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Abstract :  Software refactoring is a vital process that ensures the long-term maintainability and evolvability of software systems. 

However, for large and complex systems, it can be a complex and error-prone task. This work proposes a method of refactoring, guided 

by model learning and model-based testing, to ensure the correctness of software after the refactoring process. Model learning is used 

to learn a system under refactoring by constructing models that are used as input for the automatic generation of test cases. These tests 

are then executed on the system before and after refactoring, to ensure equivalence of behavior and to safeguard that no errors are 

introduced due to refactoring. The method is applied to a real industrial case and is demonstrated in this paper via application to a simple 

vending machine system. In this paper, we discuss the strengths and limitations encountered when applying the method to complex 

industrial applications. 

 

IndexTerms - software engineering, model-based development, software refactoring, software re-engineering, model-based testing, model 

transformation, software quality, software metrics application, software development, L* algorithm, Mealy state machine 

1. Introduction 

    Code refactoring is one of the essential software engineering practices used by programmers almost on daily basis. Refactoring is 

frequently employed to address recurrent issues encountered by software engineers such as resolving code smells or technical debts, 

fixing bugs in a software component, or as an enabler to ease the introduction of a future feature. Moreover, refactoring can be used to 

enable migration to new software development technologies or to more structured programming languages.  

 

    Before establishing the refactoring of a software component, its external interfaces, internal implementation and behavior should be 

well understood. Understanding the external interface behavior of complex reactive systems via code inspection, or consulting 

potentially outdated documentation, may lead to errors implemented in the new refactored systems. This is because important 

information may be overlooked and hence related implementation is missing in the code. Therefore, for complex systems, the use of 

modern technologies for systematic extraction of external interface behavior may come to the rescue.  

 

    Model learning [1] is a promising technology that provides means to extract the behavior of systems automatically, by employing 

learner components that exercise a system under learning (SUL) and observes its outputs. These learners produce models that represent 

the external behavior observed for the SUL. This automatic extraction of behavior is attractive to industry because less time and effort 

are needed to understand the behavior of complex systems and can guide any refactoring activities, especially when documentation and 

testing are missing in old legacy systems.   

 

    In this article, we propose a method for refactoring reactive software systems with the aid of model learning techniques. Model 

learning is used to learn and automatically extract a behavioral model that resembles how the “to be refactored” system interacts with 

its environment. This behavioral model is expressed in a Mealy state machine [2] and is used as a basis to verify the correctness of the 

system before and after refactoring. This is established by employing model-based testing techniques [3], using which the learned model, 

expressed in a Mealy state machine, is used to automatically generate unique test cases which should first pass on the original system. 

This set of test cases should also pass on the system after refactoring to ensure it does not deviate in its behavior from the original 

system. 

This work tries to answer the following research questions: 

- Can model learning techniques be integrated with software engineering refactoring process? 

- Is model learning techniques mature enough to be used for learning complex industrial systems? 

- What are the pros and cons of using model learning for refactoring?  

 

This paper is structured as follows. In Section 2, we present the related work established by others that is related to our work. In Section 

3, we briefly describe the concepts of refactoring and re-engineering to the limit needed for this paper. Section 4, gives a formal definition 

of the Mealy state machine which is the formalism produced by the model learner. Section 5, introduces a vending machine system that 

is used as a use case to discuss the approach of applying model learning. In Section 6, we detail the model learning approach and apply 

the technology to the use case of the vending machine. We show how the behavioral model of the vending machine is gradually 
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constructed. Section 7, discussed the method we propose to refactor reactive systems with the help of model learning and model-based 

testing. In Section 8, we discuss the lessons learned from applying model-learning and model-based testing highlighting the pros and 

cons encountered during the application. Section 9 concludes our work with possible future work. 

2. Related Work 

Peled et al. [4,5] and Steffen et al. [6,7,8] combined model learning and model checking. A model checker was used to check 

properties of learned models. Peled [5] proposed an approach called black box checking integrating model learning and model checking. 

Fitera˘u et al. [11] used model learning and model checking to verify the equivalence of TCP/IP behavior in different operating systems 

such as Linux, Windows, and FreeBSD. They found that the implementation and behavior differ in these systems. Schuts et al. [9] used 

model learning to support the refactoring of legacy software. They extracted two models from the old and new systems and compared 

their behavioral equivalence using model checking. 

3. Refactoring, Reengineering and Redesign 

There are three main principles used widely in software engineering practices to improve code of a software module: refactoring, 

reengineering and redesign. In refactoring or reengineering the external interface of a software system remains the same but the 

underlying implementation may differ. For refactoring, the technology used to implement the original system is used also to implement 

the new system. Both new and old systems implement the same external interfaces. For example, an original system is implemented 

using C and the new refactored system is also implemented in C where both use the same header file as an external interface.  

