JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

SMART DUSTBIN USING ARDUINO

¹AnubhabGhosh²RajdipBarua ³AgnibhaGanguly ⁴SayanDey ⁵RimpiDatta

¹Student²Student³Student⁵Assistant Professor Electronics & Communication Engineering Narula Institute of Technology

Abstract: The main objective of the project is to design a smart dustbin which will help in keeping our environment clean and also Eco friendly. We are inspired from "Swaach Bharat Mission". Nowadays technologies—are getting smarter day-by-day so, as to clean the environment we are designing a smart dustbin by using Arduino. This smart dustbin management system is built on the microcontroller based system having ultrasonic sensors on the dustbin. If dustbin is not maintained than these can cause an unhealthy environment and can cause pollute that affect our health. In this proposed technology we have designed a smart dustbin using ARDUINO UNO, along with ultrasonic sensor, servo motor, and battery jumper wire. After all hardware and software connection, now Smart Dustbin program will be run. Dustbin lid will when someone comes near at some range than wait for user to put garbage and close it. It's properly running or not. For social it will help toward health and hygiene, for business for we try to make it affordable to many as many possible. So that normal people to rich people can take benefit from it.

Index Terms - Arduino, Microcontroller, Circuitry.

I. INTRODUCTION

The rate increasing population in our country has increasing rapidly and also we have increase in garbage which have increased environmental issue. Dustbin is a container which collects garbage's or stores items which recyclable or non-recyclable, decompose and non-decompose. They are usually used in homes, office etc., but in case they are full no one is there to clean it and the garbage are spilled out. The surrounding of a dustbin is also conducive for increasing the pollution level. Air pollution due to a dustbin can produce bacteria and virus which can produce life harmful diseases for human. Therefore, we have designed a smart dustbin using ARDUINO UNO, ultrasonic sensor which will sense the item to be thrown in the dustbin and open the lid with the help of the motor. It is an IOT based project that will bring a new and smart way of cleanliness. It is a decent gadget to make your home clean, due to practically all offspring of home consistently make it grimy and spread litter to a great extent by electronics, rappers and various other things. Since the smart dustbin is additionally intriguing and children make fun with it so it will help to maintain cleanliness in home. It will be applied for various type of waste. Dustbin will open its lid when someone/object is near at some range then it will wait for given time period than it will close automatically. Here lid will close when you don't want to use and it will only open when it required.

II. RESEARCH METHODOLOGY

SMART DUSTBIN is an ARDUINO based project. Here we are using Arduino for code execution, for sensing we used ultrasonic sensor which will open lid and wait for few moment. It will bring drastic changes in tern of cleanliness with the help of technology. Everything is getting with smart technology for the betterment of human being. So this help in maintaining the environment clean with the help of technology. It is a sensor based dustbin so it would be easy to access/use for any age group. Our aim is also to make it cost effective so that many numbers of people can get the benefit from this. And it should be usable to anyone and helpful for them.

• To complete our project, we require some software as well as some hardware.

Required Software:

1. ARDUINO IDE

Required Hardware:

- 1. ARDUINO UNO.
- 2. ULTRASONIC SENSOR.
- 3. SERVO MOTOR.
- 4. 9V BATTERY.
- 5. DUSTBIN.
- 6. JUMPER WIRES.

III. HARDWARE REQUIRED

1. Arduino:

Arduino is an open source, computer hardware and software company, project, and user community that designs and manufactures microcontroller kits for building digital devices and interactive objects that can sense and control objects in the physical world. The project's products are distributed as open-source hardware and software, which are licensed under the GNU Lesser General Public License (LGPL) or the GNU General Public License (GPL), permitting the manufacture of Arduino boards and software distribution by anyone. Arduino boards are available commercially in preassembled form, or as do-it-yourself kits. Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (shields) and other circuits. The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs from personal computers.

Arduino Uno is a microcontroller board based on the ATmega328P (datasheet). It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with an AC-to-DC adapter or battery to get started. You can tinker with your UNO without worrying too much about doing something wrong, worst case scenario you can replace the chip for a few dollars and start over again. "Uno" means one in Italian and was chosen to mark the release of Arduino Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) were the reference versions of Arduino, now evolved to newer releases. The Uno board is the first in a series of USB Arduino boards, and the reference model for the Arduino platform; for an extensive list of current, past or outdated boards see the Arduino index of boards.

1. (i) Power USB

Arduino board can be powered by using the USB cable from your computer. All you need to do is connect the USB cable to the USB connection

2. (ii) Power (Barrel Jack)

Arduino boards can be powered directly from the AC mains power supply by connecting it to the Barrel Jack.

3. (iii) Voltage Regulator

The function of the voltage regulator is to control the voltage given to the Arduino board and stabilize the DC voltages used by the processor and other elements.

4. (iv) Crystal Oscillator

The crystal oscillator helps Arduino in dealing with time issues. How does Arduino calculate time? The answer is, by using the crystal oscillator. The number printed on top of the Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16 MHz

5. (v, xvii) Arduino Reset

You can reset your Arduino board, i.e., start your program from the beginning. You can reset UNO board in two ways. First, by using the reset button (17) on the board. Second, you can connect an external reset button to the Arduino pin labelled RESET (5).

- 6. (vi, vii, viii, ix) Pins (3.3, 5, GND, Vin)
 - ➤ <u>3.3V (6)</u> Supply 3.3 output volt
 - > 5V (7) Supply 5 output volt
 - ➤ Most of the components used with Arduino board works fine with 3.3 volt and 5 volt.
 - GND (8) (Ground) There are several GND pins on the Arduino, any of which can be used to ground your circuit.
 - ➤ <u>VIN (9)</u> this pin also can be used to power the Arduino board from an external power source, like AC mains power supply.

