JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Tannins Containing Medicinal Plants and It's Significance: An Overview

¹ Somenath Bhattacharya, ² Soumallya Chakraborty, ³ Rohan Pal, ⁴ Dr. Amitava Roy,

⁵ Dr. Arin Bhattacharjee

- ^{1,2} Assistant Professor, Department of Pharmaceutical Chemistry, Global College of Pharmaceutical Technology, Nadia, West Bengal, India
- ³ Assistant Professor, Department of Pharmacology, Global College of Pharmaceutical Technology, Nadia, West Bengal, India
 - ⁴ Professor, Department of Pharmaceutical Chemistry, Global College of Pharmaceutical Technology, Nadia, West Bengal, India
- ⁵ Principal, Department of Pharmaceutical Technology, Global College of Pharmaceutical Technology, Nadia, West Bengal, India

Abstract: Tannin is very important chemical constituent present in various types of medicinal plants in different parts of world. Medicinal plants like Myrobalan, Ashoka, Arjuna, Pale catechu, Black catechu, Bahera, Amla, Pterocarpus, Amra, etc are showing different tannins types of chemical compositions. These medicinal plants are having those rich sources of tannins in their different parts such as bark, leaves, fruits, etc. Tannins containing medicinal plants exhibit various pharmacological activities like laxatives, purgatives, diuretics, cardiotonics, antioxidant, anti-diarrhoeal, sedatives, anti-diabetic, anti-rheumatism, astringent, anti-dysentery, anti-microbial, analgesic, anti-dyspepsia, etc. Some plants shows different properties to help the digestive disorders such as black catechu. Other kinds of tannin containing plants help to treat different skin disorders. Basically, three types of tannins such as hydrolysable condensed and pseudotannins are present in tannin containing medicinal plants. The current study correlates different medicinal plants containing tannin, tannin types, identification of tannins, chemical properties of tannin, tannin containing medicinal plants & its pharmacological actions.

Keywords: Tannin, Medicinal plants, Hydrolysable tannins, Condensed tannins, Pseudotannins, Chemical properties, Pharmacological actions.

I. INTRODUCTION

The world is full composed of medicinal plants. Tannins are one of the most vital active chemical constituents find from various types of medicinal plants. Tannins show different pharmacological activities find from extraction of various parts of tannin containing medicinal plants. Gallic acids, Ellagic acid, Pyrogallal, Catechol and Glucogallin are the most important tannins obtained from natural sources [1-3]. This type of tannins show astringent, laxative, purgative, stomachic, anti-diarrhoeal, anti-diabetc, antioxidant, antiseptic, anti-ulcer, sedative and some other activities. These tannins are usually obtained from seeds, barks, rhizomes, fruits, roots, stems, leaves of plants. Tannins are also called as plant secondary metabolites. These are one of the most significant compound find from the medicinal plants [1, 3-4].

II. TANNINS

Tannins are polyphenolic structure found in various parts of medicinal plants such as Arjuna, Amra, Ashoka, Myrobalan, etc. Odihydroxy or O-trihydroxy groups present in the phenyl ring usually. These kinds of compounds are having high molecular weight and non nitrogenous in nature. Examples like Gallic acid, Glucogallin, Pyrogallal, Ellagic acid and Catechol are present in different parts of medicinal plants [1, 5-6].

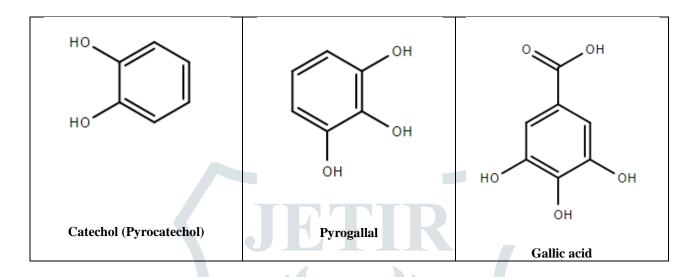


Figure: Structure of Different Tannins [1]

III. CHEMICAL PROPERTIES OF TANNINS

- 1) Tannins show precipitation by treating with potassium dichromate solution.
- 2) Tannins also give precipitation through treating with chromic acid solution.
- 3) Tannins show Brownish green or blackish blue while treating with ferric chloride solution.
- 4) Tannins exhibit deep red color precipitation after treating with ammonia solution and potassium ferricyanide solution.
- 5) Tannins also show precipitation with the reactions of phenazone.
- 6) Tannins get precipitated by different salts of metals like copper, lead, tin, etc.
- 7) Tannins show brownish black color when intestinal membrane of ox is reacted with hydrochloric acid and distilled water in presence of tannins and ferrous sulphate solution for few minutes. It is known as Goldbeater's skin test. It is one of the major identification tests of tannins [1, 6-7].

IV. TYPES OF TANNINS

Different types of tannins are present in various parts of medicinal plants according to hydrolysis on dry distillation [1, 7-8].

- 1) Hydrolysable Tannins: These compounds are hydrolysable and hydrolyzed by enzymes, acid or alkali. The examples are galic acid, ellagic acid, pyrogallal. One such area like after distillation gallic acid is converted to pyrogallal. Different types of plants like Myrobalan are having hydrolysable tannins.
- **2) Condensed Tannins:** They are non-hydrolysable tannins. They are not hydrolyzed by acid or any other compounds. They are very resistant to hydrolysis. Example like catechol in pale and black catechu is one of the condensed or non hydrolysable tannins.

3) Pseudotannins: These are another one classification under tannins. They are having low molecular weight and not reacted with Goldbeater's skin test. Cholorogenic acid in coffee is one of the examples in this category. The pseudotannins can be identified by treating the drug with ammonia solution and distilled water with air exposure. The pseudotannins show green color precipitation after performing the identification test.

V. ROLE OF TANNINS TO MANAGE DIFFERENT PHARMACOLOGICAL ACTIONS

Tannis are having different pharmacological roles in human body. Plant like Myrobalan or haritaki can exhibit laxative, anthelmintic, astringent, stomachic property. Another plant containing tannins Bahera show anti-diarrhoeal property. Arjuna plant exhibits cardiotonic and diuretic properties. Ashoka bark extract is used as sedative. Black catechu is used for skin eruptions. Mango is having anti-diarrhoeal and anti-rheumatism properties [1, 9-10].

