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1   INTRODUCTION 

In the literature, different type of connectedness and compactness were defined and studied by different 

authors [1-9]. Connectedness is one of the principal topological space properties that are used to distinguish 

topological spaces. A subset of a topological space is called a connected set if it is a connected space when 

viewed as a subspace of that topological space. The notations of compactness resulted in motivating 

mathematicians to generalize these notations further. 

 

The concept of 𝑔𝑠𝑜-closed set was introduced in 2019 by Irshad M. I. and Elango P. [10] in topological 

space and obtained various properties. The aim of this paper is to study 𝑔𝑠𝑜-connectedness and 𝑔𝑠𝑜-

compactness using 𝑔𝑠𝑜-closed set and also discuss some of their properties. 

2   PRELIMINARIES  

Throughout this paper (𝑋, 𝜏), (𝑌, 𝜎) (or simply 𝑋 and 𝑌) represent topological spaces on which no separation 

axioms are assumed unless otherwise mentioned. For a subset 𝐴 of (𝑋, 𝜏), 𝑐𝑙(𝐴) and 𝐼𝑛𝑡(𝐴) denote the closure 

of 𝐴 and interior of 𝐴 respectively. 

 

Definition 2.1. Let (𝑋, 𝜏) be topological space. Then, a subset 𝐴 of (𝑋, 𝜏)is called  

a) 𝑔𝑠𝑜-closed set [10] if 𝐴 is both a 𝑔-closed set and a semi-open set in 𝑋. 

b) 𝑔𝑠𝑜-open set [10] if 𝐴 is a 𝑔-open set or a semi-closed set in 𝑋. 

 

The collection of all 𝑔𝑠𝑜-closed sets of 𝑋 is denoted by 𝐶𝑔𝑠𝑜(𝑋). 

 

Definition 2.2. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is called 

a) 𝑔𝑠𝑜-continuous [10] if the inverse image of every closed set in (𝑌, 𝜎) is 𝑔𝑠𝑜-closed in (𝑋, 𝜏). 

b) 𝑔𝑠𝑜- irresolute [10] if the inverse image of every 𝑔𝑠𝑜-closed set in (𝑌, 𝜎) is 𝑔𝑠𝑜-closed in (𝑋, 𝜏). 
 

3   𝑮𝑺𝑶-CONNECTEDNESS 

 

Definition 3.1. Let 𝐴 and 𝐵 be subsets of a topological space 𝑋. Then, 𝐴 and 𝐵 are called, 𝑔𝑠𝑜-separated if 

𝐴 ∩ 𝑐𝑙𝑔𝑠𝑜(𝐵) = ∅ = 𝑐𝑙𝑔𝑠𝑜(𝐴) ∩ 𝐵. 
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Definition 3.2. A topological space 𝑋 is said to be generalized semi-open connected (briefly 𝑔𝑠𝑜-connected) 

if 𝑋 cannot be written as the union of two non-empty disjoint 𝑔𝑠𝑜-open sets. 

 

Example 3.1. Let 𝑋 = {𝑎, 𝑏} and 𝜏 = {𝑋, ∅, {𝑎}}. Then, the topological space (𝑋, 𝜏) is 𝑔𝑠𝑜-connected. 

 

Remark 3.1. Every 𝑔𝑠𝑜-connected space is connected. But, the converse need not be true in general as seen 
in the following example. 

 

Example 3.2. Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝜏 = {𝑋, ∅, {𝑎}}. Now, clearly (𝑋, 𝜏) is connected. Then, the 𝑔𝑠𝑜-open sets 

of 𝑋 are {𝑋, ∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}. Therefore, (𝑋, 𝜏) is not 𝑔𝑠𝑜-connected space, because 𝑋 =
{𝑎} ∪ {𝑏, 𝑐}, where {𝑎} and {𝑏, 𝑐} are non-empty 𝑔𝑠𝑜-open sets. 