 

Reengineering implies that different (usually modern) technology is used to implement the new system while external interfaces are still 

the same. For example, an old system may be implemented in C while the new system is implemented in C++ or developed using a 

model-based technique with automatic code generation. In this work, we use refactoring or reengineering interchangeably.  

 

In addition to having the same interface for the new and old software system after refactoring or reengineering (same interface syntax), 

the external behavior of the system should be preserved (same interface semantic). Preservation of external behavior implies that, for 

the same set of call sequence and input values, the resulting set of output values should be equal before and after refactoring. This also 

means that changes in the code are internal while external interfaces must remain unchanged.  

 

Redesign means that the external interface of a new system and its implementation are completely different than the external interface 

and implementation of the original system. Redesign is out of the scope of this work and we focus only on the refactoring aspects of 

reactive systems.  

 

4. Mealy machine models 

Models generated by the model learning tool are encoded in a Mealy machine format. Formally, a (deterministic) Mealy machine is 

described as a 6-tuple M = (I, Ο, Q, q0, δ, λ), where I and Ο are finite sets of inputs and outputs, Q is a finite set of states, q0∈Q is the 

initial state, δ: Q× I→Q is a transition function mapping a state and input to another state, and λ: Q× I→ Ο is an output function 

mapping a state and input to an output. Figure 1 gives a graphical representation of a simple Mealy machine with input set {0, 1}, 

output set {a, b}, states {q0, q1, q2}, and initial state q0. 

 

 

Figure 1: example mealy machine 

 

Function λ is further expanded to sequences of inputs by defining, for all q∈Q, i∈I, and σ∈I*, λ(q, ε) = ε, and λ(q, iσ) = λ(q, i)λ(δ(q, 

i), σ). The behavior of Mealy machine M is defined by function AM : I* → Ο* with AM(σ) = λ(q0 , σ), for σ ∈ I*. M and N Machines 

are equivalent, iff AM = AN. Mealy machine M and N are not equivalent if and only if there is a sequence σ ∈ I* distinguishes M and 

N, AM(σ) ≠ AN(σ). 

 

5. Case study  

Due to the restriction of exposing any confidential information about the industrial case, we replace it with a case study concerning a 

chocolate vending machine system. We use this system to clarify the concepts around model learning and its application to software 

engineering refactoring in industry.  

The vending machine application accepts input stimuli of 5c (5 cents) and 10c coins, and accepts input requests to produce Mars 

(costs 10c), Twix (costs 15c) and Snickers (costs 25c). The application responds with OK if the input is allowed and NOK otherwise. 

So, I = {5c, 10c, Mars, Twix, Snickers} and O = {OK, NOK}.  The following code gives an example implementation of the vending 

machine in C++.  

 

 

class ChocolateVendingMachine 
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{ 

public: 

   static bool addMoney(int cents); 

   static bool subtractMoney(int cents); 

   static bool getChoc(std::string chocolate); 

   static void reset(); 

 

private: 

   static int money; 

   static map<string, int> chocolates ; 

 

   ChocolateVendingMachine() { money = 0; 

   chocolates = {{"mars", 10}, {"twix", 15}, {"snickers", 25}};} 

}; 

 

bool ChocolateVendingMachine::addMoney(int cents){ 

   money += cents; 

   return true; 

} 

bool ChocolateVendingMachine::subtractMoney(int cents){ 

   if(money < cents) 

      return false; 

   money -= cents; 

   return true; 

} 

bool ChocolateVendingMachine::getChoc(string chocolate){ 

   if(chocolates.count(chocolate)){ 

      return subtractMoney(chocolates[chocolate]); 

   } 

   return false; 

} 

void ChocolateVendingMachine::reset(){ 

   money = 0; 

} 

 

6. Model Learning  

Model learning is a technique that constructs a state machine model of a software or a hardware system by providing a sequence of 

input stimuli to the system and observing its output. The system is seen as a black-box where internal details are irrelevant. This state 

machine describes the externally visible behavior of the system. There are many algorithms developed for model learning. Among 

these algorithms is the L* algorithm [10] which is used for this work. Below we give a formal definition and apply the algorithm to 

the vending machine use case. 

 

6.1. Formal definition 

The L* algorithm incrementally constructs an observation table that encodes the Mealy state machine. The table includes entries taken 

from the set I of input and the set Ο of outputs. Each row is labeled by a sequence in (S ∪ S ⋅ I), where S is a nonempty finite input 

sequence called prefix. The columns of the table are labeled by a nonempty finite sequence E called suffix. An observation table is a 

triple (S, E, row), where row: S ∪ (S ⋅ I) → (E → Ο).  

