
© 2022 JETIR May 2022, Volume 9, Issue 5                                                                                www.jetir.org (ISSN-2349-5162) 

JETIR2205499 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d619 
 

A STUDY ON EFFECT OF SUCTION OR 

INJECTION IN LAMINAR BOUNDARY LAYER 

FLOW AND HEAT VARIATION ON A 

STRETCHED SURFACE 

ASHAREN SURIN 

Research scholar 

(Department of mathematics) 

Rabindra nath Tagore University 

Bhopal,Madhya Pradesh 

 

Abstract 

The similarity solutions for laminar boundary layer equations with suction or injection across a stretched 

surface are presented. The surface was expected to move with a power law velocity profile, with a velocity 

parameter of -0.93416 ≤ m ≤ 5.0, and to be controlled by a dimensionless suction or injection parameter of -

1.0 ≤ d ≤ 4.0. For higher negative values of m, it was discovered that suction of the boundary layer on the 

stretched surface delays backflow while injection enhances the strength of the reverse (or velocity overshoot) 

flow. For various values of m, non-unique solutions of the governing equations according to the boundary 

conditions have been obtained. The dimensionless shear stress at the stretched surface increases with increasing 

d until it reaches a maximum, when the shearing force and the injection inertia force are balanced, and then it 

drops asymptotically to zero for some decelerated flow (m < 0). It decreases asymptotically to zero for 

accelerated flow (m > 0). 
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General Introduction 

Fluid mechanics is a new and exciting branch of applied mathematics. Almost all sectors of engineering, as 

well as astrophysics, biology, biomedicine, meteorology, physical chemistry, plasma physics, and geophysics, 

are interested in it. It contains a big number of tasks that can be used to supplement science and technology 

mathematics instruction. We live in a world that is predominantly fluid. The behaviour of air, oceans, rivers, 

and other fluids is primarily described using continuum hypothesis ideas. The constitutive equations are 

constructed around some assumptions about fluid material behaviour and flow conditions. Its study is crucial 

for physicists and applied mathematicians who are interested in understanding the physical events involved. 

Fluid motion is used to modify heat and mass transfer rates in heat exchanges, cooling towers, boilers, 

chimneys, artificial kidneys, heart and lung machines, semi conductor device manufacturing, and spacecraft 

protection from intense heating during re-entry into the earth's atmosphere, among other applications. 

Aeronautics, astronautics, automotive engineering, biomedical engineering, mining and metallurgical 

engineering, naval architecture, and nuclear engineering all require a solid understanding of fluid mechanics. 

Fluid dynamical engineers, on the other hand, used empirical formula to solve a variety of actual difficulties. 

Understanding this subject also aids us in explaining a range of amazing natural occurrences that occur all 

around us. The rules of fluid mechanics can be used to understand the causes of natural disasters such as 

tornadoes, hurricanes, and monsoons. The laws of fluid dynamics control the human circulatory system. The 

flow of air into our lungs and the flow of blood through our arteries and veins, as well as other circulatory 

systems, are both considered vital. Water flows in channels, rivers, and other Newtonian/non-Newtonian liquid 

flows in technical systems are also relevant to our day-to-day living conditions. It is vital to grasp the distinction 
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between a solid and a fluid before proceeding with the topic of fluid qualities. There are four states of matter: 

solid, liquid, gas, and plasma (ionized gases). Fluids are the general term for liquids and gases. Fluid Mechanics 

is the subject in which we deal with flow problems involving one of these phases, such as liquid, gas, or plasma, 

or a combination of these phases, primarily the first two or last two. All materials defonnate when they are 

subjected to external stimuli. When the defonnation in a material grows indefinitely to the point where its 

constituent particles are freely mobile, the material is referred to as fluid. In contrast to solid substances, a fluid 

is defined as a cohesive material entity whose pieces are easily transported past one another or, in other words, 

a substance that offers minimal resistance to changing its shape [Kaufmann (1963)]. Understanding the basic 

principles followed by various types of fluids is critical for the preservation of our natural living circumstances 

as well as numerous technological advancements. 

Laminar flows and Turbulent 

Fluid flows can be classified into two types based on experimental findings: laminar and turbulent. Osborne 

Reynolds (1894) used dye to conduct an experiment on fluid flows via a conduit at various speeds. He 

discovered that the flow exhibits a streamline pattern at low velocity, but that at a certain high velocity, the 

flow begins to mix stream lines. The former is referred to as laminar flow, whereas the latter is referred to as 

turbulent motion. To separate the aforementioned two states of motion, a non-dimensional number related with 

viscous fluid flow motion, such as the Reynolds number, is added. The Reynolds number is defined as Re = 

Udp/ J.L in the case of viscous fluid flowing in a pipe, where U is the typical mean velocity. 

