JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

An overview of bioethanol production from local fruit waste and its optimization

1Rohit Satao 2Akshay Shirbhate, , 3Nishant Rathod, 4Akash Shewale, 5Shyam Mirge, 6Pankaj Wankhade

1,2,3,4,5 B.Tech Final year student, Shri. Shivaji College of Agril. Biotechnology, Amravati. 6 Assistant professor, Dept. of Post-harvest & food biotechnology, Shri. Shivaji college of Agril. Biotechnology, Amravati.

Abstract :-

Renewable energy is now capturing a headlines because of concerns about supplies of fossil fuels, escalating population and industrialization triggering ever-increasing demand of fuels. All over the world, governments have encouraged the use of alternative sources of energy for overcome energy crisis. The high price of crude oil (Fuel) has attracted the greater attention to biofuels, especially bioethanol. In this research we see an overview of bioethanol production from local fruit waste and its optimization of fermentation processes. The waste of seasonal fruit, i.e. apple, grape, orange, banana, pineapple etc; was used in the study. Saccharomyces cerevisiae (baker's yeast) was used for the fermentation process.

Keywords: fossil fuels, biofuels, bioethanol, fermentation, yeast.

Introduction:

A large amount of fruit waste and residues are generated after industrial processing of various fruits. In Such waste includes apple, oranges, sapota, banana, pineapple, watermelon etc. This fruit wastes have high levels of fermentable sugars (such as sucrose and fructose) that can be converted into bioethanol after fermentation with the help of yeast. Because they are a renewable resource, fruit wastes have proven to be a useful source of waste for ethanol production. Yeasts is used for bioethanol production scientifically known by Saccharomyces cerevisiae. This fungus ferment the sugars which comes from fruit wastes to produce ethanol. In the alcoholic fermentation process 1 mol of glucose converts into 2 mol of ethanol and 2 mol of carbon dioxide, $(C_6H_{12}O_6 2C_2H_5OH + 2CO_2)$ (Baskar et al. 2012). Ethanol (CH₃CH₂OH), also known as ethyl alcohol or bioethanol.

Literature review and related work

Abambagade Abera Mitiku& Tanje Mada Hatsa 2020. [1] In this research work, commonly available huge volume-fruit peels (Banana, Mango and Papaya) were investigated for bio-ethanol production via fermentation by yeast, Saccharomyces cerevisiae. This work also proved that the waste product of fermentation may be used as animal feedstock or used as a fertilizer to enrich the soil for plant growth.

Rishabh Chitranshi and Raj Kapoor 2021 [2] carried out the research to produce bioethanol via cost-effective and eco-friendly techniques. The waste of seasonal fruit, i.e., apple, grape and Indian blueberry, was studied. Saccharomyces cerevisiae (baker's yeast) was used with KMnO₄ (5.0%), sucrose (47 g) and urea (1.5 g) for the fermentation process.

J.L. Rasoanaivo, I Aziz, L. Lehimena, A.O. Ravoninjatovo, L. Andrianaivo, 2020 [3] reported fruit waste has a huge potential in (fructose, sucrose) sugars. To manage this waste, the solution is the application of fermentation technology followed by distillation transform it into bioethanol.

Kamlesh R. Shah, Rani Vyas and Gayatriben Patel 2019 [4] suggested one such technique is production of biofuel, an alternative to the present petrol and diesel, from fruit wastes by using well known yeast Saccharomyces cerevisiae RK1.

Pooja Dular, Chirag Shah, Bhupesh Yagnik and Dipika Singampalli 2019[5] reported different fruit wastes were used as a raw material for the production of bioethanol by using Saccharomyces cerevisiae. The results of this work show that the rate of bioethanol production through fermentation of grape fruit waste by Saccharomyces cerevisiae (baker's 5.82% than other fruit waste. Fruits wastes that contain fermentable sugar should not be discarded into our environment, but should be converted to useful products like bioethanol that can serve as an alternative energy source and save the environment.

