ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

FACE RECOGNITION USING OPENCY

1 Ninad Sakhare, ²Amit Panchabhai, ³ Mangesh Ganvir, ⁴ Kunal Wani, ⁵ Rajat Thelkar

¹Computer Science And engineering (of Affiliation) Rajiv Gandhi College Of Engineering And Research(of Affiliation) Nagpur, India

²Computer Science And engineering (of Affiliation) Rajiv Gandhi College Of Engineering And Research(of Affiliation) Nagpur, India

³Computer Science And engineering (of Affiliation) Rajiv Gandhi College Of Engineering And Research(of Affiliation) Nagpur, India

4Computer Science And engineering (of Affiliation) Rajiv Gandhi College Of Engineering And Research(of Affiliation) Nagpur, India

⁵Computer Science And engineering (of Affiliation) Rajiv Gandhi College Of Engineering And Research(of Affiliation) Nagpur, India

Abstract: Intel's OpenCV is a free and open-access image and videotape processing library. It's linked to computer vision, like point and object recognition and machine literacy. This paper give the main features, OpenCV modules and OpenCV grounded on Python. Apart from it gives common OpenCV classifiers and operations used in these operations like face recognition, image processing. Eventually, we bandy some erudite reviews of OpenCV operations in the fields of computer vision similar as face recognition, or recognition of facial expressions similar as sadness, wrathfulness, happiness, or recognition of the gender of a person. Keywords - OpenCV, FaceRecognition. Face Detection, Processing library, Facial Expression.

I.INTRODUCTION

In the past ten years' rising interest in computer vision. Face finding and identification have advanced thanks to the consistent doubling pace of computing power every 13 months.one of the better and more successful operations of image analysis and algorithm grounded comprehension has gone from being esoteric to being a major topic of inquiry in computer vision. Because of the problem's inherent nature, computer vision is not only being researched as a field of computer wisdom but also as a subject of cerebral and neuroscientific studies. This is largely due to the widespread belief that developments in computer image processing and understanding exploration will provide insight into how our brains function and vice versa. The author has suggested creating an infographic to address the widespread interest and curiosity in the subjecta procedure based on a detailed examination of a person's facial features that would grant a stoner access to a specific equipment. The open source computer vision design from Intel, OpenCV, and the Microsoft.NET framework will be used to create this operation.

II. BACKGROUND

The OpenCV concept, which was first publicly unveiled in 1999, was an Intel Research initiative to enhance CPU intensive operations, 3D screen walls, and a number of devices that include actual time shaft dogging. The Processing Collection Team at Intel and a number of improvement professionals from Intel Russia are the key contributors to the design. The design's aspirations in the early days of OpenCV were to:

- Improve visual exploration by providing optimised law for basic vision structure.
- Make movable, enhanced law free available with a licence that didn't require the law to be open or free in order improve visiongrounded accessible operations.

III. AIM AND OBJECTIVE

Face Recognition using OpenCV(Open Computer Vision) Face recognition and Fa ce discovery using the OpenCV. The face recognition is a fashion to identify or corroborate the face from the digital images or videotape frame. A human can snappily identify the faces without important trouble. It's an royal task for us, but it's a delica 2 te task for a computer. The main end and ideal of the Open Face programming language in the deep literacy sector to provide or construct a system that will employ the computer's camera or a system that would describe and celebrate a person's face or the face of an existing person. The main goal of this design is to provide or create a system that uses the computer's camera to recognise and celebrate a person's or object's face using OpenCV, also known as the deep literacy programming language known as O 2 pen Face. The key is to create or construct a system that utilises the computer's camera or one that can recognise and honour the person's or existent's face using the openCV language.

3.1 Motivation

Face recognition uses an incoming image to search a database of training images for multiple instances of the same face. Making ensuring that this process is carried out in real-time is challenging because not all biometric face recognition software suppliers have this capability.

