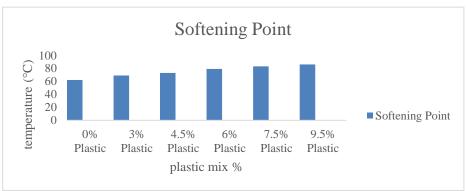



Chart.4. Graph of Complex Modulus (G\*) and temperature of 3% plastic mix bitumen

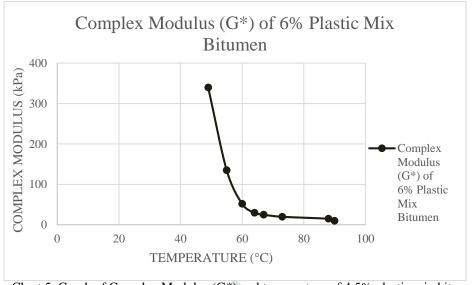



Chart.5. Graph of Complex Modulus (G\*) and temperature of 4.5% plastic mix bitumen

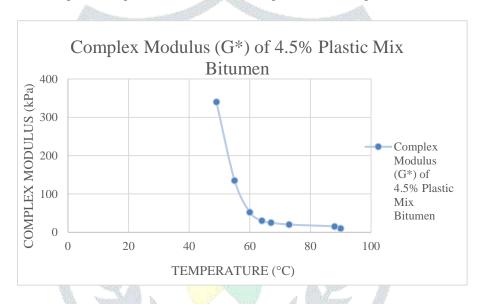



Chart.6. Graph of Complex Modulus (G\*) and temperature of 6% plastic mix bitumen

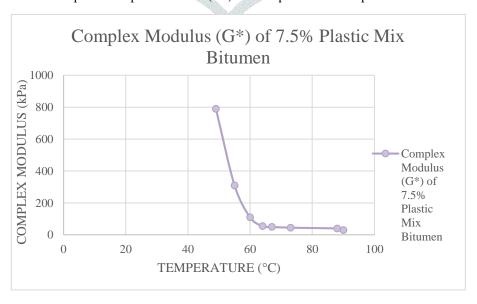



Chart.7. Graph of Complex Modulus (G\*) and temperature of 7.5% plastic mix bitumen

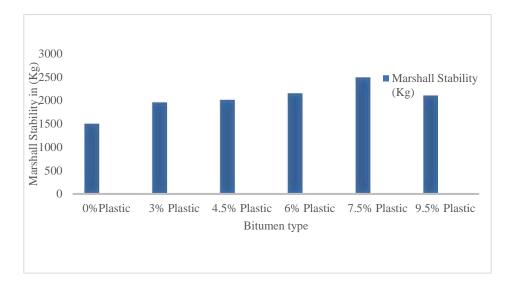



Chart.8. Graph of Complex Modulus (G\*) and temperature of 7.5% plastic mix bitumen

# **6.4** Marshall Stability Test:

This test an endeavour is made to analyse the consequences of ordinary bitumen example and with Plastic adjusted bitumen example with fluctuating % of plastic blended. Three examples were made for each unique %age of bitumen and the example was tried in Marshall Testing Machine. Ideal Bitumen content (OBC) is determined by taking the normal of % bitumen for which Marshall Stability, Thickness is most extreme and 4% air void bitumen content.

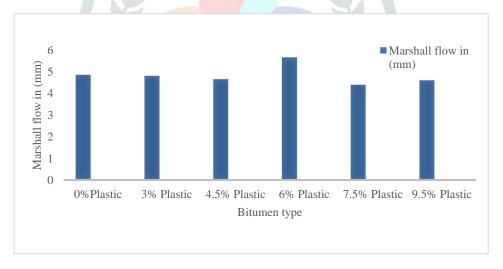



Chart.9. graph of Marshall Stability of different type of Bitumen (at 5% bitumen by weight)

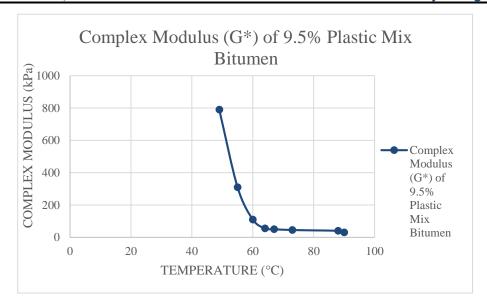



Chart.10. Graph of Marshall Flow value of different type of Bitumen (at 5% bitumen by weight)

