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Abstract— Brain-computer interface (BCI) spelling 

software aids the disabled in their ability to communicate. The 

BCI speller allows patients to communicate without using their 

bodies by translating brain waves into computer commands. 

EEG signals are used by BCI spellers to create letters. You can 

pick from a variety of BCI spellers that use 

electroencephalogram readings. The three main parts of a BCI 

speller system are the paradigm, the data collection 

mechanism, and the signal processing algorithms. Feature 

extraction, feature optimization, and classification algorithms 

are explored alongside BCI speller paradigms in this research. 

Both the benefits and drawbacks of the speller paradigm and 

the machine learning approach are discussed in this article. 

Future BCI speller research may be free of certain limitations. 

Keywords— Brain-computer interface; Motor imagery; 

steady-state visually evoked potential (SSVEP); P300; Machine 

learning 

I.  INTRODUCTION  

Neurological disorder, ALS, and elderly patients use 
brain-computer interface (BCI) systems to communicate [1]. 
Brain signals from participants express their ideas without 
physical activity. EEG, ECoG, NIRS, MEG, fMRI, and EEG 
may assess brain activity [2]. EEG has good temporal 
resolution, but poor spatial resolution compared to fMRI. 
EEG signal, obtained non-invasively, is employed more in 
clinical and research applications. EEG data gathering 
systems are cheaper and more portable, making them more 
practical. Preprocessing, feature extraction, classification, 
and control interface are typical BCI system steps. 

BCI applications have used many GUI and signal 
processing methods in recent decades. Visual speller 
paradigm, feature extraction, and classification methods 
classify them. 

II. BRAIN COMPUTER INTERFACE SPELLER PARADIGMS 

Patients with disabilities are the primary users of BCI 
spellers. The system of letters, numbers, and symbols used to 
spell words is complex. The brain-computer interface (BCI) 
speller system interprets the subject's EEG signal to select 
the appropriate character from the speller paradigm and 
generate the user's control command. EEG signals are used 
in a variety of applications, including motor imaging (MI), 
steady-state visually evoked potential (SSVEP), P300, and 
hybrid speller systems [3]. While [3] focuses solely on BCI 
speller paradigms, this study examines the entire BCI 
system. The concepts of the BCI speller paradigm and EEG 
signal processing are explored in this work. 

A. Motor Imagery Speller 

MI is a mental expression of motor behavior. Patients 
with motor impairments can use MI-based BCI systems for 
non-muscular communication. A spellchecker based on MI 
doesn't need any outside input to do its job. Characters in [4] 
can be hexed with Hex-O-Spell. In Fig.1, a circle is 
surrounded by six hexagons, each of which has an arrow 
pointing in its direction. The arrow is guided by your right 
foot and your imagination. There are a total of 30 objectives 
on this spellchecker (26 letters + 4 punctuation), split among 
six hexagons at a rate of five each hexagon. With Hex-O-
Spell, you can cast a spell in two simple steps. The first step 
is for the subject to select the appropriate hexagon. The five 
characters can now be arranged into a hexagon. Step two 
involves the participant selecting the role. The repetition of a 
letter or sound forms a word. MI is a mental expression of 
motor behaviour. Patients with motor impairments can use 
MI-based BCI systems for non-muscular communication. A 
spellchecker based on MI doesn't need any outside input to 
do its job. Characters in [4] can be hexed with Hex-O-Spell. 
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In Fig.1, a circle is surrounded by six hexagons, each of 
which has an arrow pointing in its direction. The arrow is 
guided by your right foot and your imagination. There are a 
total of 30 objectives on this spellchecker (26 letters + 4 
punctuation), split among six hexagons at a rate of five each 
hexagon. With Hex-O-Spell, you can cast a spell in two 
simple steps. The first step is for the subject to select the 
appropriate hexagon. The five characters can now be 
arranged into a hexagon. Step two involves the participant 
selecting the role. The repetition of a letter or sound forms a 
word. 