 

Theorem 3.3. If 𝑓: 𝑋 → 𝑌 is a 𝑔𝑠𝑜-continuous surjective map and 𝑋 is 𝑔𝑠𝑜-connected, then 𝑌 is connected. 
 

Proof. Suppose that 𝑋 is 𝑔𝑠𝑜-connected and assume that 𝑌 is not connected. Then, 𝑌 = 𝐴 ∪ 𝐵, where 𝐴 and 

𝐵 are non-empty disjoint open sets in 𝑌. Since 𝑓 is a 𝑔𝑠𝑜-continuous surjective map, 𝑋 = 𝑓−1(𝐴) ∪ 𝑓−1(𝐵), 

where 𝑓−1(𝐴) and 𝑓−1(𝐵) are non-empty disjoint 𝑔𝑠𝑜-open sets. This is a contradiction to that 𝑋 is 𝑔𝑠𝑜-

connected. Hence 𝑌 is connected. 
 

Theorem 3.4. If 𝑓: 𝑋 → 𝑌 is a 𝑔𝑠𝑜-irresolute surjective map and 𝑋 is 𝑔𝑠𝑜-connected, then 𝑌 is 𝑔𝑠𝑜-connected. 
 

Proof. Suppose that 𝑋 is 𝑔𝑠𝑜-connected and assume that 𝑌 is not 𝑔𝑠𝑜-connected. Then, 𝑌 = 𝐴 ∪ 𝐵, where 𝐴 

and 𝐵 are non-empty disjoint 𝑔𝑠𝑜-open sets in 𝑌. Since 𝑓 is a 𝑔𝑠𝑜-irresolute surjective map, 𝑋 = 𝑓−1(𝐴) ∪
𝑓−1(𝐵), where 𝑓−1(𝐴) and 𝑓−1(𝐵) are non-empty disjoint 𝑔𝑠𝑜-open sets. This is a contradiction to that 𝑋 is 

𝑔𝑠𝑜-connected. Hence 𝑌 is 𝑔𝑠𝑜-connected. 
 

Definition 3.3. A subset 𝑌 of a topological space 𝑋 is called the 𝑔𝑠𝑜-subspace of 𝑋 if 𝑌 ∩ 𝑈 is 𝑔𝑠𝑜-open, 

when 𝑈 is 𝑔𝑠𝑜-open in 𝑋. 

 

Definition 3.4. A 𝑔𝑠𝑜-subspace 𝑌 of a topological space 𝑋 is 𝑔𝑠𝑜-disconnected if there exist 𝑔𝑠𝑜-open 

subsets 𝑈 and 𝑉 of 𝑋 such that 𝑌 ∩ 𝑈 and 𝑌 ∩ 𝑉 are disjoint non-empty 𝑔𝑠𝑜-open sets whose union is 𝑌. The 

𝑔𝑠𝑜-subspace is 𝑔𝑠𝑜-connected if it is not 𝑔𝑠𝑜-disconnected. 

 

Lemma 3.5. If Y is a 𝑔𝑠𝑜-connected subspace of 𝑋 and if the sets 𝑈 and 𝑉 form a 𝑔𝑠𝑜-separation of 𝑋, then 

𝑌 ⊂ 𝑈 or 𝑌 ⊂ 𝑉. 
 

Proof. Since 𝑈 and 𝑉 are both 𝑔𝑠𝑜-open in 𝑋, the sets 𝑌 ∩  𝑈 and 𝑌 ∩  𝑉 are 𝑔𝑠𝑜-open in 𝑌. We have, (𝑌 ∩
𝑈) ∪ (𝑌 ∩ 𝑉) = 𝑌 and (𝑌 ∩ 𝑈) ∩ (𝑌 ∩ 𝑉) = ∅. If 𝑌 ∩ 𝑈 and 𝑌 ∩ 𝑉 are non-empty, then 𝑌 is 𝑔𝑠𝑜-separated, 

but 𝑌 is 𝑔𝑠𝑜-connected. Then 𝑌 ∩ 𝑈 = ∅ or 𝑌 ∩ 𝑉 = ∅. Therefore, 𝑌 ⊂ 𝑈 or 𝑌 ⊂ 𝑉. 
 