VI. MEDICINAL PLANTS CONTAINING TANNINS

- 1) Myrobalan: It is commonly known as haritaki in bengali. It is basically obtained from the extraction of dried ripe fruits of *Terminalia chebula*. The plane family is *Combretaceae*. It is cultivated in West Bengal, Madhya pradesh, Assam, Maharashtra in India. It is also seen in south east Asia. The fruits are odorless, astringent in taste and yellowish brown in color. The fruits are ovate in size and shape. The fruits are very hard in nature. The fruits are also stony in nature. The fruits are having hydrolysable tannins like pyrogallal, chebulic acid, ellagic acid, gallic acid, chebulinic acids. The fruits also contain glucose and sorbitol. Haritaki is used as laxative, astringent and stomachic. It is used as anthelmintic for the treatment of worms. It is used also to stop bleeding. It is used in various ayurvedic formulations and also in dyeing industry. It is also used for the treatment of piles [1, 11].
- 2) Ashoka: The dried stem or bark is used. The scientific name is *Saraca indica*. The name of family is *Leguminosae*. It is cultivated in south Asia like India, Sri Lanka, Indonesia and Malaysia. The bark is dark blackish brown in color. The bark is odorless. The taste is astringent. The bark is having condensed tannins. It also contains leucocyanidin, leucopelargonidin, haematoxylin, saponin, ketosterol, minerals. It is used as sedative. It is also used as uterine tonic. It is applied for the treatment of menorrhagia. It is used to prevent uterine bleeding [1, 12].
- 3) Arjuna: The scientific name of the tree is *Terminalia arjuna*. The family of the plant is *Combreataceae*. The parts used in dried bark or stem. The tree is usually seen in south east Asia like India's various places such as Madhya pradesh, Uttarakhand, Dehradun. It is found in forest. The bark is greyish brown in color. The barks are odorless. The taste is astringent. The barks are flat in shape. It contains hydrolysable tannins. It also contains ellagic acid, saponins, arjunolic acid, arjunic acid, arjungenin, arjunetine, arjunine, β-sitosterol, minerals [1, 13-15]. It is used for the treatment of dysentery. It is used as cardiotonic. It is also used as febrifugel. It is showing, vasodialation, hypotension, diuretic properties. It decreases heart rate. The bark especially with ethereal extract shows pink color under UV light [1, 15-17].
- 4) Bahera: It is also known as Baheda. The scientific name is *Terminalia belerica*. The plant is under *Combreataceae* family member. It is seen in forest of India. It is found in Madhya pradesh, Uttar pradesh, Punjab in India. It is also cultivated in south Asia like Malaysia, Sri Lanka. The fruit is having hardy seeds. The seeds are stony in nature. The fruits are dark blackish brown. Basically the fruits are used. The fruits are odorless. The taste is astringent types. The fruits are globular in shape and size. It contains water soluble tannins. It contains gallic acid, phyllemblin, ellagic acid, galloyl glucose, ethyl gallate [1, 18-19]. It is applied for the treatment of diarrhoea and dyspepsia. It is used as astringent, purgative and demulcent. The bahera oil is used for the preparation of soap [1, 20-21].
- 5) Amla: Amla is having a synonym Indian goose berry. The part used is dried or fresh fruits. The scientific name is *Emblica officinalis*. It is showing *Euphorbiaceae* family. It is cultivated in India, Myanmar and Sri Lanka. It is commonly seen in forest. The fruits are hard and yellowish green in color. The fruits are astringent types taste and amla is odorless. Amla is having tannins, fat, minerals, phyllemblin and vitamin C [1, 22-23]. It is having antioxidant activities. It is used as diuretic, laxative, refrigerant. It is also used for the treatment of diarrhoea cum dysentery. It acts as anti-aging. It is used in different ayurvedic formulations. It is applied as acrid. It also acts as in the treatment of jaundice and anaemia. It is given in dyspepsia. It is also used in the treatment of bronchitis and asthma. It is also given in different cosmetics like shampoo and oil [1, 24-25].
- 6) Amra: It is very commonly found in India. The synonym is Mango or aam. The part used is dried stem or bark. The tree is having scientific name *Magnifera indica*. The tree is representing the *Anacardiaceae* family. The bark is showing dark greyish brown in color. The taste is astringent. The odor is pleasant. The surface of bark is very rough and thick in size cum shape. It is having tannins like protocatechuic acid, catechin, other constituents like glycine, shikimic acid, alanin, magniferin, aminobutyric acid [1, 26-29]. Amra is showing antioxidant and anti-microbial properties. Amra is used as astringent. It is also used in the treatment of diarrhoea, rheumatism, dysentery. Amra fruits are very rich sources of vitamins and nutrients [1, 30-36].