Initial Selection Stage two screening 

 

Fig.1. Motor imagery speller Hex-O-Spell paradigm [4] 

B. SSVEP (Steady-state visual evoked potential) speller 

 When the subject stares at stimuli with a constant 
frequency, SSVEP appears in the EEG signal. 
Correspondence between stimulus frequencies and EEG 
waves. Character recognition using the SSVEP-based speller 
paradigm is depicted in Fig. 2. The BCI speller makes use of 
an SSVEP-based hierarchical structure [6]. The individual 
has a one-stage spelling process for frequently used 
characters and a two-stage process for other characters. The 
user can immediately start reaping the benefits of the BCI 
speller's SSVEP-based technology. The SSVEP speller tyres 
and stresses the subject by using a wide range of stimulation 
frequencies. Reduced accuracy in user classifications [7]. 
Brightness and duty cycle of visual stimuli are critical to 
character recognition [8]. The SSVEP speller does poorly in 
situations where the stimulus frequencies are harmonics. 

 

Fig.2.SSVEP speller row-column paradigm [5]. 

C. Event-related potential (P300 speller) 

Farwell and Donchin presented a P300-based character 
recognition speller in 1988 [9]. P300 target emerges in EEG 
wave when subject concentrates on random stimuli. The 
SSVEP-based speller fatigues more than the P300-based 
speller. Like MI-based spellers, the P300 speller does not 
require calibration or subject training. P300 speller 
paradigms involve row-column (RC), single character (SC), 
region-based (RB), and text on 9 keys (T9) [10–14]. 

Because of its user-friendly interface, the RC paradigm 
has become the standard for BCI spellers [10]. 66 and 88 
steller paradigms are both possible. A 6x6 speller paradigm 
is depicted in Fig.3a. Spelling letters, numbers, and symbols 
are randomly amplified in rows and columns of the speller 
matrix. Pay attention to the individual. P300 in the EEG 
wave happens when the targeted character row or column 
becomes more prominent. That's why the P300 might tell 
you where in the row or column a character is located. In the 

end, we pick the necessary letter from a grid made up of 
letters from every row and every column. 

The SC paradigm also makes use of a character matrix, 
like the RC one (Fig.3b). In the SC paradigm, a single trait 
becomes more pronounced [11]. As the SC paradigm has a 
lower flashing probability of the desired character, P300 is 
improved by enhancing a single character randomly with a 
delay between flashes. The SC paradigm has a more gradual 
flash than the RC one. To complete a round or epoch, a 6 
6RC speller needs only 12 intensifications, while a 6 6SC 
speller needs 36. 

Fazel-Rezai et al. presented a region-based (RB) P300 
speller in 2009 [12]. Fig.4 shows a seven-region RB speller. 
Regions contain characters in this speller. RB spellers 
identify characters twice. First, the character-containing area 
is chosen. Step 2 enlarges the specified region and recognises 
the required character. Compared to the RC paradigm, the 
GUI architecture is sophisticated. In [13], a simple RB 
speller divides thirty characters into five areas in the initial 
step. The second step enlarges the zone and selects a 
character from six. 

 P300-based character recognition uses a T9 speller 
paradigm [14]. Here, the speller matrix dimension is 3 ×3and 
each location comprises a group of characters. Spellers 
include word dictionaries. The subject spells a few starting 
characters of the word until the list of proposed words falls 
below the threshold. In Fig.5, the screen number selects the 
word. GeoSpell optimises covert visual attention character 
recognition [15,16]. 

D. Hybrid spellers 

Multiple features or signals are used in a hybrid spelling 
procedure. The hybrid speller combines multiple BCI 
methods either in a sequential fashion or simultaneously. 
[17] defines a sequential hybrid system using P300 and 
SSVEP for vehicle destination attributes. Both the P300 and 
SSVEV spellers agree on the final destination. It takes a little 
more time to determine the destination using the sequential 
approach. In [18], a quick speller system is depicted in Fig. 6 
that uses P300 and SSVEP. Spelling the character requires 
looking at both the P300 and SSVEP at the same time. 
System computational load is increased due to dual-signal 
processing. Classification accuracy is enhanced when 
SSVEP is combined with RSSP [19]. In [20], a P300 speller 
based on audio-visual regions is shown to enhance character 
recognition. Human facial expressions are a powerful visual 
stimulator [21]. The efficiency of the system is enhanced by 
this P300/SSVEP hybrid BCI speller. In [22], a hybrid chip-
on-board (COB) BCI paradigm is designed specifically for 
the collection of P300 and SSVEP signals. LEGO robots are 
easily controlled by this fusion of paradigms. 

