JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

gso-Connectedness and gso-Compactness in topological spaces

¹M. I. Irshad, ²K. Vithyasangaran

¹Department of Mathematics, Faculty of Natural Sciences, The Open University of Sri Lanka, ²Department of Mathematics, Faculty of Science, Eastern University, Sri Lanka

Abstract: In this paper we have introduced new concepts **qso**-connectedness and **qso**-compactness in a topological space (X, τ) and obtain some of their properties using qso-closed sets.

Keywords - gso-closed sets, gso-continuous maps, gso-connectedness and gso-compactness.

INTRODUCTION

In the literature, different type of connectedness and compactness were defined and studied by different authors [1-9]. Connectedness is one of the principal topological space properties that are used to distinguish topological spaces. A subset of a topological space is called a connected set if it is a connected space when viewed as a subspace of that topological space. The notations of compactness resulted in motivating mathematicians to generalize these notations further.

The concept of *gso*-closed set was introduced in 2019 by Irshad M. I. and Elango P. [10] in topological space and obtained various properties. The aim of this paper is to study gso-connectedness and gsocompactness using *gso*-closed set and also discuss some of their properties.

PRELIMINARIES

Throughout this paper (X, τ) , (Y, σ) (or simply X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X, τ) , cl(A) and Int(A) denote the closure of A and interior of A respectively.

Definition 2.1. Let (X, τ) be topological space. Then, a subset A of (X, τ) is called

- a) gso-closed set [10] if A is both a g-closed set and a semi-open set in X.
- b) gso-open set [10] if A is a g-open set or a semi-closed set in X.

The collection of all *gso*-closed sets of *X* is denoted by $C_{gso}(X)$.

Definition 2.2. A function $f:(X,\tau)\to (Y,\sigma)$ is called

- a) gso-continuous [10] if the inverse image of every closed set in (Y, σ) is gso-closed in (X, τ) .
- b) gso-irresolute [10] if the inverse image of every gso-closed set in (Y, σ) is gso-closed in (X, τ) .

3 **GSO-CONNECTEDNESS**

Definition 3.1. Let A and B be subsets of a topological space X. Then, A and B are called, gso-separated if $A \cap cl_{aso}(B) = \emptyset = cl_{aso}(A) \cap B.$

Definition 3.2. A topological space X is said to be generalized semi-open connected (briefly *gso*-connected) if X cannot be written as the union of two non-empty disjoint *gso*-open sets.

Example 3.1. Let $X = \{a, b\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Then, the topological space (X, τ) is *gso*-connected.

Remark 3.1. Every *gso*-connected space is connected. But, the converse need not be true in general as seen in the following example.

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Now, clearly (X, τ) is connected. Then, the *gso*-open sets of X are $\{X,\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$. Therefore, (X,τ) is not gso-connected space, because X= $\{a\} \cup \{b,c\}$, where $\{a\}$ and $\{b,c\}$ are non-empty gso-open sets.

Theorem 3.3. If $f: X \to Y$ is a gso-continuous surjective map and X is gso-connected, then Y is connected.

Proof. Suppose that X is gso-connected and assume that Y is not connected. Then, $Y = A \cup B$, where A and B are non-empty disjoint open sets in Y. Since f is a gso-continuous surjective map, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty disjoint *qso*-open sets. This is a contradiction to that X is *qso*connected. Hence *Y* is connected.

Theorem 3.4. If $f: X \to Y$ is a gso-irresolute surjective map and X is gso-connected, then Y is gso-connected.

Proof. Suppose that X is gso-connected and assume that Y is not gso-connected. Then, $Y = A \cup B$, where A and B are non-empty disjoint gso-open sets in Y. Since f is a gso-irresolute surjective map, $X = f^{-1}(A) \cup A$ $f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty disjoint gso-open sets. This is a contradiction to that X is *gso*-connected. Hence *Y* is *gso*-connected.

Definition 3.3. A subset Y of a topological space X is called the gso-subspace of X if $Y \cap U$ is gso-open, when U is gso-open in X.

Definition 3.4. A gso-subspace Y of a topological space X is gso-disconnected if there exist gso-open subsets U and V of X such that $Y \cap U$ and $Y \cap V$ are disjoint non-empty gso-open sets whose union is Y. The gso-subspace is gso-connected if it is not gso-disconnected.

Lemma 3.5. If Y is a gso-connected subspace of X and if the sets U and V form a gso-separation of X, then $Y \subset U \text{ or } Y \subset V$.

