JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

TRAVEL AGENT SENTIMENT ANALYSIS USING DEEP LEARNING TECHNIQUES

Author Details: -

Name: - P. Renu Pramod

Designation: - student

Institute: - Amity University

E-mail id: - renupramod53@gmail.com

Co-Authors Details: -

A) Name: - Dr. Archana Singh

Designation: – head of artificial intelligence

Institute: – Amity University

E-mail id:-asingh27@amity.edu

B) Name: - Mr. Jitendra Singh Jadon

Designation: -Assistant professor – III

Institute: - Amity University
E-mail id: - jsjadon@amity.edu

ABSTRACT:-

In this work the analysis about the travel data set. Then, in these three online travel agents such as Ticket.com, Agoda, Expedia use Facebook for supporting their business as customer service tool. moreover, the data will be analyzed in this deep learning algorithms. such as, convolutional neural networks (CNN), Naïve Bayes and support vector machines (SVM) to determine the sentiment analysis. however, the research consists about the deep learning techniques to implement that improve recommendation task is to predict that includes to design and testing in sentiment analysis.

Keywords: -

Aspect level sentiment classification (ALSC), target dependent sentiment classification, deep learning, decision making, Nvidia developer

INTRODUCTION: -

In this context, sentiment analysis is now this making the growth will be helpful. It is a branch of affective computing research. Moreover, it is the area is now widely recognized.

Understanding and interpreting the destination for destination management will thus provide opportunities for the creation of the brand value and image of the destination. It will also make an important contribution to the determination of tourist needs in the destination and meeting these needs. Tourists will be able to use it to make better travel plans.

Digital texts created in these new tourist processes are seen as an important opportunity for tourists and suppliers to get to know and understand each other. These opportunities should be evaluated in terms of suppliers, namely those offering touristic products (tourism enterprises, destination management), and tourists.

In this travelling about it is an informal and conversational. Moreover, it is an effective sentiment analysis that techniques are introduced in the process such as textual data. It is a significant construction that quality of tourism will be a great value. Furthermore, the experience that we can tell about that positive and negative thoughts on the online traveling experience. however, booking tickets in website ticket.com, Agoda, Expedia etc.

ASPECT LEVEL SENTIMENT CLASSIFICATION: -

In this aspect level classification have the several sub tasks. Just like, aspect extraction, opinion identification and Aspect sentiment classification.in this which we can use the deep learning method. moreover, it mainly focuses on the both the sentiment and target information. In this sentiment always as target. Furthermore, target is usually an entity or an aspect. however, it is the review of a target information in this task. Furthermore, it aims to determine towards the opinion target.it means that word or phrase (sequence of words). however, in the travelling website the people are typing in the search option about their destination and booking details etc.

In these other techniques which we need to implement that aspect level sentiment is scalable. Moreover, which it is support in the customer conversations & reviews.it targets mainly on the important tasks. Furthermore, it introduces the attention model that incorporates synthetic data. it tells about the customer payments by using credit or debit card of a transactions. Moreover, it is increasing the importance of global economy. However, it is an enough customer specific data to personalize them for each user. Finally, this aspect level sentiment should focus on the features of developed system in travelling area.

In this it is also tell about the aspect level classification is the method of working it is used to develop the tasks.

TARGET DEPENDENT SENTIMENT CLASSIFICATION: -

It is aims to given target. moreover, it talks about to identify the sentiment targets in the given sentence. which it means the information that we are searching about the destination that we are checking in the travelling. furthermore, this activation of the key industries. that will be handled more in the communities.

moreover, it is managing in the different ways for managing customer-brand relationships is currently essential with in this travelling trade. however, for extending the travelling business there doing promotions using SNS (social network sites), just like Facebook, twitter etc. In this more about target dependent sentiment classification talks about that particularly in the neural networks. Moreover, it is target dependent sentiment analysis (TDSA) method is useful to develop it. However, these neural networks which produce different results are multiple runs due to random results are there when it applies the neural networks. Finally, this TDSA method which it is helpful to improve and using these neural networks it will be easily developed.