For a prefix s and suffix e, row(s)(e) returns the last output returned by the SUL when the se input sequence is applied. The algorithm 

starts with the initial state where S contains the empty sequence ε, and E equals set of inputs I. When constructing the state machine, 

two key properties should apply: closedness and consistency. Observation table (S, E, row) is closed if for all s ∈ S ⋅ I there is a s′∈S 

with row(s) = row(s′). It is consistent if row(s1 ) = row(s2) for some s1 , s2 ∈ S, then row(s1 a) = row(s2 a) for all a ∈ I. If a table is 

closed and consistent, the learner constructs a Mealy machine H = (I, Ο, Q, q0, δ, λ) with Q = {row(s) | s∈S}, q0 = row(ε), δ(row(s), 

a) = row(s ⋅ a), and λ(row(s), a) = row(s)(a). 

 

6.2. Applying L* on the vending machine system 

L* starts from the initial state of the system represented as the first row in the table where prefix is the ε (empty) input and suffix (E) 

is the list of possible inputs. In Table 1, the initial state contains OK on inputs ε.5c and ε.10c but NOK on inputs ε.Mars, ε.Twix and 

ε.Snickers (no sufficient money yet to produce any chocolate). 
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Prefix Suffix 
 5c 10c Mars Twix Snickers 

ε OK OK NOK NOK NOK 

Table 1: Observation table containing the initial state 

 

The algorithm continues with adding the input to the prefix (forming S . I as explained formally above), and via another iteration the 

table is filled in with possible outputs, see Table 2. At this step, the state machine contains only a single state which is the initial state 

(see the line separating the prefix list in the table). 

 

 

Prefix Suffix 
 5c 10c Mars Twix Snickers 

ε OK OK NOK NOK NOK 

5c OK OK NOK NOK NOK 

10c OK OK OK NOK NOK 

Mars OK OK NOK NOK NOK 

Twix OK OK NOK NOK NOK 

Snickers OK OK NOK NOK NOK 

 

Table 2: Prefix of the initial state is extended with each input of I 

 

The L* algorithm will observe a new state when a unique combination of output values appears in the table. For instance, in Table 2, 

the prefix 10c (with the suffix Mars) makes a unique (state) row (highlighted rows in green denote newly discovered states). This row 

is then promoted as a new state and moved above the thick line. After that, new prefixes are added to the table appending each input to 

10c, see Table 3. New entries are then calculated to fill in the rows and to discover new states. 

 

Prefix Suffix 
 5c 10c Mars Twix Snickers 

ε OK OK NOK NOK NOK 

10c OK OK OK NOK NOK 

5c OK OK NOK NOK NOK 

Mars OK OK NOK NOK NOK 

Twix OK OK NOK NOK NOK 

Snickers OK OK NOK NOK NOK 

10c 5c OK OK OK OK NOK 

10c 10c OK OK OK OK NOK 

10c Mars OK OK NOK NOK NOK 

10c Twix OK OK OK NOK NOK 

10c Snickers OK OK OK NOK NOK 

Table 3: prefix 10c is added as a new state and new sequences are formed by appending inputs of I 

Two further states are discovered in the table and promoted above the thick line. However, as seen in the table, the current Mealy 

machine is not consistent because row(10c 5c) = row(10c 10c) but their future with appending inputs of set I is not the same.  

Prefix Suffix 
 5c 10c Mars Twix Snickers 

ε OK OK NOK NOK NOK 

10c OK OK OK NOK NOK 

10c 5c OK OK OK OK NOK 

10c 10c OK OK OK OK NOK 

5c OK OK NOK NOK NOK 

Mars OK OK NOK NOK NOK 

Twix OK OK NOK NOK NOK 

Snickers OK OK NOK NOK NOK 

10c Mars OK OK NOK NOK NOK 

10c Twix OK OK OK NOK NOK 

10c Snickers OK OK OK NOK NOK 

Table 4: state are not consistent  

Therefore, to make the table consistent, the suffix list E needs to be extended. Table 5 shows that the output of 10c.5c.5c.Snickers is 

different than 10c.10c.5c.Snickers. Thus, 5c.Snickers should be added to the suffix list. Additionally, the output of 10c.5c.Mars.Mars 

is different than 10c.10c.Mars.Mars. Thus, we also add Mars.Mars to the suffix list. 
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Prefix input 5c 10c Mars Twix Snickers 

10c 5c 5c OK OK OK OK NOK 

10c 5c  10c OK OK OK OK OK 

10c 5c  Mars OK OK NOK NOK NOK 

10c 5c  Twix OK OK NOK NOK NOK 

10c 5c  Snickers OK OK OK OK NOK 

       

10c 10c 5c OK OK OK OK OK 

10c 10c 10c OK OK OK OK OK 

10c 10c Mars OK OK OK NOK NOK 

10c 10c Twix OK OK NOK NOK NOK 

10c 10c Snickers OK OK OK OK NOK 

Table 5: extending suffix list with new sequences to make the observation table consistent 

 

The new table with new prefixes and suffixes looks as depicted in Table 6. 