Proof. Since U and V are both gso-open in X, the sets $Y \cap U$ and $Y \cap V$ are gso-open in Y. We have, $(Y \cap U)$ $(Y \cap V) = Y$ and $(Y \cap U) \cap (Y \cap V) = \emptyset$. If $Y \cap U$ and $Y \cap V$ are non-empty, then Y is gso-separated, but Y is gso-connected. Then $Y \cap U = \emptyset$ or $Y \cap V = \emptyset$. Therefore, $Y \subset U$ or $Y \subset V$.

Theorem 3.6. Let A and B be subspaces of a topological space X. If A and B are gso-connected and not gsoseparated, then $A \cup B$ is gso-connected.

Proof. Assume that $A \cup B$ is not gso-connected. Then, $A \cup B = U \cup V$, where U and V are disjoint nonempty gso-open sets in X. Since A and B are gso-connected, then by Lemma (3.5), either $A \subset U$ or $A \subset A$ V and $B \subset U$ or $B \subset V$. If $A \subset U$ and $B \subset U$, then $A \cup B \subset U$ and $V = \emptyset$. This is a contradiction to that Vis non-empty. Therefore, $A \cup B$ is gso-connected.

Theorem 3.7. If $\{A_{\alpha}: \alpha \in I\}$ is non-empty collection of gso-connected subspaces of a topological space X such that $\bigcap_{\alpha \in I} A_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha \in I} A_{\alpha}$ is gso-connected.

Proof. Assume that $Y = \bigcup_{\alpha \in I} A_{\alpha}$ is not gso-connected. Then $Y = U \cup V$, where U and V are non-empty disjoint gso-open sets in X. Since $\bigcap_{\alpha \in I} A_{\alpha} \neq \emptyset$, there is a point p of $\bigcap_{\alpha \in I} A_{\alpha}$. Since $p \in Y$, either $p \in U$ or $p \in V$. Suppose that $p \in U$. Since A_{α} is gso-connected, $A_{\alpha} \subset U$ or $A_{\alpha} \subset V$. Since $p \in A_{\alpha}$, $A_{\alpha} \not\subset V$. Hence, $A_{\alpha} \subset U$ for every α . Then $Y = \bigcup_{\alpha \in I} A_{\alpha} \subset U$. This is a contradiction to that V is non-empty. Therefore, $\bigcup_{\alpha \in I} A_{\alpha}$ is *gso*-connected.

Theorem 3.8. Let A be a gso-connected subspace of X. If $A \subset B \subset cl_{aso}(A)$, then B is also gso-connected.

Proof. Assume that B is not gso-connected. Then, $B = U \cup V$, where U and V are disjoint non-empty gsoopen sets in B. Since A is gso-connected then by Lemma (3.5), either $A \subset U$ or $A \subset V$. Suppose that $A \subset U$. Then $cl_{qso}(A) \subset cl_{qso}(U)$. Since $cl_{qso}(U)$ and V are disjoint, B cannot intersect V. This contradicts the fact that *V* is a non-empty subset of *B*. Therefore, *B* is *gso*-connected.

4 **GSO-COMPACTNESS**

Definition 4.1. A collection $\{A_i: i \in I\}$ of gso-open sets in a topological space X is called a gso-open cover of a subset B of X if $B \subset \cup \{A_i : i \in I\}$ holds.

Definition 4.2. A topological space *X* is *gso*-compact if every *gso*-open cover of *X* has a finite subcover.

Definition 4.3. A subset B of a topological space X is said to be gso-compact relative to X if, for every collection $\{A_i: i \in I\}$ of gso-open subsets of X such that $B \subset \bigcup \{A_i: i \in I\}$ there exists a finite subset I_0 of I such that $B \subseteq \bigcup \{A_i : i \in I_0\}$.

Definition 4.5. A subset B of a topological space X is said to be gso-compact if B is gso-compact as a subspace of *X*.

Theorem 4.1. Every gso-closed subset of a gso-compact space X is gso-compact relative to X.

Proof. Let A be a gso-closed subset of gso-compact space X. Then, A^c is gso-open in X. Let $M = \{G_\alpha : \alpha \in A^c : \alpha \in A^c$ I) be a cover of A by gso-open sets in X. Then, $M^* = M \cup A^c$ is a gso-open cover of X. Since X is gsocompact, M^* is reducible to a finite subcover of X, say $X = G_{\alpha_1} \cup G_{\alpha_2} \cup ... \cup G_{\alpha_m} \cup A^c$, $G_{\alpha_k} \in M$. But, A and A^c are disjoint hence $A \subset G_{\alpha_1} \cup G_{\alpha_2} \cup ... \cup G_{\alpha_m} \cup A^c$, $G_{\alpha_k} \in M$, which implies that any gso-open cover M of A contains a finite subcover. Therefore, A is gso-compact relative to X. Thus, every gso-closed subset of *gso*-compact space *X* is *gso*-compact.