Muhamad Ariff Amir Hamzah, Azil Bahari Alias, and Nor Elina Ahmad 2019 [6] reported production of bioethanol via hydrolysis and fermentation process. Banana peels, a lignocellulosic biomass, possesses compositions which favor these processes, where the banana peels are rich in cellulose content and less in lignin content. Mechanical pre-treatment of the banana peels was conducted to further ease the hydrolysis process by decresing the particle size of the biomass.

Mohammad Moneruzzaman Khandaker, KhadijahBinti Qiamuddin and Ali Majrashi 2018[7] suggested Bioethanol can be produced by the fermentation of fruits and vegetables waste, which carried out in bottle using Saccharomyces cerevisiae. This experiment was to determine the ethanol percentage from fruit and

vegetable wastes produce through a fermentation process using the yeast, Saccharomyces cerevisiae and to analyze the chemical amount and glucose content in manufacturing of bioethanol. At the end of this experiment, the best wastes that highest production of bioethanol were recoded.

Mohammad Jahid, Akanksha Gupta and Durlubh Kumar Sharma 2018[8] informed, Fruit wastes are available in plenty as wastes world over. In fact, there is a need to recover value added products from these Fruit wastes. This wastes are rich in sugars and carbohydrates which can be recovered and utilized for the production of bioethanol.

Ashna Trivedi 2018[9] reported Biomass used to bring out the process of converting non-food-based materials into cellulosic ethanol and also minimises the amount of fossil fuel energy used in production. Production of ethanol as an alternative fuel from food and agricultural waste was done by fermentation.

R. Sathish Kumar & K. Sureshkumar 2017[10] suggested in this research work, it was attempted to give value addition to the waste decayed Manilkara Zapota fruit by producing bioethanol from it. Manilkara Zapota fruit wastes were taken as a substrate for the microorganism (Saccharomyces cerevisiae) to grow under a controlled environment condition in order to facilitate the fermentation process. The temperature of fermentation process was maintained at 37°C with the help of biological oxygen demand (BOD) incubator for 72 hrs. Once the fermentation process was completed the bio-ethanol was extracted by distillation process at the temperature of 72°C. The purity of the ethanol was identified using infrared spectroscopy and gas chromatography mass spectrometry.

Suryaprabha, Akalya. V, Ramya. V, Manivasagan 2017[11] informed, biologically produced alcohol, most commonly bioethanol is produced by the action of microorganisms and enzymes through the fermentation of sugars. Bioethanol is another biofuel capable of providing enough energy when burnt to be used as a biofuel for transport. The production of bioethanol must be increased using cheaper and environment friendly raw materials. Based on these characteristics, fruit wastes can be considered as cheaper and environment friendly. different fruit wastes used as a raw material for the production of ethanol by using Saccharomyces cerevisiae and the result were compared.

Ashish G. Waghmare, Shalini S. Arya 2016[12] reported, banana is second largest produced fruit of total world's fruits. Cooking banana or plantains processing industry is generating enormous amount of waste in the form of unripe banana peel at one place, thus important to study waste management and its utilization. Therefore, unripe banana peel was investigated for ebiothanol production. In this study involved chemical characterization, optimization of acid hydrolysis, selection of yeast strain and optimization of fermentative production of bioethanol from dried unripe banana peel powder (DUBPP)

Snehal Ingale, Sanket J. Joshi, and Akshaya Gupte 2014 [13] studied focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and

biological pretreatments. Two fungal strains Aspergillus elliptic us and Aspergillus fumigatus used for producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and increse release of reducing sugars.

Sandesh Babu, K.M.Harinikumar and Ravi Kant Singh 2014[14] reported bioethanol production from fruit juices of four different fruits such as grapes, Sugarcane, Mosambi and Watermelon using yeast (Saccharomyces cerevisiae) for fermentation and optimizing several factors of bioreactor that influence the process for bioethanol production such as temperature, pH and sugar concentration.