7. (x) Analog pins

The Arduino UNO board has five analog input pins A0 through A5. These pins can read the signal from an analog sensor like the humidity sensor or temperature sensor and convert it into a digital value that can be read by the microprocessor.

(xi) Main microcontroller

Each Arduino board has its own microcontroller (11). You can assume it as the brain of your board. The main IC (integrated circuit) on the Arduino is slightly different from board to board. The microcontrollers are usually of the ATMEL Company. You must know what IC your board has before loading up a new program from the Arduino IDE. This information is available on the top of the IC. For more details about the IC construction and functions, you can refer to the data sheet.

9. (xii) ICSP pin

Mostly, ICSP (12) is an AVR, a tiny programming header for the Arduino consisting of MOSI, MISO, SCK, RESET, VCC, and GND. It is often referred to as an SPI (Serial Peripheral Interface), which could be considered as an "expansion" of the output. Actually, you are slaving the output device to the master of the SPI bus.

10. (xiii) Power LED indicator

This LED should light up when you plug your Arduino into a power source to indicate that your board is powered up correctly. If this light does not turn on, then there is something wrong with the connection.

11. (xiv) TX and RX LEDs

On your board, you will find two labels: TX (transmit) and RX (receive). They appear in two places on the Arduino UNO board. First, at the digital pins 0 and 1, to indicate the pins responsible for serial communication. Second, the TX and RX led (13). The TX led flashes with different speed while sending the serial data. The speed of flashing depends on the baud rate used by the board. RX flashes during the receiving process.

12. (xv) Digital I/O

The Arduino UNO board has 14 digital I/O pins (15) (of which 6 provide PWM (Pulse Width Modulation) output. These pins can be configured to work as input digital pins to read logic values (0 or 1) or as digital output pins to drive different modules like LEDs, relays, etc. The pins labelled can be used to generate PWM.

13. (xvi) <u>AREF</u>

AREF stands for Analog Reference. It is sometimes, used to set an external reference voltage (between 0 and 5 Volts) as the upper limit for the analog input pins.

- Microcontroller- ATmega2560
- Operating Voltage -5V
- Input Voltage (recommended)- 7-12V
- Input Voltage (limit)- 6-20V
- Digital I/O Pins 54 (of which 15 provide PWM output)
- Analog Input 16

2. ULTRASONIC SENSOR:

The HC-SR04 ultrasonic sensor uses SONAR to determine the distance of an object just like the bats do. It offers excellent non-contact range detection with high accuracy and stable readings in an easy-to-use package from 2 cm to 400 cm or 1" to 13 feet. The operation is not affected by sunlight or black material, although acoustically, soft materials like cloth can be difficult to detect. It comes complete with ultrasonic transmitter and receiver module.

Technical Specifications:

- Power Supply +5V DC
- Quiescent Current <2mA
- Working Current 15mA
- Effectual Angle <15°
- Ranging Distance -2cm 400 cm/1'' 13ft
- Resolution 0.3 cm
- Measuring Angle 30 degree

3. SERVO MOTOR:

A Servo Motor is a small device that has an output shaft. This shaft can be positioned to specific angular positions by sending the servo a coded signal. As long as the coded signal exists on the input line, the servo will maintain the angular position of the shaft. If the coded signal changes, the angular position of the shaft changes. [8] In practice, servos are used in radio-controlled airplanes to position control surfaces like the elevators and rudders. They are also used in radio-controlled cars, puppets, and of course, robots.

Servos are extremely useful in robotics. The motors are small, have built-in control circuitry, and are extremely powerful for their size. A standard servo such as the Futaba S-148 has 42 Oz/inches of torque, which is strong for its size. It also draws power proportional to the mechanical load. A lightly loaded servo, therefore, does not consume much energy. The guts of a servo motor is shown in the following picture. You can see the control circuitry, the motor, a set of gears, and the case. You can also see the 3 wires that connect to the outside world. One is for power (+5volts), ground, and the white wire is the control wire.

Rechargeable Battery:

A rechargeable battery, storage battery, or secondary cell (formally a type of energy accumulator), is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use.

5. Jumper Wire:

A jumper is a tiny metal connector that is used to close or open part of an electrical circuit. It may be used as an alternative to a dual in-line package (DIP) switch. A jumper has two or more connecting points, which regulate an electrical circuit board.

IV. **ADVANTAGES**

- Following are the advantages of using Smart dustbin:
- 1. A reduction in the number of waste collections needed by up to 80%, resulting in less manpower, emissions, fuel use and traffic congestion.
- 2. A reduction in the number of waste bins needed.
- 3. Maintain environment hygiene (i.e. No overflowing of waste and less unpleasant odor).
- 4. It will help in bringing evolution by technology in term of cleanliness.

V. CONCLUSION

After wiring and attaching all the devices and setting up to the Smart Dustbin, now observe all the important setup whether they are well connected or something missed. After connection set up now next step is to submit/upload code in Arduino and supply power to the circuit. When system is powered ON, Arduino keeps monitoring for any things that come near the sensor at give range. When Ultrasonic sensor detect any object for example like hand or others, here Arduino calculates its distance and if it less than a certain predefines value than servo motor get activate first and with the support of the extended arm of the lid. Lid will open for a given time than it will automatically close.

Here we are going to make an evolution changes toward cleanliness. The combination of intelligent waste monitoring and trash compaction technologies, smart dustbins are better and shoulders above traditional garbage dustbin. It is equipped with smart devices like sensor Arduino etc. Lid of the dustbin will automatically open when an object comes near to the dustbin and after certain time period it will close the lid. For social it will help toward health and hygiene, for business for we try to make it affordable to many as many possible. So that normal people to rich people can take benefit from it. Believe this will bring something changes in term of cleanliness as well technology.