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Abstract :  Vizing in 1965 providede an upper bound for the number of edges in terms of domination number and is popular as Vizing 

Theorem. In this paper  we find a bound on the number of edges in  a simple graph when the maximum degree  (minimum degree ) 

is given. This result corresponds to the well known theorem of Vizing. We have characterized the graphs for which these bounds are 

attained. We also give a lower bound for  in terms of order and size of the graph.    
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I. INTRODUCTION 

 

For any undefined terminologies we refer (Harrary 1969). In our discussion by G(p, q) we mean a graph with p vertices and q edges. 

The set of p vertices is denoted by V and set of edges is denoted by E. For any vertex v V, N (v) =    {uV  u is adjacent to v}. The 

degree of  v denoted as  d (v) = N (v).  We here quote some well known results for our reference. The first and foremost result is 

popularly known as First Theorem in Graph Theory which some times called as Hand shaking Lemma 

 

Theorem 1.1. (Harrary 1969).  For any graph G(p,q) we have ∑ 𝑑(𝑣)𝑣∈𝑉 = 2𝑞  

 

An immediate consequence of the above theorem is the following  

 

Corollary 1.1.1. (Harrary 1969). In any graph the number of odd degree vertices is even. 

 

Let  (G) and  (G) respectively denote the maximum degree and minimum degree of G. It is well known that the average degree of a 

vertex v lies between minimum and maximum degree of  v and hence   

 

Theorem 1.2 (Harrary 1969). For any graph G(p,q) with maximum degree(G)  and minimum degree  (G),   

)(
2

)( G
p

q
G       (1) 

 

The domination number of a graph is well studied concept in graph theory. For a detailed study on domination one can refer (Haynes et 

al. 1999), (Hedetnimi et al. 2006), (Fink  et al. 1985). We say that two vertices dominate each othe if they are adjacent. The domination 

number 𝛾(𝐺) is the minimum number of vertices needed to dominate all the vertices of G.  ( Vizing 1965) gave the following  bound 

on the number of edges when the domination number  (G) is given.  

 

Theorem 1.3 [3]. Let G be any graph  of order  p ,  size  q  and  (G) ≥2, then  
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On the similar lines (Rautenbach 1968) extended this result for weak domination number 𝛾𝑤(𝐺).   
 

Theorem 1.4 [2]. Let G be any graph  of order  p ,  size  q  and w (G) ≥2, then  
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In this paper  we find a bound on the number of edges in  a simple graph when the maximum degree    or minimum degree    

is given. This result corresponds to the  theorem of Vizing. We have characterized the graphs for which these bounds are attained by 

defining two types of graphs viz, k-semiregular graphs and partially complete (p, ) graphs. We also give a lower bound for   in terms 

of order and size of the graph.    

 

To begin with we give a bound on number of edges when the maximum degree  or minimum degree   is given.  

 

Proposition 1.5 Let G be any graph  of order  p ,  size  q, maximum degree     and minimum degree .  Then   

   ≤  q ≤ 






 
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p
         (4)       
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Proof. The upper bound in (4) follows from the fact that )(
2

G
p

q
 .  If v is a vertex with maximum degree (G)  then there exists 

atleast  edges incident on v and hence the total number of edges    q ≥   and hence lower bound follows. The lower bound in (5)  is 

immediate from the fact that  
p

q
G

2
)(  . Let v be a vertex of minimum degree  . Then v is adjacent to   vertices and these  vertices 

can be at most of degree  p - 1. The remaining p -  - 1 vertices can be mutually adjacent to each other except the vertex  v.  Thus these 

p -  - 1 vertices are at most of degree p - 2.Then     2q ≤  (p – 1) + (p -  - 1) (p -2) +   =  p (p-3) + 2 ( +1). Hence the upper bound 

in (2) follows. Any regular graph attains the lower bound in (2). The complete graph Kp attains the upper bound in (5). ■ 

  

From the above proposition we get a lower bound for minimum degree in terms of order and size of the graph. 

 

 

Corollary 1.5.1. Let G be any graph  of order   and , minimum degree .   

Then           


2

2)3(2 ppq
    (6) 

 

Proof. From Proposition 1.5, we have 𝑞 ≤
𝑝(𝑝−3)+2(1+𝛿)

2
. This yields 2𝑞 − 𝑝(𝑝 − 3) − 2 ≤ 2𝛿 which yields the desired bound. Further 

any complete graph Kp attains the bound. 
 

II. K-SEMIREGULAR GRAPHS 

Definition 2.1. A graph G is said to be k-semi regular  if   all the vertices are of degree k except one vertex of degree k  1. We thus 

have two class of k-semi regular  graphs. A graph G is said to be k-semi regular graph of first kind if  all the vertices in G are of degree 

k except one vertex of degree k - 1. On the other hand a graph G is said to be k-semi regular graph of second kind if  all the vertices are 

of degree k except one vertex of degree   k + 1. The  k-semiregular graphs of both kinds for  k = 3, 5 is shown in the Fig.1.1.  The vertex 

v shown in each figure represents the one vertex of degree k  1. Immediately we observe that the number of edges in any k-semiregular 

graph of first kind is 
2

1pk
 and that of second kind is 

2

1pk
. Hence if G is any k-semiregular graph of first kind by joining the 

minimum degree vertex v with any other nonadjacent vertex we get a k-semiregular graph of second kind.  
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Proposition 2.1 Every k-semi regular graph is of odd order. 