Flows in the boundary layer 

The theory of boundary layers has offered a framework for studying a variety of characteristics of fluid flow 

at high Reynolds numbers. In 1904, during the third Congress of Mathematicians in Heidelberg, Germany, 

Ludwig Prandtl presented his boundary layer theory. The narrow region of flow close to a surface known as a 

boundary layer is the layer in which the flow is impacted by friction between the solid surface and the fluid. 

The theory was founded on a few key observations. In all regions, the viscosity of the fluid in motion cannot 

be ignored. This results in a serious condition known as no slip. The flow at the body's surface is at a standstill 

in relation to the body. The viscosity of the flow can be ignored again at a certain distance from the subject. 

The boundary layer is a very thin layer near to the body in which the effects of viscosity are significant. This 

is also known as the fluid layer in which the tangential component of the fluid's velocity relative to the body 

grows from zero at the surface to the free stream value at a certain distance away. The boundary layer theory 

is the foundation of our understanding of the flow of air and other low-viscosity fluids in a variety of 

engineering situations. A study of the flow within the boundary layer and its effect on the general flow around 

the body has therefore cleared many complicated problems in aerodynamics. Even though a comprehensive 

mathematical study is currently impractical, the boundary layer notion has proven to be quite lucrative and 

valuable. Navier-Stokes equations are notoriously difficult to solve analytically. 

This is especially true when the frictional and internal forces in the entire flow field are of the same order of 

magnitude, implying that neither can be ignored. Solutions are possible in some circumstances of low Reynolds 

number flow phenomena, such as creeping motions, when frictional forces may dominate inertial forces. For 

the case of flow with a large Reynold's number, Prandtl's boundary layer theory is applicable (except in the 

immediate vicinity of fixed boundary of solid object). Prandtl (1904) conducted a series of experiments and 

hypothesised that viscous forces are insignificant everywhere except near solid borders, where the no-slip 

condition exists. 
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Many industrial uses exist for the laminar boundary layer flow field created by a continuously stretched surface 

in a quiescent fluid. Continuously extruded polymer sheets and plastic films from a slit, as well as the coating 

of a moving surface that is isothermal, are examples of such applications (Rezaian and Poulikakos). As a result, 

the effect of suction or injection of the boundary layer across a stretched surface is investigated in this work. 

The velocity profiles of the surface are believed to be more broad power law profiles. Sakiadis  has published 

flow field analyses for both continuous flat and cylindrical surfaces. The stretched surface was assumed to 

move with uniform velocity (m = 0, d = 0) in his study, and similarity solutions for the governing equations 

were generated to map out the boundary layer thickness, displacement, and momentum thickness, respectively. 

Banks investigated a class of flow field similarity solutions for extending a surface with a power law velocity 

distribution, but suction or injection were not allowed: He also stated that there is no evidence for dual solutions 

of the governing equations subject to boundary conditions for this type of similarity solutions. Many authors 

have considered the flow field m = 0, which corresponds to a uniformly moving surface. Taylor investigated 

the boundary layer of air formed by a sheet of water, while Stuart  reported on the problem of oscillatory 

viscous flow. 

Crane studied the flow and temperature fields of a stretched surface (d = 0) moving at a linear speed, and 

Vleggaar  studied flat and cylinderical surfaces moving at a uniform or linear speed. Ali has recently 

investigated a stretching surface moving with a power law velocity and temperature profiles for three different 

temperature thresholds. 

For linear surface velocity with homogeneous temperature, Gupta and Gupta documented the suction or 

blowing of the boundary layer over a stretched surface. Ackroyd provided a series solution of the boundary 

layer equations subject to suction or injection for a vapour boundary layer at the condensate surface. 

A family of similarity solutions of the boundary layer equations of a stretched surface moving with a more 

general power law velocity sensitive to suction or injection at the surface is described in this paper. 

Section II presents the problem's mathematical analysis, followed by Section Ill's numerical solution approach. 

Section IV contains the findings and discussion. Section V concludes with a summary and conclusions. 

Equations for boundary layers 

One of the most significant achievements in fluid dynamics was the derivation of the boundary layer equations. 

The well-known governing Navier-Stokes equations of viscous fluid flow can be considerably simplified 

within the boundary layer using an order of magnitude approach. In contrast to the elliptical fonn of the full 

Navier-Stokes equations, the characteristic of partial differential equations (PDE) becomes parabolic. This 

makes solving the problems a lot easier. 