3.2 Review of Literature

The most natural kind of face identification is likely ace recognition, which is based on the architectural aspects of a face. In (Kanade 73), one of the earliest automatic face identification systems was presented. Marker points, such as the placement of the eyes, nose, and cognizance, were utilised to create a point vector, which also included the distance and angle between the points. Euclidean distance measurements between the point vectors associated with an enquiry and an image serving as a reference were used to conduct the recognition. This section provides a summary of the primary techniques employed in the face recognition system, which mostly relate to the frontal face of living things. [Bru92] contained some of the most basic work on geometric identification of faces. The usage of a 22-dimensional point vector and tests on big Datasets have demonstrated that geometrical characteristics may not be sufficient for recognition of faces. Among the patterns are neural networks, hidden Markov models, architectural face matching, and pattern matching. One of the most widely used methods for face recognition and discovery, which are frequently referred to as the primary factors in precise words, is Eigenface. The Eigenfaces system, which was explained in (TP91), approached face identification holistically. A person's facial picture is a point in an extremely dimensional picture space that is set up as a lessen-dimensional representation, enabling bracketing simple. Star element analysis is used to build up the lower-dimensional subspace and identify the axes that have the most friction. Although this type of metamorphosis is ideal in terms of reconstruction, it ignores any class markers. Consider a scenario where the resistance is caused by outside sorces. Make it light. A bracket becomes unsolvable because the axes with the most friction do not invariably carry any discriminational data at each. The eigen vectors are arranged in descending order to reflect various degrees of face variation. The majority of face recognition and discovery technologies use neural networks. A single caste of an ANN (artificial neural network) was employed for face identification, demonstrating adaptability in crucial face recognition systems. In neural networks, a double caste of WISARD is used for face verification. Another method for facial recognition is graph matching. Graph matching can be used to construct formulas for both face and object recognition by optimising a matching function. former Markov The method used to identify human faces is models, chaotic modelling of irregular vector time series based on the HMM Model separates faces into portions based on the eyes, nose, cognizance, and so on. Face recognition and correct identification are 87 percent precise because it consistently delivers an elegant and suitable choice of face discovery using stored datasets. Otherwise, the suitable model exposes the identification of the face. Geometrical point matching refers to fashion based on the geometric patterns of the face. The geometrical face arrangement provides sufficient data to assist face identification and recognition systems. This is one of the most prevalent methods for locating and recognising faces. This system seemed to generate favourable outcomes. One approach of encoding the test image as a template matching is used to create a two-dimensional image. An array of variables with only one template indicating the full face can be contrasted via Euclidean distance. This technique can also employ many face templates from different perspectives to portray a single face. The Face Registry

AT&T Facedatabase

Facedatabase by AT&T The AT&T Facedatabase, commonly known as the ORL Database of Faces, has ten different photos for each of the 40 different subjects it features. For some subjects, the photos were taken at various times with changing lighting, facial emotions (such as wide-open eyes or a frown), and face details (such as specs or no specs). anterior position (with some side movement tolerated)

Yale Facedatabase A

Additional name: Yalefaces Although the AT&T Facedatabase is a fairly simple database, it is good for original tests. Other algorithms are unlikely to significantly improve upon the 97 recognition rate of the Eigenfaces system. The lighting (centre, left, and right lights), the facial expressions (happy, normal, sad, sleeping, shocked, wink), and the specs (specs, no-specs) all vary.

Exteneded Yale Facedatabase B

38 different people's photos can be found in the Extended Yale Facedatabase B's cropped interpretation. The photos in this database are almost completely uniform in terms of emotion and occlusion, with a concentration on lodging features that are resistant to illumination. I surmise that this dataset is too big for the experiments I do in this document. For preliminary testing, utilise the AT&T Facedatabase. In order to test the performance of the Eigenfaces and Fisherfaces systems under extreme lighting variations, a first interpretation of the Yale Facedatabase B was utilised in (BHK97). The same arrangement was employed in (Lee05) to capture 16128 photos of 28 individuals. The two datasets were combined to create the Extended Yale Facedatabase B, which is presently known.