- 7) Pterocarpus: It is known as Indian kino tree. The juice is used. The juice is basically obtained from the extraction of the dried stem bark of the plant. The plant has scientific name Pterocarpus marsupium. It is belonging to Leguminosae family members. It is cultivated in India especially in Kerala, Gujrat, Uttar pradesh, Madhya pradesh, Bihar, Assam, West bengal, Orissa. The color of bark is red. The bark is odorless. The bark is astringent in taste. Pterocarpus contains kinotannic acid, k-pyrocatechin, gallic acid, kinoin, kino-red [1, 37-40]. It is used as astringent. It is also used as anti-dysentery and anti-diarrhoeal agent. It is used in diabetes. It is applied in toothache. It is given in dyeing industry [1, 41-42].
- 8) Pale catechu: It is known as Gambier or Gambir. It is basically dried aqueous extract. The extraction is obtained from the young shoots and leaves of *Uncaria gambier*. The family belongs to *Rubiaceae*. It is seen in south east Asia like Malaysia, Indonesia, Singapore. Pale catechu is reddish brown in color. The taste is astringent. It has no odor. It contains tannins like catechin, catechu red, catechutannic acid. It also contains quercerin. It is used in dyeing industry. It is used for the treatment of diarrhoea and also used as astringent [1, 43-44].
- 9) Black catechu: It is also called as Kattha or cutch. It is very commonly dried aqueous extract of the Acacia catechu. The extraction is usually held from the heartwood of the plant. The plant is generally Leguminosae family member. Black catechu is brownish black in color. It is odorless. It is astringent in taste. It is cube in shape. Black catechu is porous. Black catechu contains acacatechin, catechutannic acid, catechin, catechol [1, 45-48]. It also contains quercerin, quercitrin. It is used for the treatment of diarrhoea, ulcers and cough. It has astringent properties. It is used in dyeing industry. It is also used for the treatment of skin eruptions [1, 49-51].
- 10) Coffee: Coffee is very common in World as well as India. Coffee is extracted from the dried cum ripe seeds of Coffea arabica. The tree is belonging to the family Rubiaceae. The tree is found in India, Brazil, Mexico, Indonesia, Vietnam, Sri Lanka, Ethiopia. Coffee seeds are spheroidal in shape. The seeds are dark brown in color. It contains tannins like caffeotannic acid, chlorogenic acid. It is also having caffeine, proteins, sugars, fixed oil. It is used as diuretic and stimulant [1, 52-54].
- 11) Tea: Tea is extracted from leaf buds as well as leaves of *Thea sinensis*. The family is belonging to *Theaceae*. It is found in India, China, Sri Lanka, Japan, Indonesia. It is two types. One is black tea. Another one is green tea. It is small plant. The leaves are dark green in color. The odor is characteristics. The taste is bitter. It is having a rich source of tannins like gallotannic acid. It also contains caffeine, theobromine, theophylline. It is used as diuretic as well as CNS stimulant [1, 55-59].
- 12) Cinchona: It is also known as Peruvian bark. The part used is dried bark. The plant (Scientific name: Cinchona calisaya) is belonging to Rubiaceae family. It is found in India, Sri Lanka, Indonesia, Columbia, Peru, Bolivia, Tanzania, Ecuador. It is cultivated in West Bengal, Tamilnadu in India. The bark is curved in shape. The bark is having characteristic odor and the taste is bitter cum astringent in nature. The bark is brownish grey in color. The bark has tannins like cinchotannic acid, phlobatannin. It also contains quinic acid, quinine, cinchonine, quinidine, cinchonidine, quinicine, cinchonicine, hydrocinchonidine, hydroquinine, cupreine, homocinchonidine, quinovin. It is used as antipyretics, stomachis, anti-malarials. It is also used for the treatment of arrhythmia, atrial fibrillation and tachycardia [1, 60-63].
- 13) **Ipecacuanha:** The parts used are dried roots and rhizomes. The scientific plant naming *Cephaelis ipecacuanha* is belonging to the Rubiaceae family. It is found in India, Brazil, Malaysia, Mayanmar. It has dark brownish red color root and rhizome. The odor is faint and the taste is bitter. The rhizome is cylindrical in shape. It contains tannins. It has ipecacuanhic acid. It also contains starch, emetine, psychotrine, cephaeline, emetamine, emetamine, calcium oxalate, o-methyl psychotriene. It is showing anti-tumor, anti-protozoal and anti-dysentery properties [1, 64-65].
- 14) Cinnamon: Cinnamon is known as Kalmi dalchini commonly. Basically the dried bark of the shoot is used. The scientific name of family is Cinnamon verum under Lauraceae family. The bark is yellowish brown in color. It has sweet taste. It has fragrant odor. The bark contains phlobatannins. It also contains calcium oxalate, mucilage, starch, eugenol, cuminaldehyde, benzaldehyde, cymene, pinene, caryophyllene and phellandrene [1, 66-69]. It is used as carminative, astringent, stomachic, stimulant, condiment, antiseptic, spice, flavoring agent. It is also used for the preparation of perfumes and candy [1, 70-72].
- 15) Nux vomica: It is commonly known as Crow fig. The scientific name of plant is Strychnos nux vomica. The family is belonging to Loganiaceae family members. The dried ripe seeds are used. It is found in forest of India, Sri Lanka, Australia. In India, the plant is especially found in Tamil nadu, Kerala. The color is greenish brown. No odor is found. The taste is bitter. The seeds are disc types in shape. Lignified trichomes are found on the epidermis of the seeds. It contains tannins like chlorogenic acid. It also contains isoatrychnine, bruchine, strychine, loganin, fixed oil, N-oxystrychnine, novacine, protostrychnine,α-colubrine, β-colubrine. It is used as stomachic and CNS stimulant [1, 73-76]. It is used for the treatment of cardiac failure as it increases blood pressure. Besides, it also simulates CVS and respiratory systems [1, 77-80].

- **16) Rhuberb:** It is also called as Revandchini. It is belonging to the *Polygonaceae* family. The dried rhizome of the plant is used. The scientific name is *Rheum emodi*. It is cultivated in India, Korea, and Tibet. Especially it is found in Sikkim and Kashmir of India. It is also grown in Europe. The drugs are usually extracted from 6-10 years old plants. The rhizome is longitudinal in shape. The plant contains gallic acid, catechin, glucogallin, epicatechin, starch, rheinolic acid, chrysophanol, fat, rhein, pectin, calcium oxalate, aloeemodin, physcion, emodin, palmidin A, palmidin B, palmidin C. It is used as purgative, stomachic and anti-diarrhoeal agent [1, 81-85].
- 17) Clove: Clove is Caryophyllum. It is the synonym of clove. The scientific name is *Eugenia Caryophyllus*. The plant is belonging to *Myrtaceae* family member. It is found in India, Madagascar, Sri Lanka etc. It is cultivated in Kerala and Tamilnadu especially. The dried flower buds are used. The color is dark brown. The taste is pungent. It is aromatic in odor. Clove epidermis is attached with cuticle. Clove contains tannins like gallotannic acid. It also contains chromone, resin, eugenin, eugenol [1, 86-90]. It is used as dental analgesic, stimulant, carminative, spice, flavoring agent. It is also used for the preparation of cigarettes. Clove is available in oil formulation. The clove oil is used for the preparation of vanilin. It is used in perfume making industry [1, 87-94].
- **18)** Oak: It is also commonly known as oak galls. It is belonging to *Fagaceae* family members. It is basically obtained from the extraction of fermented oak galls. The part used is growing young twigs of *Quircus infectoria*. It is astringent in taste and odorless. It is usually having tannic acid (hydrolysable tannin). It is used as astringent. It is also used for the treatment of piles and sore throat. It is also applied as antidote for heavy metals poisoning [1, 95-99].
- **19) Areca nut:** Areca nut is also betel nut. It is basically dried ripe seeds. The scientific name is *Areca catechu*. It is belonging to the *Palmae* family. It is found in India, Sri Lanka, Philippines, Africa. It is deep brown in color. It is astringent in taste. The seeds are very hard and nut type. It contains condensed tannins. It also contains lipid, gums, volatile oil, alkaloids like arecoline, guvacine, arecaidine, guvacoline. It is used as sialogogue and parasympathomimetic [1, 100-102].
- **20)** Cocoa: Cocoa is basically known as cocoa bean. It is isolated from the seeds of the plant *Theobroma cocoa* (scientific name). The plant is belonging to the *Sterculiaceae* family member. It is found in Java, Sri Lanka, Ecuador, Brazil, etc. It contains condensed tannins. It has polyphenols, caffeine, theobrom, theobromine [1, 103-105]. It is used as diuretic, nutritive and stimulant [1, 106-108].

