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Abstract: In the present paper, we begin by defining I'*, A*, [ and A%, the spaces of all biquadratic entire sequences, biquadratic
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l. INTRODUCTION
Class of all complex biquadratic sequence is denoted by w*

A sequence x = (X)) 1S Said to be biquadratic analytic sequence if [7]

1
SUP | Xpnpr|[mAn+k+l < o0
mmnk,l

We denote the vector space of all biquadratic analytic sequences by A*.
A sequence x = (Xmni) 1S Said to be biquadratic entire sequence if [7]

1
[Xmnki [Fn+k+l > 0 as m,n, k,l - o

We denote the vector space of all biquadratic entire sequences by I'*.
A sequence x = (xnx) 1S Said to be biquadratic chi sequence if [7]

1
Mm+n+k+D! |xpp|mn+k+l > 0as m,n, k, 1l - o

We denote the vector space of all biquadratic chi sequences by x*.

The space A* and I'* are metric spaces with the metric

1
dC,y) = sup {|Xmnki — Ymnr | evm,n, k, 1 = 1,2,3... 3, (1.2)
mmnk,l
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forall x = () + ¥V = Vg I A* and I'%.

A sequence x = (X)) 1S Said to be biquadratic analytic rate sequence if

1
min+k+l

Xmnkl < oo

sup
mmn,k,l

Tmnki

We denote the vector space of all biquadratic analytic rate sequences by Az.
A sequence x = (X)) IS Said to be biquadratic entire rate sequence if

1
min+k+l

Xmnkl
|— > 0asm,nk,l >

TTmnki

We denote the vector space of all biquadratic entire rate sequences by ;.
A sequence x = (xnnx) 1S Said to be biquadratic chi rate sequence if

1
mnkl |m+n+k+1

(m+n+k+l)| > 0asm,nk,l >

Tmnki

We denote the vector space of all biquadratic chi rate sequences by 7.

The space A% and I} are metric spaces with the metric

1
Xmnkl~Ymnkt|[m+n+k+l , mnk,l=123... }, (1.2)

Tmnkl

d(x,y) = { sup

mmnk,l

forall x = (i) » ¥V = Vg IN Az and L.

PRELIMINARIES

Definition 2.1: Let (Ppnki)mni=0 D€ @ sequence of non-negative real numbers with pggq0. Consider the transformation

m n
VYmnkl = Zm Zn Zk Z Z Z Z Z pqrs xm—p,n—q,k—r,l—s
s ipqrs 7 q T &
form,n,k,l € N.

The space of all (x,,,,,;) for which () € I'* is called the Norlund space of Biguadratic entire sequences. The Norlund space
of Biguadratic entire sequences is denoted by n(I'%).

Similarly, the space of all () for which (y,,..) € A* is called the Nérland space of Biquadratic analytic sequences. The
Norlund space of Biquadratic analytic sequences is denoted by 7(A%).

Definition 2.2: Let (Dmnii) mnk1=0 € @ sequence of non-negative real numbers with pgo0. Consider the transformation
m n
y ZZZZ Xm— ‘m-pn-qk-rl-s q,k-r,l-s
mnkt = ZmZ”Z"Zl pqrs 7 q 1 s pqrsn_m -pn—q,k-r,l-s
form,n,k,1 =0,1,2,...

The space of all (x,,,,,;) for which (y,,..x1) € L is called the Norlund space of Biquadratic entire rate sequences. The Norlund
space of Biquadratic entire rate sequences is denoted by n(I}).

Similarly, The space of all (x,,x;) for which (y,,.x1) € A% is called the Nérlund space of Biquadratic analytic rate sequence.
The Noérlund space of Biquadratic analytic rate sequence is denoted by 17(A%).

|xmnkl|m+n1+k+l
p
for some arbitrary fixed p > 0 is denoted by I;7, M being a modulus function. I;7 is called the Orlicz space of entire sequences.

Definition 6.2.3: [6]The space consisting of all those sequences x = (X,n5) IN w?* s. . M ( ) asm,n,k,l - o
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1
Definition 6.2.4: [6] The space consisting of all those sequences x = (x,nx) INW*s. t. M (M) < oo for some

arbitrary fixed p > 0 is denoted by A%, M being an modulus function. A3, is called the Orlicz space of analytic sequences.

Definition 6.2.5: [1] An absolutely convex absorbent closed subset of locally convex topological vector space X is called a
barrel. X is called a Barreled space if each barrel is a neighbourhood of zero.