R. Arumugam & Manikandan 2011[15] revealed that the fermentation of hydrolysates obtained from the dilute acid pretreatment followed by enzymatic saccharification of mixed fruit pulps (banana and mango) and the banana fruit peels were found to be best for higher bioethanol production at optimized conditions.

Table No. 1 An overview of bioethanol production from local fruit waste and its otimization of fermentation processes

Sr.	Title of research	Name of Author	Remarks
No	paper and year of		
	publication		
1	Bioethanol	Abambagade	In this research work, commonly available large
	Production from	Abera Mitiku	volume-fruit peels (Banana, Mango and
	Decaying Fruits Peel	& Tanje Mada	Papaya) were investigated for bio-ethanol
	Using	Hatsa	production via fermentation by yeast,
	Saccharomyces		Saccharomyces cerevisiae.
	cerevisiae (2020)		• Optimum temp. of fermentation-30°C.
			• Hydrolysis temp98°C for 24 hours.
			• Optimum pH of fermentation-(5.0-5.5).
2	Utilization of over-	Rishabh	The use of mixture of three fruits namely
	ripened fruit (waste	Chitranshi Raj	Banana, Grapes and Mango was used as a
		Kapoor	possible substrate for production of cellulosic
	fruit) for the eco-		ethanol by modifying parameters.
	friendly production		• Temperature of fermentation-28 ^o C
	of ethanol. (2020)		Incubation days-8 days
			• Optimum pH-6.
3	Production of	J. L.	The present research work focused on lychee
	Ethanol From	RASOANAIVO	and pineapple waste. Its purpose is: first, the
	Tropical Fruit Juice	& Others	production of bioethanol through the energy

	Pasteurization Waste.		recovery of the waste from pasteurization of
	Case of The		these fruits; second, the contribution to the
	Company		solution of the BEP waste rational management
	Madagascar		problem. Bioethanol is a renewable, ecological
	Premium		and alternative energy source to wood energy.
	Exotica (MPE).		• Temp. of distillation – 78°C
	(2020)		Optimum days of fermentation -5days
4	Bioethanol	Kamlesh R. Shah	The use of mixture of three fruits namely
	production from pulp	& others	Banana, Grapes and Mango was used as a
	of fruits (2019)		possible substrate for production of cellulosic
			ethanol by modifying parameters
			Methods used in bioethanol production
			• Optimum pH – 6
			• Optimum Temp. – 28 ⁰ C
		. 44	 Incubation Days – 8 days
5	Bioethanol	Pooja Dular &	Production of Ethanol from fermented
	Production from	others	renewable sources for fuel or fuel additives are
	Rotten Fruit (2019)		known as bioethanol. pH 5.6, temperature 30°C,
			• specific gravity 0.876,
			• concentration of about 5.82%
6	Production of	Muhamad Ariff	Optimum pH value in the production of ethanol
	Biofuel (Bio-	Amir Hamzah &	by using banana peels is highly dependent on
	Ethanol) From Fruit	Azil Bahari	the type of yeaste that has been used for
	waste: Banana Peels	Alias	fermentation process.
	(2019)		Optimum temp.30°C
			Optimum pH- 5 to 6.
7	Bio-Ethanol	Mohammad	Vegetables and fruits biomass is a resource of
	Production from	Moneruzzaman	renewable energy with significant fuel source
	Fruit and Vegetable	Khandaker,	potential for the production of electricity and
	Waste by Using	Umar	steam, fuel for consumption and laboratory
	Saccharomyces	Aliyu Abdullahi	solvents.
	cerevisiae (2018)	& others	• Temp. of fermentation – 20 To 50
			Optimum days of fermentation 7Days
			• Optimum PH of fermentation 5.5