VII. CONCLUSION

Medicinal plants are exhibiting different pharmacological activities all over the world. Tannins are one of the important chemical compositions of medicinal plants. Tannins are present in large categories of the plant. Tannins like ellagic acid, gallic acid, pyrogallal, catechol, glucogallin, etc are extracted from bark, seed, leaves, fruit, and stem of the plant. Tannins are more potent and safe for treating various diseases. Most of the tannins are showing astringent, purgatives, cardiotonic, diuretic, anti-diarrhoeal, anti-diabetic, sedative, antiseptic, laxatives, anti-rheumatism, anthelmintic and stomachic properties.

Conflict of Interest: Nil

REFERENCES

- [1] C.K. Kokate, A.P. Purohit, S.B. Gokhale: Pharmacognosy, Volume I & II; Nirali Prakashan; 47th Edition; 2012.
- [2] Karamali Khanbabaee, Teunis van Ree; Tannins: Classification and Definition; Natural Product Reports; 2001; 18: 641-649.
- [3] Atanu Kumar Das, Md. Nazrul Islam, Md Omar Faruk, Md Ashaduzzaman, Rudi Dungani; Review on tannins: Extraction processes, applications and possibilities; *South African Journal of Botany*; 2020; 135: 58-70.
- [4] P. Schofield, D.M. Mbugua, A.N. Pell; Analysis of condensed tannins: A review; *Animal Feed Science and Technology*; 2001; 91: 21-40.
- [5] Luis Sánchez Solano, Luis A. Chel Guerrero, Maira R. Segura Campos, David A. Betancur Ancona, Arturo F. Castellanos Ruelas; Tannins and Saponins in Two Tropical Legumes and Measurement of their Biological Activity; *Annual Research & Review in Biology*; 2015; 5(3): 221-228.

- [6] Andrzej Szczurek; Perspectives on Tannins; Biomoleules; 2021; 11: 442: 1-3.
- [7] Pius O. Ukoha, Egbuonu A. C. Cemaluk, Obasi L. Nnamdi, Ejikeme P. Madus; Tannins and other phytochemical of the Samanaea saman pods and their antimicrobial activities; *African Journal of Pure and Applied Chemistry*; 2011; 5(8): 237-244.
- [8] K.Ramakrishnan, M.R.V.Krishnan; Tannin Classification, Analysis and Applications; *Ancient Science of Life*; 1994; 13(3 & 4): 232-238.
- [9] P. Frutos, G. Hervás, F. J. Giráldez, A. R. Mantecón; Review. Tannins and ruminant nutrition; *Spanish Journal of Agricultural Research*; 2004; 2(2): 191-202.
- [10] A. Gangwal; Extraction, Estimation and Thin Layer Chromatography of Tannins: A Review; *International Journal of Pharmaceutical and Chemical Sciences*; 2013; 2(3): 1585-1588.
- [11] M U Khan, Habibullah Khalilullah, Jawed Akhtar, Gamal Osman Elhasan; Terminalia chebula: An Ephemeral Glance; *International Journal of Pharmacy and Pharmaceutical Sciences*; 2015; 7(2): 40-43.
- [12] P. Pradhan, L. Joseph, V. Gupta, R. Chulet, H. Arya, R. Verma, A. Bajpai; Saraca asoca (Ashoka): A Review; *Journal of Chemical and Pharmaceutical Research*; 2009; 1(1): 62-71.
- [13] Augustine Amalraj, Sreeraj Gopi; Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review; *Journal of Traditional and Complementary Medicine*; 2017; 7: 65-78.
- [14] Aghera Hetal, Bundela Vivek, Shukla V. J, Prajapati P.K, Nariya M.B; A Notable Review on Terminalia arjuna And Its Imperative Ayurvedic Formulations: An Overview; *International Ayurvedic Medical Journal*; 2015; 3(3): 1815-1821.
- [15] Farah Khaliq, M. Fahim; Role of Terminalia Arjuna in Improving Cardiovascular Functions: A Review; *Indian J Physiol Pharmacol*; 2018; 62(1): 8-19.
- [16] Neelam Soni, Vinay Kumar Singh; Efficacy and Advancement of Terminalia arjuna in Indian Herbal Drug Research: A Review; *Trends in Applied Sciences Research*; 2019; 14(4): 233-242.
- [17] Amol B. Choudhari, Seyyed Nazim, Pravin V. Gomase, Ashish S. Khairnar, Afsar Shaikh, Pritam Choudhari; Phytopharmacological review of Arjuna bark; *Journal of Pharmacy Research*; 2011; 4(3): 580-581.
- [18] Riddhi Patel, Jinal Prajapati, Dr. Siddhi Upadhyay, Dr. Umesh Upadhyay; Bahera (Terminalia belirica) A Complete drug to treate various ailments in 21st Century; *International Journal of Pharmaceutical Research and Applications*; 2021; 6(2): 403-409.
- [19] Narendra Kumar, S.M. Paul Khurana; Phytochemistry and medicinal potential of the Terminalia bellirica Roxb. (Bahera); *Indian Journal of Natural Products and Resources*; 2018; 9(2): 97-107.
- [20] Sajid Alam, Shabnam Ansari; A brief review of Terminalia bellerica (Balela) with special reference of Unani medicine; *TANG [Humanitas Medicine]*; 2019; 9(3): e(5): 1-2.
- [21] Anindita Deb, Sikha Barua, Dr. Biswajit Das; Pharmacological activities of Baheda (Terminalia bellerica): A review; *Journal of Pharmacognosy and Phytochemistry*; 2016; 5(1): 194-197.
- [22] Ali Ikram, Waseem Khalid, Maryam Aziz, Muhammad Adnan Arif, Ravi Prakash Jha, Muhammad Zubair Khalid, Chasheen Fizza, Muhammad Zarnoor Mehmood, Muhammad Haseeb, Muhammad Abdul Rahim, Sadia Naeem, Fatima Sultana; Nutritional and Biochemical Composition of Amla (Emblica officinalis) and its Therapeutic Impact: A Review; *Acta Scientific Nutritional Health*; 2021; 5(2): 153-160.
- [23] Pawar Snehal S., Hole Bharati R., Sathe Ganesh S., Dawane Kiran D., Dr. Umalkar Deepak G.; A Phrmlogical Review on Amla (Emblica); *International Journal of Creative Research Thoughts*; 2021; 9(2): 3482-3488.
- [24] Ishwar Chandra Chaurasiya, Shashikant Maury, Piyush Yadav, Manoj Kumar Yadav, Manish k. Maurya; A Review on :- Medicinal Use of "Amla"; *Journal of Emerging Technologies and Innovative Research*; 2021; 8(5): c712-c719.
- [25] Shreya Talreja, Sonam Kumari, Prateek Srivastava, Swarnima Pandey; A Complete Pharmacognostic Review on Amla; World Journal of Pharmacy and Pharmaceutical Sciences; 2019; 8(4): 622-637.

