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Abstract :  In the present study the dispersion relation for different modes of propagation in neutrino modified MHD  plasma is 

derived.  The neutrino modified MHD model proposed by Hass et al is taken and modified considering the finite conductance of 

plasma. It is found that purely transverse waves are not affected by the presence of  neutrino beam in finitely conducting plasma, 

but the dynamics of other modes are greatly modified. 
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1. INTRODUCTION 
 

Neutrinos, akin to electrons but electrically neutral, interact via weak forces, significantly impacting 

astrophysics and particle physics. Their role extends to core-collapse supernovae and cosmic rays. During 

supernovae, neutrinos carry away substantial energy [1]. Realizing the importance of neutrino beams in 

astronomical plasma, we've  investigated their role  in various modes of waves in plasma  by deriving a 

general dispersion relation for various propagation modes in Neutrino Magnetohydrodynamics (NMHD). 

By incorporating the finite conductance of plasma into Hass et al.'s NMHD model [2][3], we've revealed 

that this modification has profound implications, markedly altering the dispersion relation. 

This work is organized as follows:  

In the first section, the basic equation governing the dynamics of propagation waves has been presented 

for finitely conducting NMHD. In the second section, a general dispersion relation for the various modes of 

propagation has been derived. In the final section results has been discussed and concluded.  

  

2. BASIC EQUATIONS  

 

Consider a finitely conducting conducting plasma, strongly magnetized plasma system composed of 

electrons, ions and neutrinos embedded in a uniform magnetic field  �⃗� =  𝐵𝑜�̂�.  Following the MHD given 
by Hass et al [3], the basic equations for finitely conducting plasma system are  

The continuity equation for neutrinos: 
𝜕𝑛𝜈

𝜕𝑡
 + ∇ ⋅ (𝑛𝜈1𝒗𝜈1) = 0  (1) 

 

Where    𝑛𝜈,  𝑣ν are neutrino number density and neutrino fluid velocity respectively.  

In eq (1) First term  (
𝜕𝑛𝜈

𝜕𝑡
) represents the time derivative of the neutrino number density  𝑛𝜈and second term 

( ∇ ⋅ (𝒗𝜈𝑛𝜈)  represents the net flux of neutrinos into or out of the region.  

This equation expresses the conservation of neutrino number, stating that the change in neutrino number 

density in a given region of space and time is equal to the net flux of neutrinos into or out of that region. 

The momentum transfer equation for neutrinos: 

∂

∂𝑡
(𝒑𝛎) + 𝒗𝛎. ∇(𝒑𝛎) = −

√2𝐺𝐹

 𝑚𝑖
 ∇𝜌𝑚  (2) 
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Here,   𝐺𝐹 is fermi constant of weak interaction,  𝒑𝛎 = 
𝜀𝜈𝒗𝛎

𝑐2  is relativistic momentum of the neutrino with 

neutrino beam energy  𝜀𝜈.   𝜌𝑚 = (𝑚𝑒𝑛𝑒 + 𝑚𝑖𝑛𝑖) is plasma mass density where  𝑛𝑒,𝑗  represents the 

number density of electron (ion) and 𝑚𝑒,𝑖  is electron (ion) mass respectively. 

The continuity and momentum equation for MHD fluid can be written as: 

 
𝜕𝜌𝑚

𝜕𝑡
 + ∇ ⋅ (𝜌𝑚𝐕) = 0 (3) 

 

  

(
𝝏𝐕

∂𝑡
+ (𝐕 ⋅ ∇)𝐕) = −

𝐶𝑠
2∇𝜌𝑚

𝜌𝑚
+

1

μ0

(∇ × 𝐵) × 𝑩

𝜌𝑚
 + 

𝑭𝝂

𝑚𝑖
 (4) 

Where, 𝑽 =  (𝑚𝑒𝑛𝑒𝒗𝒆 + 𝑚𝑖𝑛𝑖𝒗𝑖)/𝜌𝑚 is the plasma fluid velocity with 𝒗𝒆,𝒊  being the velocity of 

ion(electron ) respectively.   

In Eq (4), The first term 
𝐶𝑠

2∇𝜌𝑚

𝜌𝑚
 represents the pressure force, second term represents the Lorentz force  , the 

third represents the force acting on plasma due to neutrinos.   

 

The force due to neutrinos can be written as  

 

𝑭𝝂 = √2𝐺𝐹 (𝑬𝝂 + (
𝑚𝑖∇ × 𝑩

𝑒𝜇0𝜌𝑚
) × 𝑩𝜈)   (𝟓) 

 

Where   𝑬𝝂  and  𝑩𝜈 are effective fields induced by the weak interactions.  
 

𝑬𝝂 = −𝛁𝑛𝜈 −
𝟏

𝒄𝟐

𝝏

𝝏𝒕
(𝒗𝜈𝑛𝜈) , 𝑩𝝂 =

𝟏

𝒄𝟐
 𝛁 × (𝒗𝜈𝑛𝜈)  (𝟔) 

      

  Finally, the Faraday law modified by electroweak force for finitely conducting plasma is  

  
∂𝐵

∂𝑡
= ∇ × (𝐕 × 𝑩 −

𝑭𝝂

𝑒
) + 𝜂∇2𝑩  (7) 

 

Where 𝜂 is resistivity of plasma.  