 

Proof. Let G be a k-semiregular graph with p vertices. Suppose p is an even number. Then pk is even for any k and hence pk 1 is odd. 

Since G is k semiregular, there exist      p-1 vertices of degree k and one vertex of degree k 1.  

Hence if d(v) is the degree of a vertex then by the well known  first theorem in Graph theory  we have 2q = ∑ 𝑑(𝑣) =𝑣𝜖𝑉  (p-1)k + k 1 

=  pk 1 which is an odd number – a contradiction. Hence G  must be of odd order.  

 

Proposition 2.2 If  G is a  k-semiregular graph then k is odd.  

 

Proof. Let G be a k-semiregular graph with p vertices. Then from the Proposition 1, p is an odd number. Suppose k is even. Then k 1 

is odd. Since G is k-semiregular, there exist p-1 vertices of degree k and one vertex of odd degree k 1.  This is a contradiction to the 

fact that the number of odd degree vertices in any graph is even. Hence we conclude that k must be an odd number. 

  

We now characterize the graphs for which the bound is attained in (4). 

 

Proposition 2.3 Let G be any graph  of order  p,  size  q, and maximum degree .    

Then       (i).   q =  






 

2

p
 if and only if  G is  regular or k - Semi regular graph of first kind.       

  (ii).  q =   if and only if  G =  K1 ,n. 1npK .  

 

Proof. (i). If G is  regular then  we have  2q = p.  If G is k - Semi regular graph of first kind then there exist p-1 vertices of degree  = 

k and one vertex of degree -1. Hence 2q =  (p-1)  +  -1 = p -1. Thus in any case q = 






 

2

p
 holds. Conversely, Suppose q =  








 

2

p
. Then 2q =  p or p -1 . If  2q =  p then  G is   - regular. In the latter case we have  2q = p -1 = p -   +   - 1 = (p - 1)  

+  -1. This implies that there are (p-1) vertices of degree  = k and one vertex of degree  -1. Hence  G is  k- semi regular graph (ii). 

If G =  K1 ,n. 1npK  then it is not hard to see that q = . Conversely if  q =   then there exist at most one vertex of degree  and  

vertices of degree 1 and all the remaining vertices of degree 0. This implies that G is  K1 ,n. 1npK . ■ 

 The 3-Semi regular graph of first kind with q =10, and 5-semiregular graph of first kind with q =17 on p = 7 vertices shown in 

the Fig.1 satisfy the bound q =  






 

2

p
. 

 

III. PARTIALLY COMPLETE (p, ) GRAPH  

Definition 3.1. A graph G is said to be a partially complete (p, ) graph if G is obtained by identifying a vertex v in Kp and removing   

k edges (0 ≤ k ≥ p-1) incident on v.  Any partially complete graph on p vertices is denoted by 


1pK . When k = 0 we get   = p -1 and 

hence G is a complete graph. Thus Kp is a partially complete graph K
p

p

1

1




.  

Any partially complete graph posses the following properties.  

1. 
1pK has 1pK  as induced subgraph.  

2. 


1pK  has exactly one vertex of degree  = p-k-1 and  p- -1  vertices of degree p-2, and    vertices of degree 

p-1. 

3.The number of edges in 
1pK is equal to 

2

)1(2)3( 


pp
q .  

4. Given any p≥2 there exist p distinct complete (p, ) graphs 1

1

2

1

1

1

0

1 ,.......,,, 
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p

pppp KKKK  of size 2

1Cp
,

,12

1  Cp
   22

1  Cp

,.............. …… 2Cp
   respectively. 

 

The schematic representation of partially complete (p, ) graph and the graph 
3

5K  is shown in the Fig.2. 
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A schematic representation of partially complete (p,) graph 


1pK  

  

We next characterize the graphs for which the bounds are attained in (5). 
 

Proposition 3.1. Let G be any graph  of order  p,  size  q  and minimum degree .  

 Then  

  (i)       









2

p
q  if and only if G is a regular or k - semi regular graph of second kind.  

(ii)       
2

)1(2)3( 


pp
q  if and only if G  


1pK . 

Proof. To prove (i). If G is regular then 2q = p. If  G is  k - semi regular graph of second kind  then there exist p-1 vertices of degree  

= k and one vertex of degree k+1. Then 2q = (p-1)  +  + 1 = p +1. Hence in any case 









2

p
q  holds. Conversely, Suppose  











2

p
q  holds. Then 2q = p or p + 1.  If 2q = p  we have G is a graph in which all the vertices are of minimum degree  and hence  

G is a regular graph. If 2q = p + 1=  p -  +  +1 = (p-1)  +(1+), this implies  G has  p-1 vertices of degree  = k and one vertex of 

degree  + 1. Then  G is a k-semiregular graph of second kind.  

To prove (ii). If  G  


1pK , then from the property of a partially complete graph, G has 
2

)1(2)3( 


pp
q . Conversely, let 

the number of edges in G be  
2

)1(2)3( 


pp
q . We first observe that to have maximum number of edges we must have only 

one minimum degree vertex. Let v be a vertex of minimum degree . Then as in the proof of Proposition 4, there exist    vertices exactly 

of degree  p - 1. The remaining   p -  - 1 vertices are exactly of degree p - 2. Then G must be 


1pK . 
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