- [26] Baby Ganeriwala, K. S. Gudaganatti, U B Bolmal; Mangifera indica (Amra) and Its Seed Kernel An Useful Drug; *International Journal of Ayurveda and Pharma Research*; 2016; 4(11): 79-83.
- [27] Shah K. A., Patel M. B., Patel R. J., Parmar P. K.; Mangifera Indica (Mango); Pharmacognosy Reviews; 2010; 4(7): 42-48.
- [28] Pooja Singh, Setu Kumar, H. G. Prakash; A study on quality analysis, value-added processing and waste utilization of Mango (Mangifera Indica L.); *International Journal of Innovative Science, Engineering & Technology*; 2021; 8(4): 58-69.
- [29] Dr Jain Alok Pal, Mrs Tandon Manisha, Mr Rathore Shachendra Pratap Singh, Dr.Kori Mohan lal; A Review article on Mangifera indica; *Journal of Novel Research in Pharmacy and Technology*; 2016; 1: 56-89.
- [30] Venkatesan Govindan; Mango (Mangifera indica L.), plant produces an exotic fruits on stem; *International Journal of New Innovations in Engineering and Technology*; 2019; 9(4): 08-013.
- [31] Jha S. N., Narsaiah K., Sharma A. D., Singh M., Bansal S., Kumar R.; Quality parameters of mango and potential of non-destructive techniques for their measurement a review; *J Food Sci Techno*; 2010; 47(1): 1-14.
- [32] Krishan Kumar Singh, JS Chauhan, JMS Rawat; A Review: Vegetative Propagation of Mango (Mengifera indica L.) Through Grafting; *JOJ Horticulture* & *Arboriculture*; 2018; 2(2): 0033-0037.
- [33] S. Parthiban, V. P. Santhi, M. S. Snehapriya, K. Indumathi, P. Masilamani; Recent Advances in Enhancing the Productivity of Mango (Mangifera indica L.) through Hi-tech Practices; *International Journal of Current Microbiology and Applied Sciences*; 2020; 9(8): 1850-1864.
- [34] Dr. Geetha G, Aiswarya Sudhan, Alfiya Abu, Anagha K, Anjali Krishnan P; A Review Article On Ethnobotany, And Invitro Pharmacological Activity Of Camellia Sinensis (Theaceae) And Mangifera Indica (Anacardiaceae); *International Journal of Creative Research Thoughts*; 2022; 10(4): a313-a321.
- [35] Iheagwam P. N., Onyeike E.N. and Amadi B. A; Phytochemical and Vitamin Contents of Mangifera indica (Mango) Fruits Subjected to Ripening by Artificial Methods; *International Journal of Environment, Agriculture and Biotechnology*; 2019; 4(3): 677-684.
- [36] Deependra Yadav and SP Singh; Mango: History origin and distribution; *Journal of Pharmacognosy and Phytochemistry*; 2017; 6(6): 1257-1262.
- [37] N. Senthilkumar, T. Baby Shalini, L. M. Lenora, G. Divya; Pterocarpus indicus Willd: A Lesser Known Tree Species of Medicinal Importance; *Asian Journal of Research in Botany*; 2020; 3(4): 20-32.
- [38] Deepti Katiyar, Vijender Singh, Mohd. Ali; Phytochemical and pharmacological profile of Pterocarpus marsupium: A review; *The Pharma Innovation Journal*; 2016; 5(4): 31-39.
- [39] Mohd Saidur Rahman, Md. Mujahid, Mohd Aftab Siddiqui, Md. Azizur Rahman, Muhammad Arif, Shimaila Eram, Anayatullah Khan, Md Azeemuddin; Ethnobotanical Uses, Phytochemistry and Pharmacological Activities of Pterocarpus marsupium: A Review; *Pharmacogn J.*; 2018; 10(6)Suppl: s1-s8.
- [40] Manish Devgun, Arun Nanda, S. H. Ansari; Pterocarpus marsupium Roxb. A Comprehensive Review; *Phcog Rev.*; 2009; 3(6): 359-363.
- [41] Gairola Seema, Gupta Vikas, Singh Baljinder, Maithani Mukesh, Bansal Parveen; Phytochemistry and Pharmacological Activities of Pterocarpus Marsupium— A Review; *International Research Journal Of Pharmacy*; 2010; 1(1): 100-104.
- [42] Mohammad Azamthulla, Rajkapoor Balasubramanian, Kavimani S; A Review on Pterocarpus santalinus Linn.; World Journal of Pharmaceutical Research; 2015; 4(2): 282-292.
- [43] Mohd Faiz Mat Saad, Hoe-Han Goh, Roslee Rajikan, Tengku Roslina Tuan Yusof, Syarul Nataqain Baharum, Hamidun Bunawan; Uncaria gambir (W. Hunter) Roxb: From phytochemical composition to pharmacological importance; *Tropical Journal of Pharmaceutical Research*; 2020; 19 (8): 1767-1773.