In this target dependent sentiment classification talks about there are using the different sites that promotes the travelling business to increase the market.

LONG STHORT TERM MEMORY NETWORKS: -

In this I was discussing about the recurrent neural networks that it is related about the LSTM (long short-term memory). moreover, this long short-term memory which it is based on the artificial neural network in the field of deep learning. Furthermore, when the people are travelling to destination, generally, they have the GPS. It means that u can track your location where we are at certain point, furthermore, there is grid points which it means that we are moving in the correct way or not. So, this is about the GPS.

In this which it helps from the networks that is used to find out the route of destination from starting point to end point.

DATA SET:-

In this which I used the data set of travelling. moreover, in this which are having data set of users, destination, gender, accommodation.

1. ACCOMODATION:-

In this below figure shows the details of columns & rows

1	travelCod	userCode	name	place	days	price	total	date	
2	0	0	Hotel A	Florianop	4	313.02	1252.08	***************************************	
3	2	0	Hotel K	Salvador (2	263.41	526.82	########	
4	7	0	Hotel K	Salvador (3	263.41	790.23	***************************************	
5	11	0	Hotel K	Salvador (4	263.41	1053.64	########	
6	13	0	Hotel A	Florianop	1	313.02	313.02	########	
7	15	0	Hotel BD	Natal (RN	2	242.88	485.76	1/9/2020	
8	22	0	Hotel Z	Aracaju (S	2	208.04	416.08	########	
9	29	0	Hotel AU	Recife (PE	4	312.83	1251.32	***************************************	
10	32	0	Hotel AF	Sao Paulo	2	139.1	278.2	5/7/2020	
11	33	0	Hotel K	Salvador (4	263.41	1053.64	########	
12	34	0	Hotel AF	Sao Paulo	3	139.1	417.3	***************************************	
13	38	0	Hotel BD	Natal (RN	2	242.88	485.76	########	
14	39	0	Hotel K	Salvador (1	263.41	263.41	########	
15	42	0	Hotel BW	Campo Gr	3	60.39	181.17	***************************************	
16	43	0	Hotel K	Salvador (4	263.41	1053.64	########	
17	45	0	Hotel BD	Natal (RN	1	242.88	242.88	8/6/2020	
18	51	0	Hotel K	Salvador (1	263.41	263.41	#######	
19	53	0	Hotel BW	Campo Gr	2	60.39	120.78	***************************************	
20	54	0	Hotel AF	Sao Paulo	3	139.1	417.3	***************************************	
21	55	0	Hotel A	Florianop	2	313.02	626.04	***************************************	
	< →	hotels	(+)						
	74 Hote	BP B	rasilia (D	4	247.62	990.4	8 #######	

7742	74	Hotel BP	Brasilia (D	4	247.62	990.48	#########	
7748	74	Hotel AF	Sao Paulo	3	139.1	417.3	########	
7749	74	Hotel K	Salvador (1	263.41	263.41	7/2/2020	
7756	75	Hotel CB	Rio de Jan	3	165.99	497.97	########	
7759	75	Hotel BW	Campo Gr	2	60.39	120.78	########	
7761	75	Hotel CB	Rio de Jan	1	165.99	165.99	########	
7764	75	Hotel K	Salvador (1	263.41	263.41	1/2/2020	
7766	75	Hotel BW	Campo Gr	4	60.39	241.56	########	
7767	75	Hotel CB	Rio de Jan	3	165.99	497.97	########	
7768	75	Hotel AF	Sao Paulo	3	139.1	417.3	########	
7771	75	Hotel BW	Campo Gr	4	60.39	241.56	########	
7774	75	Hotel AF	Sao Paulo	3	139.1	417.3	########	
7775	75	Hotel BD	Natal (RN)	1	242.88	242.88	########	
7776	75	Hotel K	Salvador (3	263.41	790.23	########	
7777	75	Hotel BP	Brasilia (D	2	247.62	495.24	4/2/2020	
7780	75	Hotel A	Florianop	3	313.02	939.06	########	
7781	75	Hotel AF	Sao Paulo	2	139.1	278.2	########	
7787	75	Hotel AF	Sao Paulo	4	139.1	556.4	########	
7793	75	Hotel K	Salvador (3	263.41	790.23	########	
7796	75	Hotel BD	Natal (RN)	2	242.88	485.76	***************************************	
7798	75	Hotel BD	Natal (RN)	3	242.88	728.64	#########	
7801	75	Hotel BW	Campo Gr	3	60.39	181.17	#########	