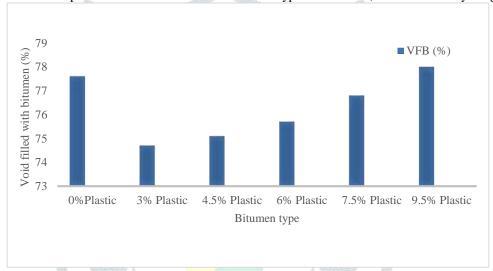



Chart.11. Graph of voids of different type of Bitumen (at 5% bitumen by weight)

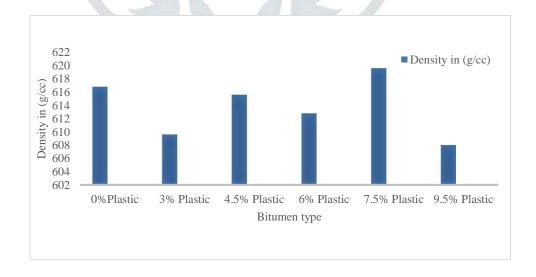



Chart.12. Graph of void filled by bitumen of different type of Bitumen (at 5% bitumen by weight)

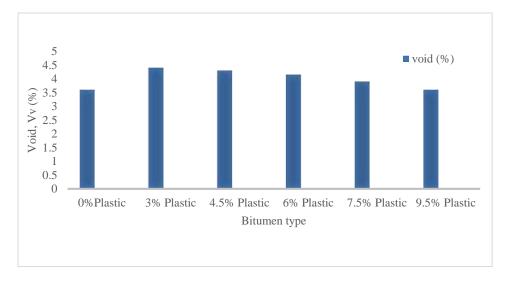



Chart.13. Graph of Density of different type of Bitumen (at 5% bitumen by weight)

## 7. Conclusions

Mixing various percentage of Plastic percentage in Bitumen shows positive result on the empirical test done during this project. The polymer covered on aggregates reduces the voids and moisture absorption. The plastics display adhesion belongings in their molten country. Plastics will growth the melting factor of the bitumen. Subsequently, using waste plastics for pavement is one of the best methods for clean disposal of waste plastics. This consequence in the discount of ruts and there may be no pothole formation. The plastic pavement can resist heavy visitors and are long lasting than bendy pavement. The plastics display adhesion belongings in their molten country. Plastics will growth the melting factor of the bitumen. Subsequently, using waste plastics for pavement is one of the best methods for clean disposal of waste plastics as the Viscosity of the modified bitumen is a lot higher than the unmodified bitumen, the exclusive layers of bitumen can have excessive electricity and thus elevated the electricity of pavement resulting in extra existence and serviceability of the pavement.

### References

- Use of plastic waste in road construction international journal of computer applications (0975–8887) international conference on quality upgradation in engineering, science and technology (ICQUEST2015)
- 2. Use of plastic waste in road construction, international journal of advance research and development. Azmat Shaikh, Nabeel Khan, Faisal Shah, Devendra Shukla, Gauray Kale
- 3. <a href="https://www.academia.edu/27003701/Use of Plastic Waste in Bituminous Road Construction">https://www.academia.edu/27003701/Use of Plastic Waste in Bituminous Road Construction</a>
- 4. Aayush Verma Utilization of Recycled Plastic Waste in Road Construction International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181
- 5. Chada Jithendra Sai Raja, N. Sai Sampath, Ch. Suresh, A. Phani Bhaskar. A Review on Use of Plastic Construction of Roads. Journal of advancement in engineering and technology.
- 6. Ammu B Crusho, Vincy Varghese. Medical Plastic Waste Disposal by Using in Bituminous Road Construction. International research journal of multidisciplinary technovation (IRJMT).
- 7. Senthil Naathan, C. Chinnaraj. Effect of plastics & rubber in bitumen ISSN No: 2454-9614. South Asian Journal of Engineering and Technology Vol.3, No.7 (2017) 162-169
- 8. R. Manju, Sathya S, Sheema K. Use of plastic waste in bituminous pavement. International. Journal of Chemtech Research (ISSN: 0974-4290)