- [44] Evaluation of the Effect of Gambier (Uncaria Gambier) Extract for Treatment of Recurrent Aphthous Stomatitis; Siti Rusdiana Puspa Dewi, Monika Pindontha Karina Ginting, Nyimas Rafika Anggraini, Nita Parisa, Pudji Handayani, Shanty Chairani; *International Research Journal of Pharmacy*; 2009; 11(1): 27-31.
- [45] Pankaj Sharma, Raju Lingha; A Recent Update on the Pharmacognostical as well as pharmacological Profiles of the Acacia Catechu Heartwood: A Mini Review; *Journal of Ayurvedic and Herbal Medicine*; 2021; 7(3): 188-192.
- [46] Abdullah Ansari , Tarique Mahmood, Paramdeep Bagga, Farogh Ahsan, Arshiya Shamim, Shoaib Ahmad, Mohammad Shariq, Saba Parveen; Areca catechu: A phytopharmacological legwork; *Food Frontiers*; 2021; 2: 163–183.
- [47] Manish Grover; Areca catechu L. (Chikni Supari): A Review Based Upon its Ayurvedic and Pharmacological Properties; *The Journal of Phytopharmacology*; 2021; 10(5):338-344.
- [48] Lakshmi T, Geetha R.V, Anitha Roy; Acacia catechu Willd: A Pharmacological Review; *International Journal of Current Research and Review*; 2011; 3(5): 101-111.
- [49] Muhammad Anis Hashmat, Rabia Hussain; A review on Acacia catechu Willd; *Interdisciplinary Journal of Contemporary Research in Business*; 2013; 5(1): 593-600.
- [50] Thidarat Duangyod, Chanida Palanuvej, Nijsiri Ruangrungsi; Pharmacognostic evaluation with reference to catechin content and antioxidant activities of pale catechu in Thailand; *Journal of Advanced Pharmaceutical Technology & Research*; 2015; 6(3): 97-102.
- [51] Chaudhari S.K, Tripathi Shalini, Singh D.P., Verma N.K., Chandra V., Roshan Asha; An Overview on Acacia Catechu; *International Journal of Research and Reviews in Pharmacy and Applied science*; 2012; 2(2): 342-346.
- [52] Mirian T. S. Eira, E. A. Amaral da Silva, Renato D. de Castro, Stéphane Dussert, Christina Walters, J. Derek Bewley, Henk W. M. Hilhorst; Coffee seed physiology; *Braz. J. Plant Physiol.*; 2006; 18(1): 149-163.
- [53] Hailu Lire Wachamo; Review on Health Benefit and Risk of Coffee Consumption; *Medicinal & Aromatic Plants*; 2017; 6(4): 1-12.
- [54] Jae-Hoon Bae, Jae-Hyung Park, Seung-Soon Im, Dae-Kyu Song; Coffee and health; *Integrative Medicine Research*; 2014; 3: 189-191.
- [55] Verma Poonam, Mukherjee Archita, Shrivastava Deepali, Gurjar Hemant, Sonu.K. Himanshu; A Review On: Green Tea: A Miraculous Drink; *Int. J. Pharm. Sci. Rev. Res.*, 2018; 51(2): 26-34.
- [56] Sabu M Chacko, Priya T Thambi, Ramadasan Kuttan, Ikuo Nishigaki; Beneficial effects of green tea: A literature review; *Chinese Medicine*; 2010; 5: 13: 1-9.
- [57] Rishi Raj Shrivastava, Pradeep Pateriya, Mahendra Singh; Green tea A short review; *International Journal of Indigenous Herbs and Drugs*; 2018; 3(2): 12-21.
- [58] A.B. Sharangi; Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) A review; *Food Research International*; 2009; 42: 539-535.
- [59] Tiantian Zhao, Chao Li, Shuai Wang, Xinqiang Song; Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology; *Molecules*; 2022; 27: 3909: 1-23.
- [60] Jyothylakshmy Rajan, Dr. N Saranya; A Comprehenzive Review of Cinchona Alkaloids --Medicinal Properties and Its Various Applications; *International Journal of Creative Research Thoughts*; 2022; 10(6): b448-b457.
- [61] Anubhav Dubey, Yatendra Singh; Medicinal Properties of Cinchona Alkaloids A Brief Review; Asian *Journal of Research in Pharmaceutical Sciences*; 2021; 11(3): 224-228.
- [62] Pranay Gurung, Puspal De; Spectrum of biological properties of cinchona alkaloids: A brief review; *Journal of Pharmacognosy and Phytochemistry*; 2017; 6(4): 162-166.
- [63] Muhammad Adnan Raza, Fazal Ur Rehman, Samra Anwar, Amber Zahra, Amina Rehman, Erum Rashid, Maria Kalsoom, Haroon Ilah; The Medicinal And Aromatic Activities Of Cinchona: A Review; *Asian Journal of Advances in Research*; 2021; 8(2): 42-45.