12904	120	HOLEI Z	Aracaju (S	1	208.04	208.04	3/2/2023	
12965	126	Hotel AU	Recife (PE	4	312.83	1251.32	3/9/2023	
12968	127	Hotel K	Salvador (2	263.41	526.82	########	
12975	127	Hotel K	Salvador (1	263.41	263.41	########	
12979	127	Hotel K	Salvador (1	263.41	263.41	########	
12981	127	Hotel AU	Recife (PE	4	312.83	1251.32	1/9/2020	
12983	127	Hotel BW	Campo Gr	4	60.39	241.56	########	
12989	127	Hotel BD	Natal (RN)	2	242.88	485.76	3/5/2020	
12995	127	Hotel BP	Brasilia (D	2	247.62	495.24	#########	
12998	127	Hotel AU	Recife (PE	4	312.83	1251.32	5/7/2020	
12999	127	Hotel CB	Rio de Jan	4	165.99	663.96	########	
13002	127	Hotel Z	Aracaju (S	2	208.04	416.08	6/4/2020	
13005	127	Hotel BP	Brasilia (D	4	247.62	990.48	########	
13006	127	Hotel K	Salvador (3	263.41	790.23	7/2/2020	
13007	127	Hotel Z	Aracaju (S	1	208.04	208.04	7/9/2020	
13009	127	Hotel Z	Aracaju (S	4	208.04	832.16	########	
13010	127	Hotel CB	Rio de Jan	1	165.99	165.99	########	
13011	127	Hotel CB	Rio de Jan	2	165.99	331.98	8/6/2020	
13013	127	Hotel A	Florianop	4	313.02	1252.08	########	
13019	127	Hotel BW	Campo Gr	2	60.39	120.78	########	
13020	127	Hotel AU	Recife (PE	2	312.83	625.66	########	
13023	127	Hotel CB	Rio de Jan	2	165.99	331.98	************	

2. DESTINATION: -

In this which it helps through that which mode that people are travelling will be economic or business class.

travelCod	userCode	from	to	flightType	price	time	distance	agency	date	
0			Florianop		1434.38			FlyingDro		
0			Recife (PE		1292.29	1.76		FlyingDro		
1			Florianop		1487.52	1.66		CloudFy	**********	
1	0	Florianop	Brasilia (D	firstClass	1127.36	1.66	637.56	CloudFy	***************************************	
2	0	Aracaju (S	Salvador (firstClass	1684.05	2.16	830.86	CloudFy	***************************************	
2	0	Salvador (Aracaju (S	firstClass	1531.92	2.16	830.86	CloudFy	***********	
3	0	Aracaju (S	Campo Gr	economic	743.54	1.69	650.1	Rainbow	########	
3	0	Campo Gr	Aracaju (S	economic	877.56	1.69	650.1	Rainbow	########	
4	0	Recife (PE	Florianop	economic	803.39	1.76	676.53	Rainbow	########	
4	0	Florianop	Recife (PE	economic	695.3	1.76	676.53	Rainbow	########	
5	0	Brasilia (D	Aracaju (S	firstClass	1287.52	1.11	425.98	FlyingDro	#########	
5	0	Aracaju (S	Brasilia (D	firstClass	898.04	1.11	425.98	FlyingDro	#########	
6	0	Recife (PE	Florianop	premium	1070.54	1.76	676.53	Rainbow	#########	
6	0	Florianop	Recife (PE	premium	1013.4	1.76	676.53	Rainbow	***************************************	
7	0	Aracaju (S	Salvador (economic	964.83	2.16	830.86	CloudFy	***************************************	
7	0	Salvador (Aracaju (S	economic	811.73	2.16	830.86	CloudFy	***************************************	
8	0	Recife (PE	Sao Paulo	economic	513.06	1.26	486.52	CloudFy	***************************************	
8	0	Sao Paulo	Recife (PE	economic	829.91	1.26	486.52	CloudFy	***************************************	
9	0	Brasilia (D	Campo Gr	economic	583.6	0.72	277.7	CloudFy	************	
9	0	Campo Gr	Brasilia (D	economic	506.56	0.72	277.7	CloudFy	*********	