Theorem 3.6. Let 𝐴 and 𝐵 be subspaces of a topological space 𝑋. If 𝐴 and 𝐵 are gso-connected and not 𝑔𝑠𝑜-

separated, then 𝐴 ∪  𝐵 is 𝑔𝑠𝑜-connected. 

 

Proof. Assume that 𝐴 ∪  𝐵 is not 𝑔𝑠𝑜-connected. Then, 𝐴 ∪ 𝐵 = 𝑈 ∪ 𝑉, where 𝑈 and 𝑉 are disjoint non-

empty 𝑔𝑠𝑜-open sets in 𝑋. Since 𝐴 and 𝐵 are 𝑔𝑠𝑜-connected, then by Lemma (3.5), either 𝐴 ⊂ 𝑈 or 𝐴 ⊂
𝑉 and 𝐵 ⊂ 𝑈 or 𝐵 ⊂ 𝑉 . If 𝐴 ⊂ 𝑈 and 𝐵 ⊂ 𝑈, then 𝐴 ∪ 𝐵 ⊂ 𝑈 and 𝑉 =  ∅. This is a contradiction to that 𝑉 

is non-empty. Therefore, 𝐴 ∪  𝐵 is 𝑔𝑠𝑜-connected. 
 

Theorem 3.7. If {𝐴𝛼 ∶  𝛼 ∈  𝐼} is non-empty collection of 𝑔𝑠𝑜-connected subspaces of a topological space 𝑋 

such that ⋂ 𝐴𝛼𝛼∈𝐼 ≠ ∅, then ⋃ 𝐴𝛼𝛼∈𝐼  is 𝑔𝑠𝑜-connected.   
 

Proof. Assume that 𝑌 = ⋃ 𝐴𝛼𝛼∈𝐼  is not 𝑔𝑠𝑜-connected. Then 𝑌 = 𝑈 ∪ 𝑉, where 𝑈 and 𝑉 are non-empty 

disjoint 𝑔𝑠𝑜-open sets in 𝑋. Since ⋂ 𝐴𝛼𝛼∈𝐼 ≠ ∅, there is a point 𝑝 of T ⋂ 𝐴𝛼𝛼∈𝐼 . Since 𝑝 ∈ 𝑌, either 𝑝 ∈ 𝑈 or 

𝑝 ∈ 𝑉. Suppose that 𝑝 ∈ 𝑈. Since 𝐴𝛼 is 𝑔𝑠𝑜-connected, 𝐴𝛼 ⊂ 𝑈 or 𝐴𝛼 ⊂ 𝑉. Since 𝑝 ∈ 𝐴𝛼, 𝐴𝛼 ⊄ 𝑉. Hence, 

𝐴𝛼 ⊂ 𝑈 for every 𝛼. Then 𝑌 = ⋃ 𝐴𝛼𝛼∈𝐼 ⊂ 𝑈. This is a contradiction to that 𝑉 is non-empty. Therefore, 

⋃ 𝐴𝛼𝛼∈𝐼  is 𝑔𝑠𝑜-connected. 
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Theorem 3.8. Let 𝐴 be a 𝑔𝑠𝑜-connected subspace of 𝑋. If 𝐴 ⊂ 𝐵 ⊂ 𝑐𝑙𝑔𝑠𝑜(𝐴), then 𝐵 is also 𝑔𝑠𝑜-connected.  

 

Proof. Assume that 𝐵 is not 𝑔𝑠𝑜-connected. Then, 𝐵 = 𝑈 ∪ 𝑉, where 𝑈 and 𝑉 are disjoint non-empty 𝑔𝑠𝑜-

open sets in 𝐵. Since 𝐴 is 𝑔𝑠𝑜-connected then by Lemma (3.5), either 𝐴 ⊂ 𝑈 or 𝐴 ⊂ 𝑉. Suppose that 𝐴 ⊂ 𝑈. 