 

Prefix Suffix 
 5c 10c Mars Twix Snickers Mars Mars 

 

5c Snickers 

ε OK OK NOK NOK NOK NOK NOK 

10c OK OK OK NOK NOK NOK NOK 

10c 5c OK OK OK OK NOK NOK NOK 

10c 10c OK OK OK OK NOK OK OK 

5c OK OK NOK NOK NOK NOK NOK 

Mars OK OK NOK NOK NOK NOK NOK 

Twix OK OK NOK NOK NOK NOK NOK 

Snickers OK OK NOK NOK NOK NOK NOK 

10c Mars OK OK NOK NOK NOK NOK NOK 

10c Twix OK OK OK NOK NOK NOK NOK 

10c Snickers OK OK OK NOK NOK NOK NOK 

10c 5c 5c OK OK OK OK NOK OK OK 

10c 5c 10c OK OK OK OK OK OK OK 

10c 5c Mars OK OK NOK NOK NOK NOK NOK 

10c 5c Twix OK OK OK NOK NOK NOK NOK 

10c 5c Snickers OK OK OK OK NOK NOK NOK 

10c 10c 5c OK OK OK OK OK OK OK 

10c 10c 10c OK OK OK OK OK OK OK 

10c 10c Mars OK OK OK NOK NOK NOK NOK 

10c 10c Twix OK OK NOK NOK NOK NOK NOK 

10c 10c Snickers OK OK OK OK NOK OK OK 

Table 6: extending the suffix with new sequences to make the states consistent 

 

The algorithm continues to discover new states, when it encounters new unique rows, and makes the table consistent when new states 

have the same outputs in their rows. For example, 10c.5c.10c, 10c.10c.5c and 10c.10c.10c form new states but their rows are identical 

which means new suffixes should be added to make them unique. Table 7 shows that the suffix list should be extended with Twix.Twix. 
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Pre input 5c 10c Mars Twix Snickers 

10c 5c 10c 5c OK OK OK OK OK 

10c 5c 10c 10c OK OK OK OK OK 

10c 5c 10c Mars OK OK OK OK NOK 

10c 5c 10c Twix OK OK OK NOK NOK 

10c 5c 10c Snickers OK OK NOK NOK NOK 

       

10c 10c 5c 5c OK OK OK OK OK 

10c 10c 5c 10c OK OK OK OK OK 

10c 10c 5c Mars OK OK OK OK NOK 

10c 10c 5c Twix OK OK OK NOK NOK 

10c 10c 5c Snickers OK OK NOK NOK NOK 

       

10c 10c 10c 5c OK OK OK OK OK 

10c 10c 10c 10c OK OK OK OK OK 

10c 10c 10c Mars OK OK OK OK NOK 

10c 10c 10c Twix OK OK OK OK NOK 

10c 10c 10c Snickers OK OK NOK NOK NOK 

Table 7: Twix.Twix will make the states consistent and should be added to the suffix list 

 

 

Therefore, the new table after adding the new states and the new suffix will look as follows. 

 

 

 

Prefix Suffix 
 5c 10c Mars Twix Snickers Mars 

Mars 

 