		1						7 0 1	
5175	52	Brasilia (D	Campo Gr	firstClass	1009.71	0.72	277.7	FlyingDro	******
5175	52	Campo Gr	Brasilia (D	firstClass	847.83	0.72	277.7	FlyingDro	#######
5176	52	Brasilia (D	Salvador (economic	921.08	1.76	676.56	Rainbow	#######
5176	52	Salvador (Brasilia (D	economic	609.83	1.76	676.56	Rainbow	#######
5177	52	Brasilia (D	Campo Gr	firstClass	1069.61	0.72	277.7	Rainbow	#######
5177	52	Campo Gr	Brasilia (D	firstClass	870.91	0.72	277.7	Rainbow	5/1/2020
5178	52	Brasilia (D	Florianop	premium	1189.32	1.66	637.56	CloudFy	5/7/2020
5178	52	Florianop	Brasilia (D	premium	885.37	1.66	637.56	CloudFy	5/8/2020
5179	52	Aracaju (S	Florianop	economic	852.18	2.1	808.85	Rainbow	******
5179	52	Florianop	Aracaju (S	economic	819.41	2.1	808.85	Rainbow	#######
5180	52	Recife (PE	Sao Paulo	firstClass	980.83	1.26	486.52	Rainbow	#######
5180	52	Sao Paulo	Recife (PE	firstClass	1573.5	1.26	486.52	Rainbow	******
5181	52	Aracaju (S	Natal (RN	premium	427.25	0.46	176.33	Rainbow	******
5181	52	Natal (RN)	Aracaju (S	premium	479.37	0.46	176.33	Rainbow	#######
5182	52	Brasilia (D	Campo Gr	firstClass	1009.71	0.72	277.7	FlyingDro	6/4/2020
5182	52	Campo Gr	Brasilia (D	firstClass	847.83	0.72	277.7	FlyingDro	6/7/2020
5183	52	Aracaju (S	Salvador (firstClass	1714.75	2.16	830.86	FlyingDro	#######
5183	52	Salvador (Aracaju (S	firstClass	1581.59	2.16	830.86	FlyingDro	########
5184	52	Recife (PE	Campo Gr	firstClass	1110.76	1.39	535.4	CloudFy	########
5184	52	Campo Gr	Recife (PE	firstClass	1244.73	1.39	535.4	CloudFv	************

3.USERS:-

code	company	name	gender	age	
0	4You	Roy Braun	male	21	
1	4You	Joseph Ho	male	37	
2	4You	Wilma Mc	female	48	
3	4You	Paula Dan	female	23	
4	4You	Patricia Ca	female	44	
5	4You	Trina Thor	none	47	
6	4You	Jesse Dec	male	46	
7	4You	Gregoria (female	21	
8	4You	Jack Sabo	none	41	
9	4You	Debbie He	none	35	
10	4You	Melvin Lo	male	36	
11	4You	Virginia R	female	61	
12	4You	David Tho	male	53	
13	4You	Irene Tuck	none	36	
14	4You	John Cody	male	37	
15	4You	Janice Cuc	female	56	
16	4You	Shane Hul	female	47	
17	4You	Victor Trib	none	25	
18	4You	Tanya Oro	none	65	
19	4You	John Benr	male	22	
20	4You	Sally Robe	female	65	