Theorem 4.2. Every gso-compact space is compact.

Proof. Let X be a gso-compact space. Let $\{A_i: i \in I\}$ be an open cover of X. Then $\{A_i: i \in I\}$ is a gso-open cover of X as every open set is gso-open set. Since X is gso-compact, the gso-open cover $\{A_i : i \in I\}$ of X has a finite subcover, say $\{A_i: i=1,...,n\}$ for X. Hence X is compact.

Theorem 4.3. Let $f: X \to Y$ be surjective, gso-continuous function. If X is gso-compact, then Y is compact.

Proof. Let $\{A_i: i \in I\}$ be an open cover of Y. Since f is gso-continuous function, then $\{f^{-1}(A_i): i \in I\}$ is gso-open cover of X has a finite subcover, say $\{f^{-1}(A_i): i=1,...,n\}$. Therefore, $X=\bigcup_{i=1}^n f^{-1}(A_i)$ which implies $f(X) = \bigcup_{i=1}^n A_i$. Since f is surjective, $Y = \bigcup_{i=1}^n A_i$. Thus, $\{A_1, A_2, \dots, A_n\}$ is a finite subcover of $\{A_i: i \in I\}$ for Y. Hence Y is compact.

Theorem 4.4. If a map $f: X \to Y$ is gso-irresolute and a subset B of X is gso-compact relative to X, then the image f(B) is gso-compact relative to Y.

Proof. Let $\{A_{\alpha}: \alpha \in I\}$ be any collection of gso-open subsets of Y such that $f(B) \subset \bigcup \{A_{\alpha}: \alpha \in I\}$. Then, $B \subset \{f^{-1}(A_\alpha) : \alpha \in I\}$ holds. From the hypothesis, B is gso-compact relative to X. Then, there exists a finite subset I_0 of I such that $B \subset \{f^{-1}(A_\alpha) : \alpha \in I_0\}$. Therefore, we have $f(B) \subset \{A_\alpha : \alpha \in I_0\}$, which shows that f(B) is gso-compact relative to Y.

5 **CONCLUSION**

In this paper, we defined new kind of connectedness and compactness called qso-connectedness and qsocompactness. A topological space X is said to be generalized semi-open connected (briefly gso-connected) if X cannot be written as the union of two non-empty disjoint qso-open sets. A topological space X is qsocompact if every *qso*-open cover of X has a finite subcover. The *qso*-connectedness and *qso*-compactness fulfilled most of the connectedness and compactness properties in topological spaces.

REFERENCES

- [1] Hanif PAGE Md. and Hosamath V. T. 2019. A View on Compactness and Connectedness in Topological Spaces. Journal of Computer and Mathematical Sciences, 10(6):1261-1268.
- [2] Vivekananda Dembre and Pankaj B Gavali. 2018. Compactness and Connectedness in Weakly Topological Spaces. International Journal of Trend in Research and Development, 5(2):606-608.
- [3] Pushpalatha A. 2000. Studies on Generalizations of Mappings in Topological Spaces. Ph.D. Thesis. Bharathiar University. Coimbatore.
- [4] Sarika M. Patil and Rayanagoudar T. D. 2017. αg^*s -Compactness and αg^*s Connectedness in Topological Spaces. Global Journal of Pure and Applied Mathematics, 13(7):3549-3559.
- [5] Vithyasangaran K and Elango P. 2018. On $\tau_1\tau_2 \bar{g}$ -Closed Sets in Bitopological Spaces. Asian Research Journal of Mathematics, 11(2):1-8.
- [6] Alcantud J. C. R. 1999. Topological properties of spaces ordered by preferences. International Journal of Mathematics and Mathematical Sciences, 22(1):17-27.
- [7] Wijerathne J. M. U. D. and Elango P. 2020. Study of RL-connectedness and RL-compactness. Journal of Advances in Mathematics and Computer Science, 35(1):117-123.
- [8] Vithyasangaran K. 2020. α^* -Compactness and α^* -Connectedness in topological Spaces. JETIR, 7(11):407-409.
- [9] Rajeswari R. Darathi S. and Deva Margaret Helen D. 2020. Regular Strongly Compactness and Regular Strongly Connectedness in Topological Space. International Journal of Engineering Research and Technology, 9(2):547-550.
- [10] Irshad M. I. and Elango P. 2019. On *gso-Closed Sets* in Topological spaces. Advances in Research. 18(1):1-5.