5c Snickers Twix Twix  

ε OK OK NOK NOK NOK NOK NOK NOK 

10c OK OK OK NOK NOK NOK NOK NOK 

10c 5c OK OK OK OK NOK NOK NOK NOK 

10c 10c OK OK OK OK NOK OK OK NOK 

10c 5c 10c OK OK OK OK OK OK OK NOK 

10c 10c 5c OK OK OK OK OK OK OK NOK 

10c 10c 10c OK OK OK OK OK OK OK OK 

5c OK OK NOK NOK NOK NOK NOK NOK 

Mars OK OK NOK NOK NOK NOK NOK NOK 

Twix OK OK NOK NOK NOK NOK NOK NOK 

Snickers OK OK NOK NOK NOK NOK NOK NOK 

10c Mars OK OK NOK NOK NOK NOK NOK NOK 

10c Twix OK OK OK NOK NOK NOK NOK NOK 

10c Snickers OK OK OK NOK NOK NOK NOK NOK 

10c 5c 5c OK OK OK OK NOK OK OK NOK 

10c 5c Mars OK OK NOK NOK NOK NOK NOK NOK 

10c 5c Twix OK OK OK NOK NOK NOK NOK NOK 

10c 5c Snickers OK OK OK OK NOK NOK NOK NOK 

10c 10c Mars OK OK OK NOK NOK NOK NOK NOK 

10c 10c Twix OK OK NOK NOK NOK NOK NOK NOK 

10c 10c Snickers OK OK OK OK NOK OK OK NOK 

10c 5c 10c 5c OK OK OK OK OK OK OK OK 

10c 5c 10c 10c OK OK OK OK OK OK OK OK 

10c 5c 10c Mars OK OK OK OK NOK NOK NOK NOK 

10c 5c 10c Twix OK OK OK NOK NOK NOK NOK NOK 

10c 5c 10c Snickers OK OK NOK NOK NOK NOK NOK NOK 

10c 10c 5c 5c OK OK OK OK OK OK OK OK 

10c 10c 5c 10c OK OK OK OK OK OK OK OK 

10c 10c 5c Mars OK OK OK OK NOK NOK NOK NOK 

10c 10c 5c Twix OK OK OK NOK NOK NOK NOK NOK 

10c 10c 5c Snickers OK OK NOK NOK NOK NOK NOK NOK 

10c 10c 10c 5c OK OK OK OK OK OK OK OK 

10c 10c 10c 10c OK OK OK OK OK OK OK OK 
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10c 10c 10c Mars OK OK OK OK NOK OK OK NOK 

10c 10c 10c Twix OK OK OK OK NOK NOK NOK NOK 

10c 10c 10c 
Snickers 

OK OK NOK NOK NOK NOK NOK NOK 

Table 8: Observation table after adding Twix.Twix to the suffix list with further new states 

 

Note that at this step there is no new states can be discovered. However, a valid sequence, which is not part of the observation table 

calculated so far, which leads to a different state can be ε.5c.5c. From the start, this sequence can lead to obtaining Mars. Such cases 

can be added to the learner as a counterexample manually and the learner will start exploring the following states further. This way the 

learner is guided to explore overlooked states. Note that, the learner can be configured to automatically discover counterexamples via 

employing several algorithms. Most notable is the W-method algorithm [17] of which detail is outside the scope of this article. Table 9 

shows the observation table extended with new states via guiding the algorithm with counterexamples.  

 

 

Prefix Suffix 
 5c 10c Mars Twix Snickers Mars 

Mars 

 

5c Snickers Twix twix  

ε OK OK NOK NOK NOK NOK NOK NOK 

10c OK OK OK NOK NOK NOK NOK NOK 

10c 5c OK OK OK OK NOK NOK NOK NOK 

10c 10c OK OK OK OK NOK OK OK NOK 

10c 5c 10c OK OK OK OK OK OK OK NOK 

10c 10c 5c OK OK OK OK OK OK OK NOK 

10c 10c 10c OK OK OK OK OK OK OK OK 

5c OK OK NOK NOK NOK NOK NOK NOK 

5c 5c OK OK OK NOK NOK NOK NOK NOK 

Mars OK OK NOK NOK NOK NOK NOK NOK 

Twix OK OK NOK NOK NOK NOK NOK NOK 

Snickers OK OK NOK NOK NOK NOK NOK NOK 

10c Mars OK OK NOK NOK NOK NOK NOK NOK 

10c Twix OK OK OK NOK NOK NOK NOK NOK 

10c Snickers OK OK OK NOK NOK NOK NOK NOK 

10c 5c 5c OK OK OK OK NOK OK OK NOK 

10c 5c Mars OK OK NOK NOK NOK NOK NOK NOK 

10c 5c Twix OK OK OK NOK NOK NOK NOK NOK 

10c 5c Snickers OK OK OK OK NOK NOK NOK NOK 

10c 10c Mars OK OK OK NOK NOK NOK NOK NOK 

10c 10c Twix OK OK NOK NOK NOK NOK NOK NOK 

10c 10c Snickers OK OK OK OK NOK OK OK NOK 

10c 5c 10c 5c OK OK OK OK OK OK OK OK 

10c 5c 10c 10c OK OK OK OK OK OK OK OK 

10c 5c 10c Mars OK OK OK OK NOK NOK NOK NOK 

10c 5c 10c Twix OK OK OK NOK NOK NOK NOK NOK 

10c 5c 10c Snickers OK OK NOK NOK NOK NOK NOK NOK 

10c 10c 5c 5c OK OK OK OK OK OK OK OK 

10c 10c 5c 10c OK OK OK OK OK OK OK OK 

10c 10c 5c Mars OK OK OK OK NOK NOK NOK NOK 

10c 10c 5c Twix OK OK OK NOK NOK NOK NOK NOK 

10c 10c 5c Snickers OK OK NOK NOK NOK NOK NOK NOK 

10c 10c 10c 5c OK OK OK OK OK OK OK OK 

10c 10c 10c 10c OK OK OK OK OK OK OK OK 

10c 10c 10c Mars OK OK OK OK NOK OK OK NOK 

10c 10c 10c Twix OK OK OK OK NOK NOK NOK NOK 

10c 10c 10c 
Snickers 

OK OK NOK NOK NOK NOK NOK NOK 

 