Then 𝑐𝑙𝑔𝑠𝑜(𝐴) ⊂ 𝑐𝑙𝑔𝑠𝑜(𝑈). Since 𝑐𝑙𝑔𝑠𝑜(𝑈) and 𝑉 are disjoint, 𝐵 cannot intersect 𝑉. This contradicts the fact 

that 𝑉 is a non-empty subset of 𝐵. Therefore, 𝐵 is 𝑔𝑠𝑜-connected. 
 

4   𝑮𝑺𝑶-COMPACTNESS 

 

Definition 4.1. A collection {𝐴𝑖: 𝑖 ∈ 𝐼} of 𝑔𝑠𝑜-open sets in a topological space 𝑋 is called a 𝑔𝑠𝑜-open cover 

of a subset 𝐵 of 𝑋 if 𝐵 ⊂∪ {𝐴𝑖: 𝑖 ∈ 𝐼} holds. 

 

Definition 4.2. A topological space 𝑋 is 𝑔𝑠𝑜-compact if every 𝑔𝑠𝑜-open cover of 𝑋 has a finite subcover. 
 

Definition 4.3. A subset 𝐵 of a topological space 𝑋 is said to be 𝑔𝑠𝑜-compact relative to 𝑋 if, for every 

collection {𝐴𝑖: 𝑖 ∈ 𝐼}  of 𝑔𝑠𝑜-open subsets of 𝑋 such that 𝐵 ⊂ ∪ {𝐴𝑖: 𝑖 ∈ 𝐼}  there exists a finite subset 𝐼0 of 𝐼 

such that 𝐵 ⊆ ∪ {𝐴𝑖: 𝑖 ∈ 𝐼0} . 
 

Definition 4.5. A subset 𝐵 of a topological space 𝑋 is said to be 𝑔𝑠𝑜-compact if 𝐵 is 𝑔𝑠𝑜-compact as a 

subspace of 𝑋. 

 
Theorem 4.1. Every 𝑔𝑠𝑜-closed subset of a 𝑔𝑠𝑜-compact space 𝑋 is 𝑔𝑠𝑜-compact relative to 𝑋.  
 

Proof. Let 𝐴 be a 𝑔𝑠𝑜-closed subset of 𝑔𝑠𝑜-compact space 𝑋. Then, 𝐴𝑐 is 𝑔𝑠𝑜-open in 𝑋. Let 𝑀 = {𝐺𝛼: 𝛼 ∈
𝐼} be a cover of 𝐴 by 𝑔𝑠𝑜-open sets in 𝑋. Then, 𝑀∗ = 𝑀 ∪ 𝐴𝑐 is a 𝑔𝑠𝑜-open cover of 𝑋. Since 𝑋 is 𝑔𝑠𝑜-

compact, 𝑀∗ is reducible to a finite subcover of 𝑋, say 𝑋 = 𝐺𝛼1
∪ 𝐺𝛼2

∪ … ∪ 𝐺𝛼𝑚
∪ 𝐴𝑐, 𝐺𝛼𝑘

∈ 𝑀. But, 𝐴 and 

𝐴𝑐 are disjoint hence 𝐴 ⊂ 𝐺𝛼1
∪ 𝐺𝛼2

∪ … ∪ 𝐺𝛼𝑚
∪ 𝐴𝑐, 𝐺𝛼𝑘

∈ 𝑀, which implies that any 𝑔𝑠𝑜-open cover 𝑀 of 

𝐴 contains a finite subcover. Therefore, 𝐴 is 𝑔𝑠𝑜-compact relative to 𝑋. Thus, every 𝑔𝑠𝑜-closed subset of 

𝑔𝑠𝑜-compact space 𝑋 is 𝑔𝑠𝑜-compact. 
 

Theorem 4.2. Every 𝑔𝑠𝑜-compact space is compact. 
 