8	Production of	Mohammad	• pH- 4-8
	Bioethanol from	Jahid & others	• Incubate Time- 48 to72 hr
	Fruit Wastes		• Centrifuged at 1000rpm for 5 minutes
	(Banana, Papaya,		
	Pineapple		
	and Mango Peels)		
	Under Milder		
	Conditions (2018)		
9	Bioethanol	Ashna Trivedi	Production of biofuel from various waste such
	production from fruit		as agricultural
	and vegetable waste		waste, municipal waste, etc., has been carried
	using yeast (2018)		out with the objective of converting the waste to
			useful material.
		AT	● Temp. of autoclave at – 121
		144	Optimum days of fermentation - 10days
		1	• Optimum PH of - 5.5
10	Value Added	R. Sathish	Decayed Manilkara zapota fruit can be one of
	Bioethanol Fuel from	Kumar & K.	the best substrates for ethanol production. The
	Waste	Sureshkumar	yield of bioethanol from Zapota fruits was
	Decayed Manilkara		found to be 10.45%(w/v).
	Zapota Fruit (2017)	1 3 4 .	• Purity of ethanol 99.09% by volume.
			• Optimum temp. of fermentation-37 ^o C.
			• Temperature of distillation-72 ^o C.
			• pH-5.5
11	Comparative Studies	Suryaprabha. &	Bioethanol is produced by the action of
	of Bioethanol	Others	microorganisms and enzymes through the
	Production		fermentation of sugars. The production of
	From Different Fruit		bioethanol must be increased using cheaper and
	Wastes Using		eco-friendly raw materials. Based on these
	Saccharomyces		characteristics, fruit wastes can be considered as
	cerevisiae (2017)		cheaper and eco-friendly.
			• Optimum temperature for incubation: - 35 ⁰
			to 40 ⁰ C
			• Optimum day for incubation: - 7 days
			• Extracted ethanol percentage: - 6.3%2
JET	TR2205257 Journal of	Emerging Technolo	ogies and Innovative Research (JETIR) www.jetir.org

12	Utilization of unripe	Ashish G.	The optimum conditions for fermentative
	banana peel waste	Waghmare &	production of ethanol from acid hydrolysate of
	as feedstock for	Shalini S. Arya	DOBPD were seed age (12hr).
	ethanol production		• Fermentation time-36hr.
	(2016)		• Optimum temp30°C.
13	Production of	Snehal Ingale,	The hydrolysate obtained after alkali and
	bioethanol using	Sanket J. Joshi	microbial treatments was fermented by
	agricultural waste:	and others	Saccharomyces cerevisiae NCIM 3570 to
	Banana pseudo stem		produce ethanol.
	(2014)		Fermentation time - 7 days
			Optimum temperatures -30° C.
14	Optimization of	Sandesh Babu &	The present research work focused on lychee
	Bioethanol	others	and pineapple waste. Its purpose is: first, the
	Production from		production of bioethanol through the energy
	Fruit Wastes using	. 44	recovery of the waste from pasteurization of
	Isolated		these fruits; second, the contribution to the
	Microbial Strains		solution of the BEP waste rational management
	(2014)		problem. Bioethanol is a renewable, ecological
			and alternative energy source to wood energy.
			• Temp. of distillation -78 c
			Optimum days of fermentation -5days
15	Fermentation of Pre-	R. Arumugam &	Various methods are use like microbial enzyme
	treated Hydrolysates	M.Manikandan	production and extraction, liquid hot water
	of Banana and		treatment, dilute acid pre-treatment enzymatic
	Mango Fruit		saccharification and fermentation and ethanol
	Wastes for Ethanol		production.
	Production (2011)		• Optimum temp30°C for 3 days
			Ethanol extracted from
			• Mango-36% Banana-14%

Conclusion

In this study we observed the fruit wastes coming from fruits like Oranges, pineapple, grapes, apple, banana and all other seasonal fruits mainly available in India have fermentable sugar and it could be fermented using baker's yeast at different temperature, pH and specific gravity. Table no 1 showed that the maximum yield of ethanol was obtained overall at temperature 30°C; pH 5.5 and specific gravity 0.865. Since the fermentation

conditions are optimized, this optimum condition may be used for large scale production of bioethanol from fruit wastes.