Table 9: Observation table is extended with new states using counterexamples 
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However, these new states make the table of states not consistent so the suffix list should be extended. Table 10 shows how the new 

sequence is calculated to make consistent states. 

 

Prefix input 5c 10c Mars Twix Snickers 

ε 5c OK OK NOK NOK NOK 

ε 10c OK OK OK NOK NOK 

ε Mars OK OK NOK NOK NOK 

ε Twix OK OK NOK NOK NOK 

ε Snickers OK OK NOK NOK NOK 

       

5c 5c OK OK OK NOK NOK 

5c 10c OK OK OK OK NOK 

5c Mars OK OK NOK NOK NOK 

5c Twix OK OK NOK NOK NOK 

5c Snickers OK OK NOK NOK NOK 

Table 10: calculating new sequences to be added to the suffix list to make the states consistent 

 

     

Therefore, to make the table consistent, 5c.Mars and 10c.Twix sequences should be added to the suffix list.  

Table 11 depicts the final states including the final list of prefixes and suffixes of the state machine. 

Prefix Suffix 
 5c 10c Mars Twix Snickers Mars 

Mars 

 

5c 

Snickers 

Twix 

Twix  

5c 

Mars 

10c 

Twix 

ε OK OK NOK NOK NOK NOK NOK NOK NOK NOK 

10c OK OK OK NOK NOK NOK NOK NOK OK OK 

10c 5c OK OK OK OK NOK NOK NOK NOK OK OK 

10c 10c OK OK OK OK NOK OK OK NOK OK OK 

10c 5c 10c OK OK OK OK OK OK OK NOK OK OK 

10c 10c 5c OK OK OK OK OK OK OK NOK OK OK 

10c 10c 10c OK OK OK OK OK OK OK OK OK OK 

5c OK OK NOK NOK NOK NOK NOK NOK OK OK 

5c 5c OK OK OK NOK NOK NOK NOK NOK OK OK 

           

  The table can be filled in here following the approach detailed above. 

Details are omitted for readability purposes. 

  

    

           

Table 11: final observation table with the final resulting state machine 

 

 

 

 

 

Figure 2: Mealy machine for the learned model 
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Figure 2 shows graphical representations of the state machine where only transitions that lead to OK are visible. Omitted from the diagram 

transitions leading to NOK (they make self-transitions) for readability purposes. Note that the machine is deterministic and for each 

missing input in any state, there is a self-transition leading to NOK.   

 

6.3. Integrating model learning to learn a software module 

To learn the behavior of a software system, the model learner needs to be connected to the system to be learned first. The model learner 

connects to the system under learning (SUL) via an adapter that translates abstract calls sent from the learner to calls accepted by the 

SUL via its external interface. Figure 3 shows how the leaner can be connected to a system via an adapter. 

 

 

Figure 3: Integrating model learning to learn a system 

 

SUL should be isolated from the rest of the system via stubs. The learning algorithms, which we used throughout this work, are 

provided via a library called LearnLib [17]. The connection between LearnLib and SUL is done via TCP/IP connection.  

7. Proposed refactoring method 

In this section, we discuss the proposed methodology of refactoring software components that includes 

external interfaces with state-full protocols.  

Figure 4 depicts the steps applied to the component under refactoring (CUR).  

 

 

 

 

Figure 4: High-level steps of refactor method with the aid of model learning 

 

1- Isolate CUR from the rest of the system. To use the model learning tool, the CUR needs to be isolated 

from the other surrounding components first. All used components located on the boundary of CUR should 

be replaced by stubs.  

2- Measure CUR with quality metrics. Before performing any refactoring activity, the current quality state 

of CUR needs to be captured using software metrics. These metrics will be compared with the metrics 

generated from CUR after refactoring to ensure that the quality of CUR is not degraded due to refactoring. 

To mention a few, metrics may include cyclomatic complexity, nested depth, lines of code per function 

and code clones. Depending on the programming language used to implement the code, these metrics can 

be collected systematically using static code analysis tools like TIOBE [12] or CodeSonar [13]. 