3.3 Related Work

Eigenface

The high dimensionality of the visual representation that is presented to us is a concern. An image with pixels used to be in adimensional image space since two-dimensional grayscale images gauge a-dimensional vector space. Are all boundaries conversely beneficial to us? Only when there is data friction can we make a decision, hence we are searching for criteria that take the most information into account. Karl Pearson (1801) and Harold Hotelling (1933) jointly proposed the star element analysis (PCA) to convert a number of potentially identified variables into a smaller set of uncorrelated variables. The concept is that a highdimensional dataset is commonly defined by variables that have been found, thus only a large number of useful bounds consideration for maximum of the knowledge. The PCA algorithm identifies the top factors—or directions—with the highest levels of friction in the data..

OPENCV

Open CV (Open Source Computer Vision collection) is a collection of programming tools particularly designed for computer vision that operates in actual time. It was first developed by Intel and later on funded by Willow Garage and Itseez (a corporation Intel owns).later acquired). The library is free to use and universal thanks to the Apache 2 Licence for freely available software. Beginning in 2011, OpenCV has hardware acceleration for real-time operations.

3.4 Problem Statement

This program uses the OpenCV library to descry faces in a live sluice from webcam or in a videotape train stored in the original machine. This research detects faces in real time and tracks it. Finding a large amount of data of the same face in a set of training photographs in a database from the live image is the perfect scenario for face recognition. The main challenge is that not all biometric facial recognition software suppliers can offer this process in commodity, real-time. The main goal is to provide or create a system that will utilise the camera of the 2 computer or a system that will describe and celebrate the person's face or the face of the real world utilising an OpenCV tool.

3.5 METHODOLOGY

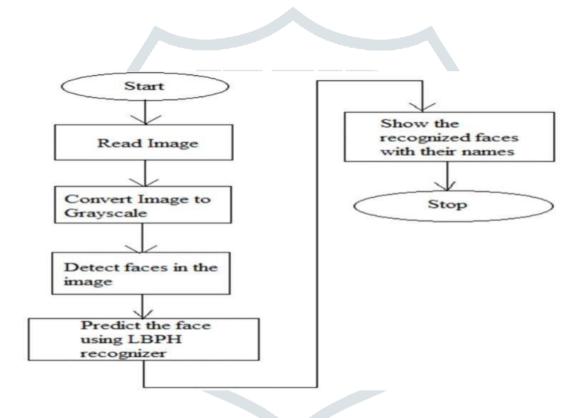


Fig3.5.1: Flow-chart of the methodology used for Face Detection and Recognition

3.6 PROPOSED ARCHITECTURE OF SYSTEM DESIGN

We must first create the datasets in order to develop this procedure. When the image quality is good enough, whole new face recognition system processes can be implemented. These tasks are carried out using the Python programme "python encode_faces.py". The dataset that can be accessed within "encodings.py" is used as the input. The system will have an exactness format that will allow for face embedding for each and every face. Second, a file called "recognize_faces_images.py" can include all the strategies and desired methods for identifying a person's face from the dataset's provided image. The Python command "python recognize_faces_image.py- encodings" declares the given file to be dead. We'll crop or rotate the picture for you. vicinity to the desired outcome for getting the desired result. Together with the OpenCV libraries, this classifier can improve the outcome or contribute to the face recognition system.icinity to the desired outcome for getting the desired result. Together with the OpenCV libraries, this classifier can improve the outcome or contribute to the face recognition system [20].

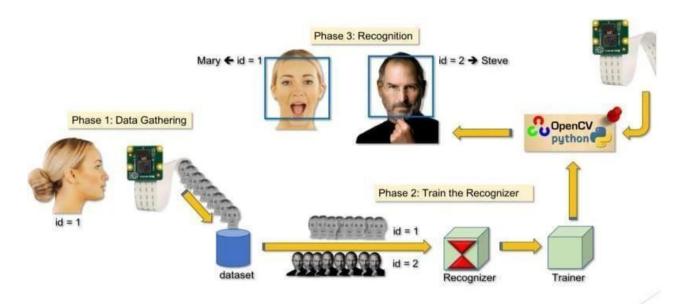


Fig3.6.1: System Design

3.7 S/W & H/W REQUIREMENTS

- Operating System: Android 4.0 or higher, Windows 7 or higher
- Browser: Google Chrome
- Language: Python,
- √ 4 GB RAM (At least)
- 90 GB HDD
- Dual Core processor
- CD-ROM). VGA resolution monitor