Definition 6.2.6: [1] A locally convex topological vector space X is said to be semi reflexive if each bounded closed set in X is
o(X,X")-compact.
Let w* be the space of all complex biquadratic sequences x = (Xyuk1)mn k=1 @nd f:[0,0) = [0, ) be an Orlicz function,

1
|x |mn+k+l
I* = {x € w*:|f smekl s 0asmn kI - o
p

for some p > 0}

and

1
[ |mAn+r+
Af = {x € w*:|f Zmukll )| < oo for some p > 0}
p

The spaces Af and I;* are metric spaces with the metric

d(x,y) = inf{p > 0: sup [f(w)]ﬁl}

mmnk,l=21 P
Vx,y € I}* and Af.

1. THE NORLUND SPACE OF BIQUADRATIC SEQUENCES

Theorem 3.1: n(I'*) = (')
Proof: Firstly we shall show that

n(r*) cr.
Let x = (Xpnr) € n(T'Y). Then y € (I'*) so that for every € > 0, we have a positive integer m,, s.t.

PooooXmnkit- -« T PmnkiXo000

5 < €m+n+k+l v m,n, k,l > mg
mnkl

Take POOOO = 1, P1111 = = Opnkl = 0.

We then have |x .| < ™5 v mn, k, 1 > m,.
Therefore, x = (xn0) € T

Hence

n(r* crt 3.1)
In the second part, we shall show that
r+cqn(r?
Let x = (xpniy) € n(C'Y). But for any given e > 0, 3 a positive integer my S.t. |Xpmi | < €™+ m,n, k, 1 > m,. We have

P0000Xmnkit- - - TPmnkiXo0000

[Ymnial <
m Pmnkl

=< P [Pooool Xmnkt|+- - - +Pmnki|X0000]
mnkl
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m+n+k+l 0+0+0+0
=< P [Poooo€ Tt tPmnk € ]
mnkl
Em+n+k+l
=75 [Poooot- - - +Pmniki]
mnkl
Em+n+k+l
= p Pmnkl
mnkl

< emtrktl wmon k1 > m,

Therefore, Yy € I'*. Consquently X, € n(C'*).

Hence
r+cn*) (3.2)
From equation (3.1) and (3.2), we get
r* =nT*)
Theorem 3.2: n(4*) = (4%)
Proof: Firstly we shall show that
r+cnr.

Let x = (Xn) € n(A%). Then 3 a positive constant K s.t.
|xmnkl| < Km+n+k+l m,n, k.l = 0,1,2, -

min+k+1 0+0+0+0
PooooK +. P K |

Ymnki = Pmnkl
Km+n+k+l o8
mn
< PR L)
Pkt [p0000 K mn+k+ |
Km+n+k+l
= P Pmnkl
mnkl

S Km+n+k+l vm’ n, k‘l 2 m()

Hence (¥pnir) € A*. But then (xpnii) € n(A%).
Consequently,

A* cn(ah) (3.3)
In the second part, we shall show that
nr+) cr*

Let (xmnkl) € 77(/14)- Then (ymnkl) € (A4)-

Hence 3 a positive constant K such that |y, | < T™ <+ for
m,nk,1=01,2,...

This implies that

PooooXmnkit- -+ TPmnkiXo000 < gmntke+l

Pmnkl
> ——Po000Xmnkit- - - +PmnkiXo000] < K™
Pmnkl
= [Po000Xmnkit- - - +PmnkiXoo0o] < K™
Take poooo = 1:P1111 =-++= Pmntt = 0.
Then it follows that P,,,,,; = 1 and S0 X | < K™ e+ for all m, n, k, L.
Consquently x, i € (A%).
Hence
n(a*) c (4% (3.4)

From equation (3.3) and (3.4), we get

A* =A%)
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Theorem 3.3: I'* is not a barreled space.
Proof: Let

1
A=3{xer*|x 1/"‘+"+"“<—,Vm,n,k,l}.
{ | “m4+n+k+1

Then A is an absolutly convex, closed in I'*. But A is not a neighbourhood of zero. Hence I'* is not barreled.
Theorem 3.4: I'* is not semi-reflexive.

Proof: Let {8, } € U be the unit closed ball in I'*. Clearly no subsequence of {§,,,.x:} can converge weakly to any y € I'*.
Hence I'* is not semi-reflexive.

V. THE NORLUND ORLICZ SPACE OF BIQUADRATIC RATE SEQUENCES

Let w* be the space of all complex biquadratic sequences x = (M) and f:[0,00) — [0, o) be an Orlicz function,

Tmnkl’ mn,k,l=1

X
[t = {x € o' [f<|ﬂ

1
m+n+k+l
- 0asm,nk,l — oo}
Tomnkl

1
m+n+k+l

[f(lxmnkl _ymnkll)] < 1}

and

mmnk,l=1 Tmnkl

X
At = {x Ew*: sup [f <|M
The spaces Af,, and I are metric spaces with metric

d(x,y) = inf{ sup
mmnk,l=21 T[mnkl

V X,y € Iy and Af,.