21	19	4You	John Benr	male	22	
22	20	4You	Sally Robe	female	65	
23	21	4You	Julia Mein	female	56	
24	22	4You	Michele A	female	51	
25	23	4You	Leslie San	male	35	
26	24	4You	Calvin Cue	male	60	
27	25	4You	Elizabeth	female	64	
28	26	4You	Yolanda C	female	49	
29	27	4You	Sean Pear	male	62	
30	28	4You	April Mille	female	46	
31	29	4You	Lisa Nater	female	35	
32	30	4You	Alberta Bo	female	59	
33	31	4You	Christoph	none	40	
34	32	4You	Wesley Lo	male	44	
35	33	4You	Ida Turzak	female	56	
36	34	4You	Anita Pete	female	21	
37	35	4You	Helen Sell	none	34	
38	36	4You	Anna Rodi	none	56	
39	37	4You	Denise Ne	none	27	
40	38	4You	Nancy Do	female	47	
41	39	4You	Billie Dwi	female	48	

42	40	4You	Carlos Car	none	42	
43	41	4You	Sandra Bis	female	62	
44	42	4You	Robert Co	male	61	
45	43	4You	Louise Jan	female	24	
46	44	4You	David Bris	male	21	
47	45	4You	Margaret	female	54	
48	46	4You	Bobby Gar	male	42	
49	47	4You	Kevin Lind	male	28	
50	48	4You	Clyde Ruiz	male	46	
51	49	4You	Charles W	male	55	
52	50	4You	Monique '	female	56	
53	51	4You	Jenell Tor	female	39	
54	52	4You	Joyce Jaco	female	55	
55	53	4You	Carol Dixo	female	23	
56	54	4You	Dorothea	female	21	
57	55	4You	Ivory Shin	none	38	
58	56	4You	Lindsey Pi	none	39	
59	57	4You	Dorothy D	female	32	
60	58	4You	Ernie Wal	male	37	
61	59	4You	Katherine	none	29	
62	60	4You	Fred More	male	47	
63	61	4You	Susan Arm	female	61	

NIVIDIA DEVELOPER:

In this using this data sets that above images of users, accommodation & destination. Moreover, in this which have the Nvidia server of NGC catalog. However, it is having the option of vertex AI. moreover, it is used for the data set that we can write the code in Jupiter notebook, google colab etc. Finally, this is the way which it used the software for develop applications in deep learning.

ALGORITHMS:

In this I have used the algorithms of CNN & RNN

1.CONVENTIONAL NEURAL NETWORKS(CNN):

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# undersampling
from imblearn.under sampling import RandomUnderSampler
from collections import Counter
from matplotlib import cm
# Logistic Regression
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import statsmodels.api as sm
Output:
       /kaggle/input/argodatathon2019/users.csv
       /kaggle/input/argodatathon2019/hotels.csv
       /kaggle/input/argodatathon2019/flights.csv
df_user = pd.read_csv('/kaggle/input/argodatathon2019/users.csv')
df_hotel = pd.read_csv('/kaggle/input/argodatathon2019/hotels.csv')
df_flight = pd.read_csv('/kaggle/input/argodatathon2019/flights.csv')
 df_user.isnull().sum()
Output:
       code
                0
       company
       name
                0
       gender
       age
       dtype: int64
```

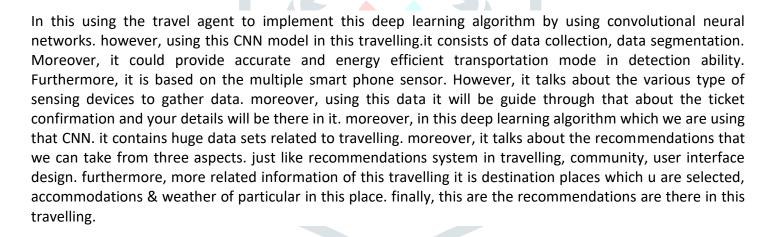
df_user.head()

	code	company	name	gender	age
0	0	4You	Roy Braun	male	21
1	1	4You	Joseph Holsten	male	37
2	2	4You	Wilma Mcinnis	female	48
3	3	4You	Paula Daniel	female	23
4	4	4You	Patricia Carson	female	44

df_user.groupby("company").size(

Output:

company	
4You	453
Acme Factory	261
Monsters CYA	195
Umbrella LTDA	194
Wonka Company	237
dtype: int64	



df_user.groupby("gender").size()

Output:

gender 448 female male 452 none 440 dtype: int64

df_flight.head()

	travelCode	userCode	from	to	flightType	price	time	distance	agency	date
0	0	0	Recife (PE)	Florianopolis (SC)	firstClass	1434.38	1.76	676.53	FlyingDrops	09/26/2019
1	0	0	Florianopolis (SC)	Recife (PE)	firstClass	1292.29	1.76	676.53	FlyingDrops	09/30/2019
2	1	0	Brasilia (DF)	Florianopolis (SC)	firstClass	1487.52	1.66	637.56	CloudFy	10/03/2019
3	1	0	Florianopolis (SC)	Brasilia (DF)	firstClass	1127.36	1.66	637.56	CloudFy	10/04/2019
4	2	0	Aracaju (SE)	Salvador (BH)	firstClass	1684.05	2.16	830.86	CloudFy	10/10/2019