- [64] Sinjini Mondal, Saurav Moktan; A Paradoxically Significant Medicinal Plant Carapichea ipecacuanha: A Review; *Indian Journal of Pharmaceutical Education and Research*; 2020; 54(2)[Suppl]: S56-S66.
- [65] R.M.Younis, Hala.M.Hassan, R.A.Mansour, A.M.El-desoky; Corrosion Inhibition of Carapichea Ipecacuanha Extract (CIE) on Copper in 1 M HNO3 Solution; *International Journal of Scientific & Engineering Research*; 2015; 6(9): 761-770.
- [66] Yadav Ashwani, Piyush Yadav, Shradha Sahu, Shashikant Maurya, Tushar Yadav; A Review on Cinnamon species; *International Journal of Creative Research Thoughts*; 2021; 9(1): 2226-2232.
- [67] Meena Vangalapati, Sree Satya N, Surya Prakash DV, Sumanjali Avanigadda; A Review on Pharmacological Activities and Clinical effects of Cinnamon Species; *Research Journal of Pharmaceutical, Biological and Chemical Sciences*; 2012; 3(1): 653-663.
- [68] Dimas Rahadian Aji Muhammad, Koen Dewettinck; Cinnamon and its derivatives as potential ingredient in functional food—A review; *International Journal of Food Properties*; 2017; 20(S2): S2237–S2263.
- [69] Shefali Aroraa, Mahak Gusaina, Ravi Gunupurua, Rohit Kaushikb, Pushpendu Sinhab, Deepak Kumar; Title: Cinnamon: A Clinical Approach As Multifarious Natural Remedy With Absolute Immunity; *European Journal of Molecular & Clinical Medicine*; 2021; 8(3): 2331-2345.
- [70] Pasupuleti Visweswara Rao, Siew Hua Gan; Cinnamon: A Multifaceted Medicinal Plant; Evidence-Based Complementary and Alternative Medicine; 2014; 1-12.
- [71] Oras Khalis yaseen, Mustafa Taha Mohammed; Review Article: Effects of Cinnamon and Their Beneficial Content on Treatment of Oxidative Stress; *Sys Rev Pharm*; 2020; 11(9): 661-665.
- [72] Spartak Yanakiev; Effects of Cinnamon (Cinnamonum spp.) in Dentistry: A Review; *Molecules*; 2020: 25: 4184: 1-17.
- [73] R.V. BinithaRaj, K. S. Rajesh, G. N. Sreedeepthi; Ayurvedic Literary Review on Methods of Purification and Therapeutic Potential of Kupeelu (Strychnos nux-vomica L); *International Ayurvedic Medical Journal*; 2017; 2(1): 767-775.
- [74] Rajesh Bhati, Anupama Singh, Vikas Anand Saharan, Veerma Ram, Anil Bhandari; Strychnos nux-vomica seeds: Pharmacognostical standardization, extraction, and antidiabetic activity; *Journal of Ayurveda & Integrative Medicine*; 2012; 3(2): 80-84.
- [75] Jun Chen, Yange Qu, Dongyue Wang, Pei Peng, Hao Cai, Ying Gao, Zhipeng Chen, Baochang Cai; Pharmacological Evaluation of Total Alkaloids from Nux Vomica: Effect of Reducing Strychnine Contents; *Molecules*; 2014; 19: 4395-4408.
- [76] Seema Akbar; Shamshad A Khan; Akbar Masood, M Iqbal; Use of Strychnos Nux-Vomica (Azraqi) Seeds in Unani System of Medicine: Role Of Detoxification; *Afr J Tradit Complement Altern Med.*; 2010; 7(4): 286-290.
- [77] Bonagiri Sreedevi, Vijaya Kuchana, S. Shobharani; Ethanobotanical, Phytochemical and Pharmacological Review on Strychnos nuxvomica; *Journal of Natural Products and Plant Resources*; 2021; 11 (1): 1-11.
- [78] Maji Amal K, Banerji Pratim; Strychnos nux-vomica: A Poisonous Plant with Various Aspects of Therapeutic Significance; *Journal of Basic and Clinical Pharmacy*; 2017; 8(S1); S087-S0103.
- [79] Rixin Guo, Ting Wang, Guohong Zhou, Mengying Xu, Xiankuo Yu, Xiao Zhang, Feng Sui, Chun Li, Liying Tang, Zhuju Wang; Botany, Phytochemistry, Pharmacology and Toxicity of Strychnos nux-vomica L.: A Review; *The American Journal of Chinese Medicine*; 2018; 46(1): 1-23.
- [80] Tayyeba Rehman; A brief review on Nux vomica: A panacea homoeopathic remedy; *Journal of Integrated Standardized Homoeopathy*; 2021; 4(1): 1-5.
- [81] S.Bilala, M.R.Mira, J.D.Parrahb, Brahm.K.Tiwaric, Vijaya Tripathic, Priya Singhc, Mehjabeenc, A.B.Abidic; Rhubarb: The Wondrous Drug. A Review; *International Journal of Pharmacy and Biological Sciences*; 2013; 3(3): 228-233.
- [82] D K Sanghi, Rakesh Tiwle; Importance of Village Plant Rhubarb: Review; *International Journal of Pharma Research and Health Sciences*; 2016; 4(6); 1438-1443.