Theorem 4.1: n(I%) = (I%)
Proof: Firstly we shall show that

n(lf%) € Iin
Let x = (Xpnkt) € n(l}‘}T). Theny = Vmnkt) € (1}‘}1) so that for every e > 0, we have a positive integer m, s.t.

f

P0000Xmnkit- - - TPmnkiXo000

) < emntktl v m,n, k1 > m,

7rmnklenkl
Take poooo = 1 P1111 =+ = Pmnkt = 0.
We then have f (|% ) < emntktl v mon k1 > m,.
mnkl

Therefore, x = (Xyni1) € Iy
Hence

n(I77) < I (4.1)

In the second part, we shall show that

I e n(l7%)

Xmnkl

TTmnkl

Let x = (Xpmnit) € n(I7%). But for any given € > 0, 3 a positive integer m s.t. f(
have

) < emntktl v mon, k, 1 > m,. We
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P0000Xmnki T -+ TPmnkiXo000

f ( Ymnkl

Tmnki

) = f( PmnitTmnki )

1 Xmnkl
< [Poooo <f =0 >+---+pmnkl <f|

mnkl

Xmnki

)

Tmnki Tmnki

<

m4n+k+l 0404040
P [Poooo€ +... Dmnki € 1]
mnkl
Em+n+k+l

P [Poooot- - - +Pmnki]
mnkl

Em+n+k+l

Pmnkl

Pmnkl

< Mtk ymon k1 > m,

Therefore, Yyni € Iry. Consquently X, € n(IF).
Hence

I © 1(If2) (4.2)
From equation (4.1) and (4.2), we get
Tfe =n(Tfr)

Theorem 4.2: n(Af,) = (Af)
Proof: Firstly we shall show that

Afn © W(A}%n)

Let x = (k) € n(/lj%n). Then 3 a positive constant K s.t.

(f |xmnkl
Tmnkl

) < Kmtntktl om ik, 1=0,1,2,..

m+n+k+l 0+0+0+0
(f Ymnki > < pOOOOK +... +pmnle |
Tmnkl Pmnkl
m4n+k+l
K T+ — . Pmnki
= P Poooo K mAntk+l |
Km+n+k+l
< 2 Pmnkl
mnkl

< KMkl ymonk,1=0,1,2,...
Hence (Vmnir) € Afr. But (Xmnrr) € n(Af;). Consequently,
Afr < n(4fr) (4.3)
In the second part, we shall show that
n(l7) € I
Let (mnia) € 1(Af7). Then (Vmmia) € (A77).

Hence 3 a positive constant K s.t.

=

Tmnkl

) < KMtk form n k1= 0,1,2,. ..

This implies that

Po000Xmnktt- - - TPmnkiX0000

(r

) < Km+n+k+l

Pmnklnmnkl
N 1 (f Po000Xmnkit- -+ T PmnriXoooo ) < fmntkel
Prnk Tmnkl
PooooXmnkit - - +PmnkiXooo0o Mkl
= (f <K Pmnkl
Tmnkl
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Take poooo = 1,P1111 =+ = Pmnw = 0.
Then it follows that P,,,,;; = 1 and so (f
Consquently x,,ni; € (Af7).

Hence

Xmnkl

) < K™+t forall m,n, k, L.

mnkl

n(4fx) © (4fx) (4.4)
From equation (4.3) and (4.4), we get
Afn = 1(4fr)

Theorem 4.3: I3, is not a barreled space.
Proof: Let

TTmnki

Xmnkl |m+n+k+1 1
A={xer#: |i <—— vmnk,l
{x fm (f mtn+k+r "

Then A is an absolutely convex, closed in 1}‘,’1. But A is not a neighbourhood of zero. Hence 1}‘,‘, is not barreled.

Theorem 4.4: 1}‘; is not semi-reflexive.
Proof: Let {6, } € U be the unit closed ball in 1}‘,‘,. Clearly no subsequence of {8,,,.x:} can converge weakly to any y € 1}”,;.
Hence 1}‘; is not semi-reflexive.

V. CONCLUSION

This paper begins with the introduction of the spaces of biquadratic sequences. We discuss some properties of Norlund space of
biquadratic sequences and also obtained why it is not barreled space and semi-reflexive. In last section of the chapter we
established some theorem related to Nérlund Orlicz space of biquadratic rate sequences.
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