3- Extract behavioral model of CUR. This is the starting point of applying model learning techniques. 

After the CUR is isolated from the rest of the system, the model learner can be connected to the CUR via 

an adapter. The learner will start learning the CUR and produce a behavioral model in a mealy state 

machine format. Usually, this is a repeated step where a resulting model is refined iteratively with guided 

counterexamples as presented for the use case. The final resulting model should be verified by experts 

who hold sufficient domain knowledge and thus agree on the correctness and completeness of the model. 

4- Test case generation and verification. After a final model is generated by the model learner, a model-

based testing framework can be used to generate test-cases automatically. Most model-based testing 

frameworks accept state machines as input and generate (offline) test-cases as output. A translation script 
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is needed to convert the behavioral model of the model learner to the input format accepted by the model-

based testing framework. Furthermore, resulting test-cases from the model-based framework need to be 

converted/adapted to the format of the testing tool used for the actual testing process. All tests should pass 

on CUR.    

5- Refactor and re-qualify CUR. At this phase, CUR internal implementation can be refactored. After 

refactoring is done, quality metrics should be collected and compared to the metrics collected during step 

2. New metrics should exhibit improved quality so no traces of quality degradation may be introduced due 

to refactoring. After ensuring the quality of refactoring via metrics, test cases generated in step 4 should 

be re-run and passed on the refactored component. This includes any existing test cases used to test CUR 

before refactoring to ensure regression.  

6- Deploy CUR to the system. After the refactored component is verified, the old component can be replaced 

by the new refactored component. Exhaustive system regression tests should be performed to ensure that 

no errors appear after integrating the new component with the rest of the system.  

8. Discussion and Lessons learned  

In this section, we present the lesson learned from applying the proposed approach of refactoring with model learning for software 

refactoring on industrial applications. We highlight the strengths and pitfalls of the approach and the encountered limitations and 

challenges.  

 

The first challenge was encountered when we applied step 1 of isolating CUR from the rest of the system. The challenging part was that 

dependency between CUR and other boundary components contains cycles, meaning that other boundary components depend also on 

CUR. So, to isolate CUR, these cyclic dependencies should be resolved first. To resolve such dependencies, CUR and dependent 

components were refactored.  

 

 

Figure 5: example of cyclic dependency and possible resolution 

Figure 5 depicts an example of cyclic dependency where modules A and B depend on each other (a module here can be seen as a cpp 

file that includes functions exposed via a hpp header interface). A function foo in module A depends on a function bar and baz in 

modules B and A respectively. To resolve this dependency, function baz is refactored to a new module C so that B cyclic dependency 

to A is removed. After that, the system under learning is isolated such that it contains module A, module C and a stub replacing module 

B. The hidden dependency from module B to module C is not part of the CUR but refactoring baz to a new module C was done in a way 

that missing this dependency in CUR does not affect the behavior of module A. 

 

Although this was a small refactoring work, no qualification was performed to ensure that resolving cycles may introduce bugs in CUR. 

To speed up isolating CUR from the system, we used a tool developed in-house to generate stubs from header interfaces automatically. 

Manual implementation of stubs would otherwise consume more time and effort. We were planning to automate the separation of CUR 

but with the existence of cyclic dependencies, we found it hard to achieve this without manual intervention.  

 

In order to integrate the model learner, an adapter should be implemented to bridge the connection with CUR. The adapter should 

maintain the proper abstraction needed to exchange calls crossing between CUR and the learner. In contrast to the automatic generation 

of stubs that replace boundary components of CUR, creating the adapter requires human creativity and manual work. For our industrial 

case, the adapter adds default data parameters sent with the calls towards CUR but abstracts away the real values before forwarding 

replies from CUR to the learner. Our concern here is that abstracting away real data by replacing it with some defaults may hide potential 

important external behavior that will appear only in case abstracted data causes internal changes in the logic of CUR. This means that 

CUR internally may be sensitive to some data values to make a visible change in the external behavior but because such data is absent, 

due to abstraction, such behavior will not be observed by the learner.  

 

 Obtaining the learned model from the model learner was not just a “click of a button” but rather required many iterations. The model 

learner needed more guidance, using counterexamples, to refine the model and generate a reasonable model that reflects reality. These 

counterexamples were constructed from generated traces and logs produced by the CUR external interface before refactoring. We had 

to translate these logs to the format accepted by the model learner which consumed even more time and effort. 
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The model learner should be restricted otherwise the resulting model can grow very fast in size. Human creativity is needed here to 

restrict the model. For example, for our case study of the vending machine we had to restrict the total amount of money accepted by the 

system to 25c. For example, as can be seen in the resulting state machine of Figure 2, any input of 5c or 10c in state 7 is not accepted. 