References:

- 1) Abambagade Abera Mitiku and Tanje Mada Hatsa (2020); Bioethanol Production from Decaying Fruits Peel Using Saccharomyces cerevisiae.
- 2) Rishabh Chitranshi and Raj Kapoor (2020); Utilization of over-ripened fruit (waste fruit) for the eco-friendly production of ethanol. Veneto's 34:270–276.
- 3) J. L. Rasoanaivo, I. Aziz, l. Lehimena, A.O. Ravoninjatovo, I. Andrianaivo, A.A. Ratiarison (2020); Production of ethanol from tropical fruit juice pasteurization waste. Case of the company Madagascar premium exotica (MPE). IJARIIE-ISSN(O)-2395-4396
- 4) Kamlesh R. Shah, Rani Vyas and Gayatriben Patel (2019); Bioethanol production from pulp of fruit. Biosci. Biotech. Res. Comm. 12(2): 464-471 (2019)
- 5) Pooja Dular, Chirag Shah, Bhupesh Yagnik, Dipika Singampalli. (2019); Bioethanol Production from Rotten Fruits. International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887.
- 6) Muhamad Ariff Amir Hamzah, Azil Bahari Alias, Nor Elina Ahmad (2019); Production of Biofuel (Bio-Ethanol) From Fruit waste: Banana Peels. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-9 Issue-1, October 2019
- 7) Mohammad Moneruzzaman Khandaker, KhadijahBinti Qiamuddin, Ali Majrashi, Tahir Dalorima, Mohammad Hailmi Sajili1and ABM Sharif Hossain (2018); Bio-Ethanol Production from Fruit and Vegetable Waste by Using Saccharomyces Cerevisiae. Bioscience Research Print ISSN: 1811-9506.
- 8) Mohammad Jahid, Akanksha Gupta and Durlubh Kumar Sharma (2018); Production of Bioethanol from Fruit Wastes (Banana, Papaya, Pineapple and Mango Peels) Under Milder Conditions. Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India.
- 9) Ashna Trivedi (2018); Bioethanol production from fruit and vegetable waste using yeast. K K Shastri Government Science College, Ahmedabad.
- 10) R. Sathish Kumar and K. Suresh Kumar. (2017); Value Added Bioethanol Fuel from Waste Decayed Manilkara Zapota Fruit. IOP Conf. Ser.: Mater. Sci. Eng. 1130 012017.
- (11)Suryaprabha. S, Akalya. V, Ramya. V, Manivasagan. V, Ramesh Babu N., India. 2017); Comparative Studies of Bioethanol Production from Different Fruit Wastes Using Saccharomyces cerevisiae. G1 1 Department of Biotechnology, Adhiyamaan College of Engineering, Hosur 635 109, Tamilnadu.
- 14) Ashish G. Waghmare, Shalini S. Arya (2016); Utilization of unripe banana peel waste as feedstock for ethanol production. Bioethanol 2016; 2: 146–156.
- 13) Snehal Ingale, Sanket J. Joshi1, Akshaya Gupte (2014); Production of bioethanol using agricultural waste: Banana pseudo stem. Brazilian Journal of Microbiology 45, 3, 885-892 (2014).

- 14) Sandesh Babu, K.M. Harinikumar, Ravi Kant Singh and Aditi Pandey (2014); Optimization of Bioethanol Production from Fruit Wastes using Isolated Microbial Strains. International Journal of Advanced Biotechnology and Research (IJBR) ISSN 0976-2612
- 15) R. Arumugam M. Manikandan (2011); Fermentation of Pre-treated Hydrolysates of Banana and Mango Fruit Wastes for Ethanol Production. ASIAN J. EXP. BIOL. SCI. VOL 2(2) 2011: 246-256.