The following continuity and momentum equations govern the motion of a laminar incompressible boundary 

layer flow with constant fluid characteristics over a stretching surface with suction or injection. 
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The aforementioned governing equations with zero axial pressure gradient were developed using the standard 

boundary layer approximation of a thin region (Schlichting). The following boundary condition is assumed for 

equations (1) and (2): 

 

where m denotes the velocity stretching parameter and Uo denotes the constant velocity. Figure 1 depicts the 

cartesian (x,y) and boundary layer representations on a stretched surface. The x-axis in this diagram is parallel 

to the moving surface, while the y-axis is perpendicular to it. u and v are the velocity components in the x and 

y directions, respectively. Figure 1 shows qualitative vertical velocity patterns for three different values of m, 

illustrating an injection flow at the surface boundary. The following similarity transformation can be used to 

simplify Equations (1) and (2) to a single ordinary differential equation. 

 

 

η is the similarity variable that depends on y and x, and f is the dimensionless stream function that only depends 

on η With a prime representing differentiation with respect to η. The transformed governing equation is as 

follows: 

 

The following boundary conditions, derived from equations (3), (4), and (5), apply (6) 

 

The vertical injection or blowing speed Vw must be a function of the distance (for m ≠1) from the leading edge 

in order to derive the second of the boundary requirements (8). As a result, vw is defined by the law. 
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in order to arrive at a similarity solution in which η is the sole component of the mathematical solution It should 

be noted that Vw must be on the order of Uw Re-l/2[13], where Re = Uw x/v, in order for a flow with suction or 

blowing at the surface to satisfy the boundary layer theory assumptions. As a result, d, which is used as suction 

or blowing parameter, must be of order one (Bejan ). 

 

 

Figure 1.  Qualitative representation of boundary layer on a stretched surface with injection 

velocity VW for (a) m<1,(b)m=1,(c)m>1  
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However, if m = 1, vw is a constant that does not contain x, and the similarity solution can still be determined 

as Chow describes. Gupta and Gupta simplified Equation (7) and the boundary conditions (8) to Equation (8) 

and (9) for m = 1. The second boundary condition (number 8) can be stated as 

 

The suction or blowing parameter d is used to determine the strength and direction of the normal flow at the 

boundary, as shown in Eq. (9). As a result, we obtain a blowing or suction boundary condition for positive and 

negative d, respectively. 

The similarity solution of Eq. (7) and Eq. (5) can be used to derive expressions for shear stress and boundary 

layer thickness, respectively. 

 

 

 

Procedure for solving numerical problems 

To intergate equation (7) pursuant to boundary conditions (8) and the modified f(O) given by, the fourth order 

Runge-Kutta-Merson method was utilised (10). To find f” (0), the half interval approach is employed, and the 

algorithm has been adjusted in accordance with Chow . The calculations were performed using an IBM 

compatible 386 personal computer. The solution yields the functions f, f', and f" that are dependent on η∞ . The 

value of η∞ was chosen to be as large as possible without creating numerical oscillations in the solution, ranging 

from 7 to 20, depending on m and d. 

 

Result and Discussion 

Equation (7) has been solved for the velocity parameter -0.93416 ≤ m ≤ 5.0 and various values of the 

dimensionless speed -1.0 ≤ d ≤ 4.0 under the first and third boundary conditions of (8) and the modified 

boundary condition (10). 

Figure 2 shows some typical velocity profiles for various values of m and injection flow a! the positive value 

of d = 0.6's boundary. The velocity profiles for m > ϕ in this figure show exponential decay with no inflection 
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points. The slope of the velocity profile is virtually zero at ' η = 0 (f” (0) =0.005) for m, = -0.147, and it has a 

separation point. Additionally, as m drops, a backflow develops, and for higher negative values of m, a velocity 

overshoot is expected, as seen in Fig. 3 for various negative values of m, in which case the surface is stretched 

with a decreasing velocity, resulting in a decelerated flow. Furthermore, when m lowers, the boundary layer 

thickness drops, and the velocity profiles shift their slopes to be steeper at the edge of the surface, continuing 

the velocity overshoot stream. When comparing this situation to decelerated flow over a stationary flat plate 

(Schlichting), it can be seen that injecting at the decelerated surface's boundary increases the strength of the 

reverse or overshoot flow and diminishes the boundary layer thickness. 

 

 

Figure 2. Similarity velocity profile as a function of the similarity variable η for various 

value of m and for d= 0.6  
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Figure 3. Similarity velocity profiles indicating the velocity overshoot stream for 

negative value of m and d =0.6. 

The existence of an inflection point in the velocity profile indicates flow instability (Lin), and when the mass 

flow in blowing is increased, it is found that numerical calculations become more complex because the velocity 

profile kinks. As a result, problems arise when high negative values of m are combined with positive values of 

d. 