 

Another challenge we encountered is the selection of the proper model-based testing framework from the wide range of available tools 

in the literature. For this, we made some selection criteria that satisfy our needs. The criteria are: 

 

- Publicly available: tool should be available to public and anyone can use it without any restrictions. 

- Model-based tool: for its input, the tool should depend on a model to ease translating the learned model to the input model 

accepted by the tool. This enables the automation of steps.  

- Offline testing: Offline testing means that test cases are generated and executed. Online testing implies generating and executing 

tests on-the-fly. Usually, test cases are generated as a sequence of calls.  

- Export functionality: the test tool should be able to export its test sequences to translate them to concrete test cases 

implementation. 

- Full Coverage: all transitions present in the learned model are covered.  

- OS independent: our work needs both Linux and Windows systems, so the tool should be easily deployable on both with minimal 

effort.  

 

We carefully studied 17 tools and selected the HADS (Hybrid Adaptive Distinguishing Sequences) tool [14] because it fits our needs 

the most. HADS was used to generate test sequences which were translated to the test suite of GTest (google test) [15] and Junit [16]. 

These test cases were used as the basis for qualifying the component before and after refactoring. All tests were passed on the system 

before and after refactoring. 

 

The following table summarizes the strong and weak points of applying model learning for our case.  

 

Strengths Limitations 

When the learner is executed, potential errors may be 

discovered in the learned system. This is because the 

learner will try to cover also unexpected cases by the 

learned system 

Manual effort is required to isolate the system before 

model learning can be employed. Complexity increases 

when cyclic dependencies are present.  

Behavioral models can be constructed automatically, 

reducing cost and effort 

Manual effort is needed to build an adapter that translates 

“strings” sent/accepted by the learner to actual calls to the 

system under learning. 

Can help constructing an initial understanding of systems 

when domain knowledge and documentations are absent 

Needs many iterations until a final model is constructed. 

The resulting models can be used for future 

documentation 

It is not guaranteed the complete behavior will be captured 

by the resulting model 

Resulting models can be used by model-based 

technologies to generate interfaces, implementation code 

and tests via one-to-one transformation.  

For complex systems, resulting models can grow very big, 

making any manual modification or inspection by 

engineers very complex. 

Limited (or even zero) knowledge of the inner details of 

the system under learning is needed to use the model 

learning techniques  

Tools generate one big model, it is not possible to 

systematically decompose the model into smaller models. 

 The model learner needs guidance using counterexamples 

to obtain a model. 

 Not possible to use function parameters (input/output 

data). Data parameters should be faked. 

 When data parameters cause internal state changes in the 

component to be learned, they should be translated to 

dedicated calls, making the adapter very complex and 

error-prone. 

 Control of the SUL is done from the top external interface. 

If the system changes its state based on callbacks initiated 

from lower-level components then this is not covered. 

This is because stubs are used to replace the lower-level 

components.  

 

 

As can be seen from the table, from our experience in applying the method to our use case, the limitations of the model learner outweigh 

its strengths.  

 

 

 

 

9. Conclusion and future work 

In this paper, we proposed a method for refactoring complex reactive systems in industrial settings. The method incorporates model 

learning and model-based testing for software system refactoring. In the following, we will answer the research questions raised earlier.  
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- Can model learning techniques be integrated with software engineering refactoring process? 

As discussed throughout this paper, model learning can be integrated into the software development process. Before refactoring a 

software module, the learner can learn its external behavior. However, embedding model learning to learn a software model requires 

time and effort.  

- Is model learning techniques mature enough to be used for learning complex industrial systems? 

Our work shows that model learning can be suitable for event-driven reactive systems where interfaces are parameter-less or where 

parameters have no effect on the external behavior of the system. But for other systems where data can change the internal states, extra 

effort is needed to make a suitable adapter which may grow in complexity and size. The complexity of the adapter may cause errors in 

its implementation and there is a risk that errors are also reflected in the resulting learned model. 

- What are the pros and cons of using model learning for refactoring?  

In the previous section, we listed the strengths and the limitation of model learning based on our experience of applying it to the industrial 

and the use case system. 

 

An apparent limitation of this method is that it requires extensive manual effort at some stages such as separating the system under 

learning from the rest of the system. As future work, we are investigating how to automatically isolate a software component from its 

surrounding components.  

 

Another limitation of this method is that the generated model can grow fast. As future work, we are investigating how a model can be 

decomposed into smaller models. Furthermore, we are investigating how a model size can be reduced by applying abstraction and using 

compression techniques to reduce the size of the model while still preserving the intended behavior.  
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