 

3. GENERAL DISPERSION RELATION 

 

The basic system of equation can be solved for dispersion relation using method of linearization [5] where 

we can separate the variables into two parts, equilibrium part indicated by a subscript 0 and perturbed part 

indicated by a subscript 1:  

  
𝑛𝜈 = 𝑛𝜈0 + 𝑛𝜈1,              𝒑𝜈 =  𝒑𝜈0 + 𝒑𝜈1,
𝒗𝜈 =  𝒗𝜈0 + 𝒗𝜈1,                    𝐕 =  𝟎 + 𝐕𝟏,

𝑩 =  𝑩𝟎 + 𝑩𝟏,                 𝜌𝑚 = 𝜌𝑚0 + 𝜌𝑚1  (8)
 

 

The equilibrium fluid velocity is taken as zero.  

 

Using these, eq (1) –(7) becomes  

 
𝜕𝑛𝜈1

𝜕𝑡
 + 𝑛𝜈0∇ ⋅ (𝒗𝜈1) + 𝒗𝜈0 ∙ ∇(𝑛𝜈1) = 0  (9) 

 

𝜕

𝜕𝑡
(𝒑𝜈1) + 𝒗𝜈0. ∇(𝒑𝜈1) = −

√2𝐺𝐹

 𝑚𝑖
 ∇𝜌𝑚1 (10) 

 
𝜕𝜌𝑚1

𝜕𝑡
 + 𝜌𝑚0∇ ⋅ (𝐕𝟏) = 0 (11) 
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𝝏𝐕𝟏

𝜕𝑡
= −

𝐶𝑠
2∇𝜌𝑚1

𝜌𝑚0
+

1

𝜇0

(∇ × 𝑩𝟏) × 𝑩𝟎

𝜌𝑚
 + 

𝑭𝝂𝟏

𝑚𝑖
 (12) 

 

𝑭𝝂𝟏 = √2𝐺𝐹 (−𝛁𝑛𝜈1 −
1

𝑐2

𝜕

𝜕𝑡
(𝒗𝜈1𝑛𝜈0 + 𝒗𝜈0𝑛𝜈1)) (𝟏𝟑) 

 
𝜕𝑩𝟏

𝜕𝑡
= ∇ × (𝐕𝟏 × 𝑩𝟎 −

𝑭𝝂𝟏

𝑒
) + 𝜂∇2𝑩1 (14) 

 

Assuming the small amplitude wave with plane wave perturbation proportional to 𝑒𝑥𝑝[𝑖 (𝒌 ∙ 𝒓 − 𝜔𝑡)] . 
Using eq (11)   perturbed plasma mass density becomes  

𝜌𝑚1 = 
𝜌𝑚0𝐤 ⋅ 𝐕𝟏

𝜔
(15) 

 

 And using eq(15) in eq(10),  the perturbed relative  momentum of neutrino becomes:   

 

𝒑𝜈1 = 
√2𝜌𝑚0𝐺𝐹

 𝑚𝑖𝜔
  

𝐤 (𝐤 ⋅ 𝐕𝟏)

(𝜔 − 𝒗𝜈0. 𝐤)
(16) 

From relations  

𝒑𝛎 =  
𝜀𝜈𝒗𝛎

𝑐2
 𝑎𝑛𝑑 𝜀𝜈  =  (𝑝𝜈

2𝑐2 + 𝑚𝜈
2𝑐4 )

1

2 (17) 

  
We have, 

𝜀𝜈1 =  𝒑𝛎𝟎 ∙ 𝒑𝛎𝟏𝑐
2   , 𝑤ℎ𝑒𝑟𝑒 𝒑𝛎𝟎 = 

𝜀𝜈0𝒗𝛎𝟎

𝑐2
 (18) 

 

And  

𝒑𝛎𝟏 =  
𝜀𝜈1𝒗𝛎𝟎

𝑐2
 + 

𝜀𝜈0𝒗𝛎𝟏

𝑐2
(19) 

 

From eq(16 )-eq(19) , we have  

𝒗𝛎𝟏 = 
1

𝜀𝜈0
(𝑐2𝒑 𝛎𝟏 − 𝒗𝛎𝟎(𝒗𝛎𝟎 ∙ 𝒑 𝛎𝟏))  

  

= 
√2𝜌𝑚0𝐺𝐹

 𝑚𝑖𝜔𝜀𝜈0
  
(𝑐2𝐤 − 𝒗𝛎𝟎(𝒗𝛎𝟎 ∙  𝐤))

(𝜔 − 𝒗𝜈0. 𝐤)
 (𝐤 ⋅ 𝐕𝟏) (𝟐𝟎) 

 

The perturbed neutrino density can be obtained using eq (20 ) in eq(9 ) as  

 

𝑛𝜈1 =
√2𝜌𝑚0𝐺𝐹𝑛𝜈0

 𝑚𝑖𝜔𝜀𝜈0
  
(𝑐2k2 − (𝒗𝛎𝟎 ∙  𝐤)𝟐 )