Only the solution in which the velocity profiles indicate asymptotic decay to zero was acceptable during the 

search for similarity solutions of Eq. (7) subject to (8) and (10). As a result, if the velocity profiles contain 

negative regions, even though they fulfill the governing equation and its boundary conditions, they are 

unrealistic and should not be considered. 

The existence of non-unique solution has been found. Figure 4 presents f' (η) as a function of the similarity 

variable η for m = 2.0 and 3.5 and for d = 0.6. The non-unique solutions of the velocity profiles are shown in 

this diagram; one group has one asymptotic decay solution and the other has a negative velocity region for the 

same value of m. For various values of m, similar curves of velocity profiles for d = 0.4 are shown in Figs. 5 

and 6. 
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Figure 7 depicts the boundary layer's suction from the stretched surface for d = -0.6 and various m values. All 

of the velocity profiles for -0.645 < m ≤  5.0 in this diagram show asymptotic decay with no inflection point 

in the fluid. The fluid has an inflection point at -0.645  ≥ m, and the reverse flow occurs above the dotted line, 

and the separation point is extremely near to m = -0.645, where f" (0) =0.006. 

When comparing Figures 3,6, and 7, it is obvious that decreasing the regulating parameter d slows the reverse 

flow; in other words, m reduces as d lowers, and therefore more aymptotic type solutions with no inflection 
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points can be achieved. The crucial values of m and d for no reverse flow in the fluid are shown in Table 1. 

Figure 8 shows the relationship between the critical values of m and d reported in Table 1 for zero surface 

shear stress. To fit the data, the following third order polynomial is employed. 
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Where A,B,C, and E are the nomenclature's constants. The extrapolated point in Fig. 8 is d = 3.097 for m = - 

9.646e-5, where m approaches zero from the negative side since all solutions have no reverse flow for m ≥ 0. 

Suction on the stretched surface boundary delays the occurrence of reverse flow, as shown in Figure 8. It should 

be observed that there is no solution where f(O) blows up for m = -1. 

For various values of m as a function of the dimensionless velocity d, the non-dimensional shear stress at the 

stretched surface presented by (m+1)/2)1/2 f'(O) is shown in Fig. 9 for various values of m. The shear stress at 

the wall grows as d increases, and the velocity profiles that correspond to that change from asymptotic decay 

before f' (0) reaches zero to profiles with inflection points for all positive values of f' (O) are shown in this 

figure. Furthermore, for m = - 0.2 and - 0.3, f'(O) reaches a maximum at a certain value of d, where the shearing 

force and the injection inertia force are balanced, and it declines with increasing the injection parameter d 

beyond this value. 
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For m = - 0.48 and - 0.40, Figure 10 shows the dimensionless boundary layer thickness determined by Equation 

(12) as a function of d. Suction increases produce increasing weakening of the boundary layer for all m, 

whereas injection has the opposite effect. . However, caution must be taken for negative m. If blowing is 

applied or suction degree is reduced (d > d at f" (0,0) = 0) beyond the point of separation where f' (0,0) = 0, 

then the strength of backflow is built up. Furthermore, this is corresponding to decrease in (δ) up to a maximum 
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value where a velocity overshoots. Moreover, if suction is allowed to increase 'or degree of blowing decreased 

(d < d at f' (0,0) = 0) then (δ) decreases as in the general scenario mentioned before. 

Summary and Conclusion 

For various values of m and d, the flow field of the laminar boundary layer over a stretched surface moving 

with a power law velocity profile with suction or injection at the boundary is described. The similarity solutions 

display asymptotic behaviour for m ≥  0 and all values of d investigated in this study. Backflow (or overshoot) 

develops for negative values of m, when the stretched surface decelerates in the x-direction, and its strength is 

dependent on d. . Furthermore, for constant d > O, the strength of the reverse (or overshoot) flow increases 

with decreasing m if blowing is allowed (d > 0) at the surface boundary. Furthermore, for the same negative 

values of m, if suction is allowed (d<0) at the boundary, the strength of backflow decreases dramatically 

compared to the blowing scenario. For the governing equation subject to the boundary conditions, non-unique 

similarity solutions have been obtained. Despite the fact that these non-unique solutions meet the governing 

differential equation and boundary conditions, only the one with an asymptotic decline to zero is physically 

acceptable. 

The dimensionless shear stress at the surface grows as d increases for m ≥ 0, and it asymptotically decays to 

zero for m = 0, and 0.2. Furthermore, as observed for m = -0.2 and -0.3, the shear stress continues to build up 

to a maximum value that depends on d and m (m <0) and then drops asymptotically to zero. When suction or 

injection is used for m = -0.4 and -0.48, the thickness of the boundary layer decreases. 
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