```
{\tt df\_flight.groupby("agency").size()}
```

Output:

```
agency
CloudFy 116378
FlyingDrops 38758
Rainbow 116752
dtype: int64
```

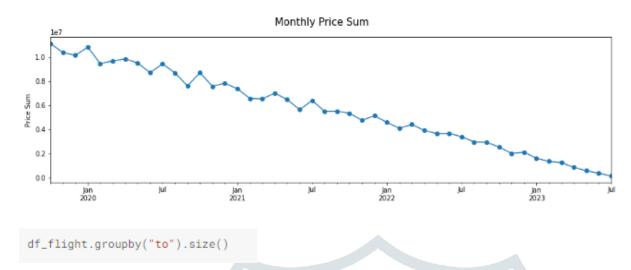
```
df_flight.groupby(['travelCode', 'userCode']).size().max().min()
```

Output:

2

RECURRENT NEURAL NETWORKS(RNN):

In this recurrent neural network, which is the use for travelling is that analyze sequential data.it means that travelling customer details, accommodation etc. moreover, in this data talks about the text, images, customer information. Furthermore, in this recurrent neural network which it is having that memory which it is related through hidden layers. however, it is a step-by-step process in this travelling which we are select the exact location about your destination. then, sequential data which helpful to improve the features in travelling data.

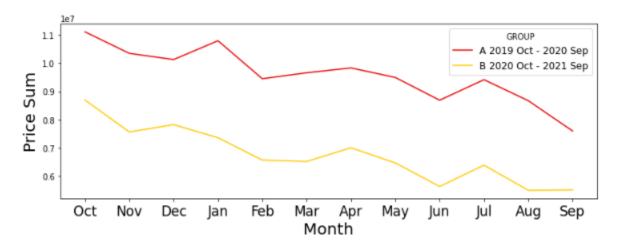


Output:

Aracaju (SE) 37224 Brasilia (DF) 30779 Campo Grande (MS) 34748 Florianopolis (SC) 57317 Natal (RN) 23796 Recife (PE) 30480 Rio de Janeiro (RJ) 16815 17104 Salvador (BH) Sao Paulo (SP) 23625 dtype: int64

. In this travel data set using recurrent neural network algorithm it talks about that using which I was giving the input as about travel data set. moreover, which gives the output of the recurrent state. however, which tells about the hidden layers that applies the function of an initial weights which it effects then it gives the exact output. Furthermore, it will be used in the travel data set that set of inputs in layer of memory. however, the users which using the travel application that talks about the timeline of a person GPS is travelled. Finally, by using this RNN algorithm the output which will be visualize as graphs.