3.8 Methodology

The proposed algorithm surpasses the capabilities of all existing technologies because it achieves the special functional features by making the proposed model work with various skin tones, using it on images of low quality, detecting faces with eyeglasses, and locating the facial commadore. The suggested method is a novel and straightforward model approach built on an amalgamation of techniques and methodologies in a shared pool supported by the Viola-Jones object detection [18], [19] frame algorithm.

Modules / Stages of Project

For creating system of Face Recognition, we must work on 3 very distinct phases: I.Face Detection & Information assembling II.Recognizer Training

III.Face Recognition

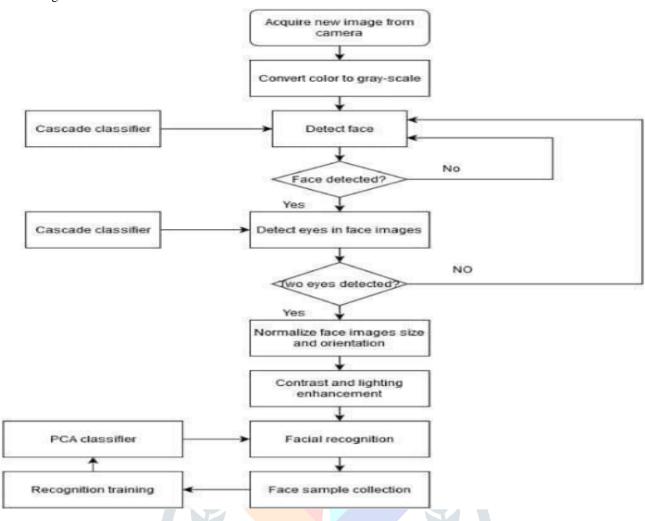


Fig3.8.1 :Modules and stages of project

3.9 Result

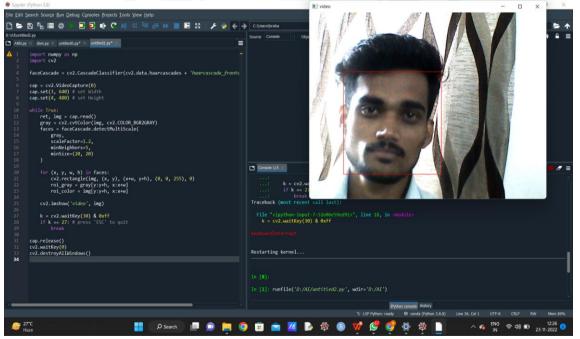


Fig3.9.1: Detection of face

After running the code successfully the camera detected the face as shown in image.

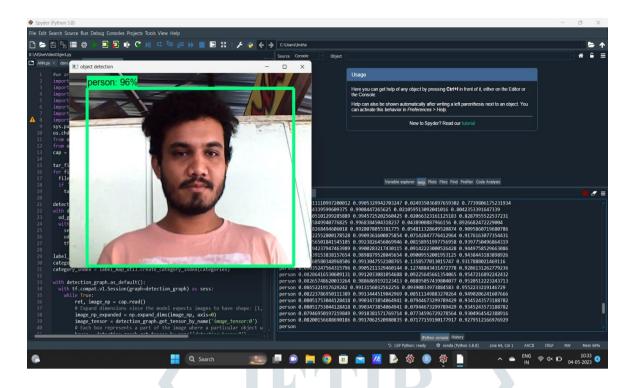


Fig3.9.2: face recognition

•In This image face is recognised as a person with the accuracy of 96 %.