(𝜔 − 𝒗𝜈0. 𝐤)2
 (𝐤 ⋅ 𝐕𝟏) (𝟐𝟏) 

 Now perturbed neutrino force can be obtained using eq (20) and eq(21)  in eq(13)  as  

 

𝑭𝝂𝟏 = 𝑛𝜈0𝐺𝐹
2

2𝑖𝜌𝑚0

 𝑚𝑖𝜔𝜀𝜈0
(
 ( (𝒗𝛎𝟎 ∙  𝐤)𝟐  − 𝑐2k2 −  𝜔(𝒗𝛎𝟎 ∙  𝐤) + 𝜔2 )𝐤 

+
𝜔

𝑐2
(𝑐2k2 −  𝜔(𝒗𝛎𝟎 ∙  𝐤))𝒗𝛎𝟎

)
(𝐤 ⋅ 𝐕𝟏)

(𝜔 − 𝒗𝜈0. 𝐤)2
(𝟐𝟐) 

 Using characteristic neutrino plasma speed as   

𝑉𝑛 = (
2𝜌𝑚0𝑛𝜈0𝐺𝐹

2

 𝑚𝑖
2𝜀𝜈0

)

1/2

 

We get:  

 

𝑭𝝂𝟏 =
𝑖𝑚𝑖𝑉𝑛

2

𝜔
(
 ( (𝒗𝛎𝟎 ∙  𝐤)𝟐  − 𝑐2k2 −  𝜔(𝒗𝛎𝟎 ∙  𝐤) + 𝜔2 )𝐤 

+
𝜔

𝑐2
(𝑐2k2 −  𝜔(𝒗𝛎𝟎 ∙  𝐤))𝒗𝛎𝟎

)
(𝐤 ⋅ 𝐕𝟏)

(𝜔 − 𝒗𝜈0. 𝐤)2
(𝟐𝟑) 
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From eq (14) , perturbed magnetic field can be written as  

 

 

(𝑖𝜂k2 − 𝜔)𝑩𝟏 = 𝐤 × (𝐕𝟏 × 𝑩𝟎) −
𝑖𝑚𝑖𝑉𝑛

2

𝑐2𝑒

(𝑐2k2 −  𝜔(𝒗𝛎𝟎 ∙  𝐤))

(𝜔 − 𝒗𝜈0. 𝐤)2
(𝐤 ⋅ 𝐕𝟏)(𝐤 × 𝒗𝛎𝟎)  (𝟐𝟒) 

 

Using eqs ( 15) –( 24) in eq (13) , the dispersion relation for finitely conducting neutrino plasma can  

be written as:  

 

𝜔2𝐕𝟏 = 𝐶𝑠
2(𝐤 ⋅ 𝐕𝟏)𝐤 −

𝜔

(𝑖𝜂k2 − 𝜔)
 {𝐤 × [𝐤 × (𝐕𝟏 × 𝑽𝑨)]} × 𝑽𝑨

+
𝑖𝑉𝑛

2𝑉𝐴𝜔

(𝑖𝜂k2 − 𝜔)𝑐2Ω𝑖

(𝑐2k2 −  𝜔(𝒗𝛎𝟎 ∙  𝐤))

(𝜔 − 𝒗𝜈0. 𝐤)2
(𝐤 ⋅ 𝐕𝟏)(𝐤 × (𝐤 × 𝒗𝛎𝟎)) × 𝑽𝑨

−𝑉𝑛
2 (

 ( (𝒗𝛎𝟎 ∙  𝐤)𝟐  − 𝑐2k2 −  𝜔(𝒗𝛎𝟎 ∙  𝐤) + 𝜔2 )𝐤 

+
𝜔

𝑐2
(𝑐2k2 −  𝜔(𝒗𝛎𝟎 ∙  𝐤))𝒗𝛎𝟎

)
(𝐤 ⋅ 𝐕𝟏)

(𝜔 − 𝒗𝜈0. 𝐤)2
(25)

 

 

Where vector Alfven velocity and ion cyclotron frequency is given by  

𝑽𝑨 =
𝑩𝟎

√𝜇0𝜌𝑚

, Ω𝑖 = 
𝑒𝐵0

𝑚𝑖

(26) 

 

4. DISCUSSION AND CONCLUSION 

As evident from equation (25), the dispersion relation undergoes modification due to the influence of 

finite conductivity of plasma in presence of neutrino beam. It becomes evident from the general dispersion 

relation that purely transverse waves with wave vectors perpendicular to both the background magnetic field 

and the perturbed velocity ((k⊥B0 and k⊥V1) remain unaffected by the presence of neutrino beams in a 

finitely conductive plasma. In such cases, the dispersion relation simplifies to  𝜔2 = k2𝑉𝐴 , indicating that 

Alfven waves are not influenced by neutrino beams. However, magnetosonic waves are rendered unstable in 

the presence of neutrino beams within finitely conductive plasma. The angles between the wave vector and 

the background magnetic field, as well as the angle between the wave vector and the perturbed plasma fluid 

velocity, play crucial roles in determining the various propagation modes of these waves 
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