Proof. Let 𝑋 be a 𝑔𝑠𝑜-compact space. Let {𝐴𝑖: 𝑖 ∈ 𝐼}  be an open cover of 𝑋. Then {𝐴𝑖: 𝑖 ∈ 𝐼} is a 𝑔𝑠𝑜-open 

cover of 𝑋 as every open set is 𝑔𝑠𝑜-open set. Since 𝑋 is 𝑔𝑠𝑜-compact, the 𝑔𝑠𝑜-open cover {𝐴𝑖: 𝑖 ∈ 𝐼} of 𝑋 

has a finite subcover, say {𝐴𝑖: 𝑖 = 1, … , 𝑛} for 𝑋. Hence 𝑋 is compact. 
 

Theorem 4.3. Let 𝑓: 𝑋 → 𝑌 be surjective, 𝑔𝑠𝑜-continuous function. If 𝑋 is 𝑔𝑠𝑜-compact, then 𝑌 is compact. 
 

Proof. Let {𝐴𝑖: 𝑖 ∈ 𝐼}  be an open cover of 𝑌. Since 𝑓 is 𝑔𝑠𝑜-continuous function, then {𝑓−1(𝐴𝑖): 𝑖 ∈ 𝐼} is 

𝑔𝑠𝑜-open cover of 𝑋 has a finite subcover, say {𝑓−1(𝐴𝑖): 𝑖 = 1, … , 𝑛}. Therefore, 𝑋 = ⋃ 𝑓−1(𝐴𝑖
𝑛
𝑖=1 ) which 

implies 𝑓(𝑋) = ⋃ 𝐴𝑖
𝑛
𝑖=1 . Since f is surjective, 𝑌 = ⋃ 𝐴𝑖

𝑛
𝑖=1 . Thus, {𝐴1, 𝐴2, … , 𝐴𝑛} is a finite subcover of 

{𝐴𝑖: 𝑖 ∈ 𝐼} for 𝑌. Hence 𝑌 is compact. 
 

Theorem 4.4. If a map 𝑓: 𝑋 → 𝑌 is 𝑔𝑠𝑜-irresolute and a subset 𝐵 of 𝑋 is 𝑔𝑠𝑜-compact relative to 𝑋, then the 

image 𝑓(𝐵) is 𝑔𝑠𝑜-compact relative to 𝑌. 
 

Proof. Let {𝐴𝛼: 𝛼 ∈ 𝐼}  be any collection of 𝑔𝑠𝑜-open subsets of 𝑌 such that 𝑓(𝐵) ⊂ ∪ {𝐴𝛼: 𝛼 ∈ 𝐼}. Then, 

𝐵 ⊂  {𝑓−1(𝐴𝛼) ∶  𝛼 ∈  𝐼} holds. From the hypothesis, 𝐵 is 𝑔𝑠𝑜-compact relative to 𝑋. Then, there exists a 

finite subset 𝐼0 of 𝐼 such that 𝐵 ⊂  {𝑓−1(𝐴𝛼) ∶  𝛼 ∈  𝐼0}. Therefore, we have 𝑓(𝐵)  ⊂  {𝐴𝛼 ∶  𝛼 ∈  𝐼0}., which 

shows that 𝑓(𝐵) is 𝑔𝑠𝑜-compact relative to 𝑌. 
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5   CONCLUSION 
 

In this paper, we defined new kind of connectedness and compactness called 𝑔𝑠𝑜-connectedness and 𝑔𝑠𝑜-

compactness. A topological space 𝑋 is said to be generalized semi-open connected (briefly 𝑔𝑠𝑜-connected) if 

𝑋 cannot be written as the union of two non-empty disjoint 𝑔𝑠𝑜-open sets. A topological space 𝑋 is 𝑔𝑠𝑜-

compact if every 𝑔𝑠𝑜-open cover of 𝑋 has a finite subcover. The 𝑔𝑠𝑜-connectedness and 𝑔𝑠𝑜-compactness 
fulfilled most of the connectedness and compactness properties in topological spaces. 
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