```
sns.lineplot(data=data, x='index', y='price', hue='group',markers= ["o","<"],palette = 'hot')
axs.set_xticks(range(1,13))
axs.set_xticklabels(['Oct','Nov','Dec','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep'],fontsize = 17)
axs.set_xlabel("Month", fontsize = 20)
axs.set_ylabel("Price Sum", fontsize = 20)
plt.legend(title='GROUP', loc='upper right', labels=['A 2019 Oct - 2020 Sep', 'B 2020 Oct - 2021 Sep'],fontsize = 12)
plt.show()</pre>
```



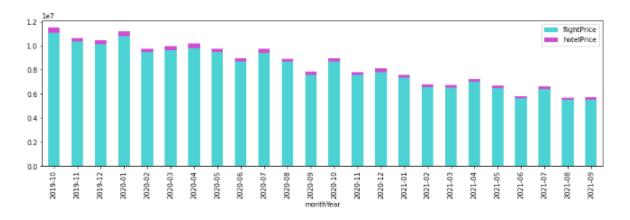
```
df_hotel["datetime"] = pd.to_datetime(df_hotel["date"])
df_hotel['monthYear'] = pd.to_datetime(df_hotel['datetime']).dt.to_period('M')
df_hotel['year'] = pd.to_datetime(df_hotel['datetime']).dt.year
df_hotel['month'] = pd.to_datetime(df_hotel['datetime']).dt.month
```

df_hotel.head()

Output:

	travelCode	userCode	name	place	days	price	total	date	datetime	monthYear	year	monti
0	0	0	Hotel A	Florianopolis (SC)	4	313.02	1252.08	09/26/2019	2019- 09-26	2019-09	2019	9
1	2	0	Hotel K	Salvador (BH)	2	263.41	526.82	10/10/2019	2019- 10-10	2019-10	2019	10
2	7	0	Hotel K	Salvador (BH)	3	263.41	790.23	11/14/2019	2019- 11-14	2019-11	2019	11
3	11	0	Hotel K	Salvador (BH)	4	263.41	1053.64	12/12/2019	2019- 12-12	2019-12	2019	12
4	13	0	Hotel A	Florianopolis (SC)	1	313.02	313.02	12/26/2019	2019- 12-26	2019-12	2019	12

```
df_flight_groupby = df_flight.groupby('monthYear')["price"].sum().to_frame()
df_hotel_groupby = df_hotel.groupby('monthYear')["price"].sum().to_frame()
df_flight_hotel = pd.merge(df_flight_groupby, df_hotel_groupby, on=['monthYear'], how='left')
df_flight_hotel = df_flight_hotel.rename(columns={'price_x': 'flightPrice', 'price_y': 'hotelPrice'})
```



```
df_flight_hotel.groupby(['days_hotel']).size()
```

```
days_hotel
1.0 7649
2.0 7659
3.0 7603
4.0 7639
dtype: int64
```

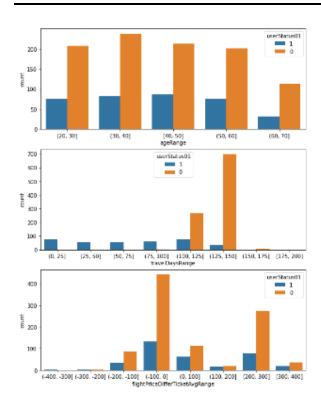
df_churned_groupby.groupby(['userStatus']).size()

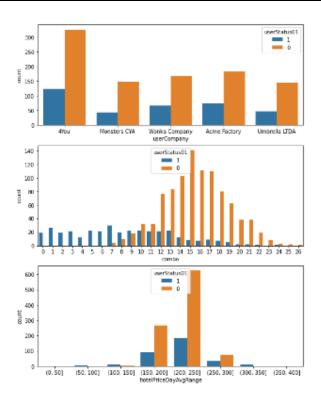
Output:

```
userStatus
churned 353
continued 971
dtype: int64
```

```
sns.countplot(x='ageRange', hue = "userStatus01", data = df_customer,
hue_order = [1,0], ax=axarr[0][0] )
sns.countplot(x='userCompany', hue = "userStatus01", data = df_customer,
hue_order = [1,0], ax=axarr[0][1] )
sns.countplot(x='combo', hue = "userStatus01", data = df_customer,
hue_order = [1,0], ax=axarr[1][1] )
sns.countplot(x='travelDaysRange', hue = "userStatus01", data = df_customer,
hue_order = [1,0], ax=axarr[1][0] )
sns.countplot(x='flightPriceDifferTicketAvgRange', hue = "userStatus01", data = df_customer,
hue_order = [1,0], ax=axarr[2][0] )
sns.countplot(x='hotelPriceDayAvgRange', hue = "userStatus01", data = df_customer,
hue_order = [1,0], ax=axarr[2][1] )
```

Output:





CONCLUSION

In this paper improved that about the travel agent sentiment analysis using deep learning techniques. Moreover, which it is used through travel has the good or bad reviews. however, which I was implement this deep learning algorithms that it is used to improve the websites of travel. Furthermore, which it is also this sentiment analysis which describe about text processing, future selection & deep learning classification. Finally, in this travel data set which is used to develop it that can be expected.

REFERNCES:

- .. Nguyen, Huy Thanh, and Minh Le Nguyen. "Effective attention networks for aspect-level sentiment classification." In 2018 10th International Conference on Knowledge and Systems Engineering (KSE), pp. 25-30. IEEE, 2018.
- .. Zhou, Jie, Jimmy Xiangji Huang, Qin Chen, Qinmin Vivian Hu, Tingting Wang, and Liang He. "Deep learning for aspect-level sentiment classification: survey, vision, and challenges." *IEEE access* 7 (2019): 78454-78483.
- .. Poernomo, A. D., and S. Suharjito. "Indonesian online travel agent sentiment analysis using machine learning methods." *Indones. J. Electr. Eng. Comput. Sci* 14, no. 1 (2019): 113.
- ..Chu, Kai Fung, Albert YS Lam, and Victor OK Li. "Travel demand prediction using deep multi-scale convolutional LSTM network." In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1402-1407. IEEE, 2018.
- .. Puh, Karlo, and Marina Bagić Babac. "Predicting sentiment and rating of tourist reviews using machine learning." *Journal of Hospitality and Tourism Insights* ahead-of-print (2022).
- .. Martín, Carlos Alberto, Jesús M. Torres, Rosa María Aguilar, and Sergio Diaz. "Using deep learning to predict sentiments: case study in tourism." *Complexity* 2018 (2018).

- .. Cui, Yu, Qing He, and Alireza Khani. "Travel behavior classification: an approach with social network and deep learning." Transportation research record 2672, no. 47 (2018): 68-80.
- .. Hou, Yi, and Praveen Edara. "Network scale travel time prediction using deep learning." Transportation Research Record 2672, no. 45 (2018): 115-123.
- .. Mbunge, Elliot, and Benhildah Muchemwa. "Deep Learning and Machine Learning Techniques for Analyzing Travelers' Online Reviews: A Review." Optimizing Digital Solutions for Hyper-Personalization in Tourism and Hospitality (2022): 20-39.
- .. Chen, Liang-Chu, Chia-Meng Lee, and Mu-Yen Chen. "Exploration of social media for sentiment analysis using deep learning." Soft Computing 24, no. 11 (2020): 8187-8197.
- .. Chu, Kai-Fung, Albert YS Lam, and Victor OK Li. "Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions." IEEE Transactions on Intelligent Transportation Systems 21, no. 8 (2019): 3219-3232.
- .. Muhammad, Putra Fissabil, Retno Kusumaningrum, and Adi Wibowo. "Sentiment analysis using Word2Vec and long short-term memory (LSTM) for Indonesian hotel reviews." Procedia Computer Science 179 (2021): 728-735.

Co-authors:-

C) Name: - Dr. Archana Singh Designation

2.Mr. Jitendar Jadon