IV. CONCLUSION

Face recognition systems are currently linked to several major technological businesses, which streamlines the procedure. Thanks to the accessibility of Python programming and OpenCV, it serves as a simpler and more useful instrument or system that can be constructed by any individual suitable to their demands. The suggested solution will be useful to many individuals because it is inexpensive and stoner-friendly. Python and OpenCV can be used to build a facial recognition system for applications with a colourful interface. Face Recognition (FR) is becoming into a more significant research subject as a result of the numerous applications in the commercial and judicial sectors. Conventional FR methods based on Visible Diapason (VS) encounter issues including object lighting, position variations, even facial masks.

REFERENCES

[1] [AHP04] (1, 2, 3) Ahonen, T., Hadid, A., and Pietikainen, M. Face Recognition with Local Binary Patterns. Computer Vision -ECCV 2004 (2004), 469-481.

(1, 2, 3, 4, 5) Belhumeur, P. N., Hespanha, J., and Kriegman, D. Eigenfaces vs. Fisherfaces: Recognition Using [2] [BHK97] Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997), 711-720.

- [3] Brunelli, R., Poggio, T. Face Recognition through Geometrical Features. European Conference on Computer Vision (ECCV) 1992, S. 792-800.
- [4] Duda, Richard O. and Hart, Peter E. and Stork, David G., Pattern Classification (2nd Edition) 2001.
- [5] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals Eugen. 7 (1936), 179–188.
- [6] [GBK01] Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J., From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 6 (2001), 643-660.
- [7] Kanade, T. Picture processing system by computer complex and recognition of human faces. PhD thesis, Kyoto University, November 1973
- [8] Martinez, A and Kak, A. PCA versus LDA IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No.2, pp. 228-233, 2001.

- [9] Lee, K., Ho, J., Kriegman, D. Acquiring Linear Subspaces for Face Recognition under Variable Lighting. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27 (2005), Nr. 5
- [10] Messer, K. et al. Performance Characterisation of Face Recognition Algorithms and Their Sensitivity to Severe Illumination Changes. In: In: ICB, 2006, S. 1-11.
- [11] S.Raudys and A.K. Jain. Small sample size effects in statistical pattern recognition: Recommendations for practitioneers. -IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 3 (1991), 252-264.
- [12] Tan, X., and Triggs, B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing 19 (2010), 1635–650.
- [13] Turk, M., and Pentland, A. Eigenfaces for recognition. Journal of Cognitive Neuroscience 3 (1991), 71–86.
- [14] Chiara Turati, Viola Macchi Cassia, F. S., and Leo, I. Newborns face recognition: Role of inner and outer facial features. Child Development 77, 2 (2006), 297-311.
- [15] Wiskott, L., Fellous, J., Krüger, N., Malsburg, C. Face Recognition By Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997), S. 775–779.
- [16] Zhao, W., Chellappa, R., Phillips, P., and Rosenfeld, A. Face recognition: A literature survey. ACM Computing Surveys (CSUR) 35, 4 (2003), 399-458.
- [17] Maliha Khan, Sudesha Chakraborty, Rani Astya, Shaveta Khepra, A Face Recognition and Detection using OpenCV. ICCCIS 2019, IEEE.
- [18] C. Vaidya, P. Yelure, S. Gonnade, R. Mohitkar, T. Burande and U. Sonkawade, "Auto Detection of Personal Protective Equipment on Human," 2023 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 2023, pp. 1-5, doi: 10.1109/SCEECS57921.2023.10062962.
- [19] Chandu Vaidya, Sanket Makode, Kshitij Mahajan, Vinay Shende, Jay Ingle, Jayesh Dhawale, Kalpana Bhure; Wearable obstacle sensing system using internet of things and computer vision. AIP Conference Proceedings 24 April 2023; 2753 (1): 030007. https://doi.org/10.1063/5.0127970
- [20] Tanushree, Dhanashree, Tejswini, Shrutika, Disha, Chandu Vaidya, "Implementation And Comparative Analysis Of Handwritten Character Recognition" International Journal of Engineering Technology, Management and Applied Sciences www.ijetmas.com February 2015, Volume 3 Issue 2, ISSN 2349-4476.