- [83] Fang Lai, Yan Zhang, Dong-ping Xie, Shu-tao Mai, Yan-na Weng, Jiong-dong Du, Guang-ping Wu, Jing-xia Zheng, Yun Han; A Systematic Review of Rhubarb (a Traditional Chinese Medicine) Used for the Treatment of Experimental Sepsis; *Evidence-Based Complementary and Alternative Medicine*; 2015; 1-12.
- [84] Hong Xiang, Jiaxin Zuo, Fangyue Guo, Deshi Dong; What we already know about rhubarb: a comprehensive review; *Chinese Medicine*; 2020; 15: 88: 1-22.
- [85] Oleksandra Liudvytska, Joanna Kolodziejczyk-Czepas; A Review on Rhubarb-Derived Substances as Modulators of Cardiovascular Risk Factors—A Special Emphasis on Anti-Obesity Action; *Nutrients*; 2022; 14: 2053: 1-21.
- [86] Diego Francisco Cortés-Rojas, Claudia Regina Fernandes de Souza, Wanderley Pereira Oliveira; Clove (Syzygium aromaticum): a precious spice; *Asian Pacific Journal of Tropical Biomedicine*; 2014; 4(2): 90-96.
- [87] Seema Yadav, Sujeet Kumar Gupta, Diksha Bharti; Syzygium Aromaticum (Clove): A Review on Various Phytochemicals and Pharmacological Activities in Medicinal Plant Bhumika Yogi; World Journal of Pharmaceutical Research; 2020; 9(11): 349-363.
- [88] Mayank Agrawal, Sonam Agrawal, Dr Radhika Rastogi, Dr Pallavi Singh, Dr Adyanthaya BR, Dr Gupta H. L; A review on uses of clove in oral and general health; *Indian Journal of Research in Pharmacy and Biotechnology*; 2014; 2(4): 1321-1324.
- [89] Shifali Thakur, Shailja Choudhary, Isha Kumari, Madhusudan S, Bhawna Walia, Hemlata Kaurav, Gitika Chaudhary; Clove (Syzygium Aromaticum) A Review Based Upon Its Traditional Therapeutic Uses; *International Journal of Current Research*; 2021; 13(02): 16368-16375.
- [90] Mukesh Yadav, Piyush Yadav, Shradha sahu, Vijay Yadav, Shyam Narayan Gupta; Review Literature On Clove; *International Journal of Creative Research Thoughts*; 2021; 9(1): 1883-1888.
- [91] Nitin Yadav, Piyush Yadav, Manish Kumar Maurya, Shashikant Maurya, Mayank Singh; A Review Article on Phytomedicine "Clove"; *International Journal of Creative Research Thoughts*; 2021; 9(1): 2331-2336.
- [92] Caterina Vicidomini, Valentina Roviello, Giovanni N. Roviello; Molecular Basis of the Therapeutical Potential of Clove (Syzygium aromaticum L.) and Clues to Its Anti-COVID-19 Utility; *Molecules*; 2021; 26: 1880: 1-12.
- [93] Shahid Hussain, Rafia Rahman, Ayesha Mushtaq, Asma El Zerey-Belaskri; Clove: A review of a precious species with multiple uses; *International Journal of Chemical and Biochemical Sciences*; 2017; 11: 129-133.
- [94] Parle Milind, Khanna Deepa; Clove: A Champion Spice; *International Journal of Research in Ayurveda & Pharmacy*; 2011; 2(1): 47-54.
- [95] Mahmoud Bahmani, Shirin Forouzan, Ezatollah Fazeli-Moghadam, Mahmoud RafieianKopaei, Ahmad Adineh, Shirin Saberianpour; Oak (Quercus branti): An overview; *Journal of Chemical and Pharmaceutical Research*; 2015; 7(1):634-639.
- [96] Misba Naim, Wajeeha Begum, Fazly Shakoor; Quercus infectoria (Mazu): A Review; World Journal of Pharmaceutical Research; 2017; 6(9): 176-185.
- [97] Sayyede Fatemeh Askari, Amir Azadi, Bahia Namavar Jahromi, Mojgan Tansaz, Asghar Mirzapour Nasiri, Abdolali Mohagheghzadeh, Parmis Badr; A Comprehensive Review about Quercus infectoria G. Olivier Gall; *Research Journal of Pharmacognosy*; 2020; 7(1): 67-75.
- [98] Meena Jain, Puneet Chahar, Vishal Jain, Ankur Sharma, Nisha Rani Yadav; Role of Quercus infectoria in health and oral health A Review; *International Journal of Green Pharmacy*; 2019; 13(3): 180-185.
- [99] Ansari Shaiqua Abdul Haque, Wasim Ahmad, Rizwan Mohiyuddin Khan, Azhar Hasan; Ethnopharmacology of Quercus infectoria Olivier Galls: A Review; *Hippocratic Journal of Unani Medicine*; 2016; 2(3): 105-118.
- [100] Keshava Bhat Sarpangala, Mythri Sarpangala, Ashwin Devasya; Antimicrobial Properties of Areca Nut, Areca Catechu, L: A Review; *Int. J. Res. Ayurveda Pharm.*; 2017; 8(3): 8-12.
- [101] Pimolpan Pithayanukul, Saruth Nithitanakool, Rapepol Bavovada; Hepatoprotective Potential of Extracts from Seeds of Areca catechu and Nutgalls of Quercus infectoria; *Molecules*; 2009; 14: 4987-5000.

- [102] Jiayu Gao, Xiao Yang, Weiping Yin, Ming Li; Gallnuts: A Potential Treasure in Anticancer Drug Discovery; Evidence-Based Complementary and Alternative Medicine; 2018; 1-9.
- [103] Deanna L. Pucciarelli; Cocoa and Heart Health: A Historical Review of the Science; Nutrients; 2013; 5: 3854-3870.
- [104] Abbe Maleyki Mhd Jalil, Amin Ismail; Polyphenols in Cocoa and Cocoa Products: Is There a Link between Antioxidant Properties and Health?; Molecules; 2008; 13: 2190-2219.
- [105] C.L. Hii, C.L. Law, S. Suzannah, Misnawi, M. Cloke; Polyphenols in cocoa (Theobroma cacao L.); Asian Journal of Food and Agro-Industry; 2009; 2(04): 702-722.
- [106] Rossi Indiarto, Zaidhiya Rizqi Raihani, Mega Puspita Dewi, Zsahra Raisa Aqila, Muhammad Yusuf Efendi; A Review of Innovation in Cocoa Bean Processing By-Products; International Journal of Emerging Trends in Engineering Research; 2021; 9(8): 1162-1169.
- [107] Rebeca Kababie-Ameo, Griselda Mericia Rabadán-Chávez, Natalia Vázquez-Manjarrez, Gabriela Gutiérrez-Salmeán; Potential applications of cocoa (Theobroma cacao) on diabetic neuropathy: mini-review; Frontiers in Bioscience Landmark; 2022; 27(2): 057: 1-10.
- [108] Neela Badriea, Frances Bekeleb, Elzbieta Sikorac, Marek Sikora; Cocoa Agronomy, Quality, Nutritional, and Health Aspects; Critical Reviews in Food Science and Nutrition; 2015; 55: 620-659.