P300 and SSVEP-based spellers require external visual 
cues, whereas MI-based spellers do not. However, a typical 
motor imagery-based approach takes training, spells slowly, 
and tires the patient. Frequencies in SSVEP-based spellers 
exhaust users. SSVEP speller performs badly when stimulus 
frequencies are near to harmonics, while P300-based speller 
paradigm uses a single frequency. SS-MVEP-based BCI 
systems reduce user mental fatigue [23]. Hybrid BCI spellers 
employ various BCI paradigms, which fatigues the subject 
and raises computational and system costs. 
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(a) P300 speller row-column paradigm 
[10] 

(b) P300 speller's single-character 
paradigm [ll] 

Fig.3. Various paradigms for P300-based spellers 

 

 

Fig.4. Aregional-based paradigm employed by the P300 speller [12] 

 

 

Fig. 5. A T9 paradigm applied to P300 speller [14]. 

 

 

Fig. 6. P300 and SSVEP signal-based hybrid paradigm [18]. 

III. FEATURE-EXTRACTION APPROACHES 

Extraction of EEG features is essential for the BCI 
system to define the subject's cognitive state. Use just a 
handful of features that stand in for the signal's most 
important aspects for the best results. Better P300-based 
character recognition requires feature extraction. The 
original data is collected or created to provide comparable 
and distinguishing details for various categories. Machine 
learning suggests that even the best classifier could fail to 
recognise a BCI system with insufficient features, so feature 
extraction is essential for BCI applications. The methods of 
extracting features from BCI systems are discussed in 
[24,25]. Features are extracted using a variety of methods, 
including those based on time, frequency, time-frequency, 
and deep learning. 

A. Temporal features 

Temporal variations in the EEG signal are used for 
feature extraction. The amplitude of an EEG signal in the 
time domain is the most fundamental temporal parameter. In 
BCI applications requiring P300 categorization, EEG data 
from multiple channels is combined to form a feature vector. 
This time-domain characteristic [26] is widely used for 
P300-based character recognition. Temporal dynamics of 
EEG signals can also be used for classification [27]. Amax, 
Ap, An, and pp are temporal representations of EEG signals 
[27]. Temporal characteristics are a straightforward 
representation of the temporal variation present in an EEG 
signal. Signal frequency variation cannot be portrayed. 

B. Frequency domain features 

The frequency band or patterns of the EEG signal 

change depending on the subject's task. Mental tasks, such 

as MI or cognitive tasks, used in conjunction with a BCI, 

affect rhythm amplitude [28]. The frequency of stimuli 

affects the SSVEP signals. Narrowband frequency feature 

[5], power spectral density (PSD) feature [29], and band 

power feature [29, 30] are the most fundamental feature 

extraction techniques in the frequency domain. Band-pass 

filters can be applied to EEG signals to extract band power 

information. The power of a signal can be calculated by 

squaring the filtered signal and averaging it over some 

period of time [29]. These features are commonly used in 

motor imagery detection [31]. PSD illustrates the 

relationship between power and frequency. There are two 

ways to determine signal PSD. Transform the signal by 

either squaring its Fourier transform or finding its 

autocorrelation function [32]. CCA demonstrates a 

relationship between stimulus frequency and EEG signal 

[5]. It is possible to get an accurate reading of the SSVEP 

response with CCA. The frequency domain only shows 

changes in the signal's frequency, not its amplitude, over 

time.. 

C. TFD (Time-frequency domain) features 

In the past, BCI systems have mostly gleaned 
information from the time or frequency domains. The time 
and frequency domain information of the EEG is necessary 
for BCI applications. In order to extract time-frequency 
information from EEG signals, BCI applications use STFT 
[33] and WT [34]. The short-time Fourier transform (STFT) 
multiplies the input signal by a small non-zero window and 
then calculates the Fourier transform over that signal. The 
signal was Fourier transformed while this window slid across 
it. Therefore, signal time-frequency information is extracted 
from the frequency domain over a short time period. STFT 
has better temporal resolution than Fourier transform 
because it decomposes the signal with a constant window 
size. The main drawback of STFT is that all frequency bands 
have the same frequency and temporal resolution due to the 
fixed size of the analysis window. However, if the time 
resolution is high, then it will be more interesting. This 
problem is addressed by wavelet analysis. 

In order to handle frequencies in a variety of ways, WT 
uses multi-resolution analysis. This technique is effective at 
pinpointing the source of both low- and high-frequency 
signals with pinpoint accuracy. WT works well for a wide 
variety of signal and image processing tasks. The use of 
wavelets such as the Daubechies, Coiflet, Morlet, bi-scale, 
and Mexican hat in BCI applications has shown encouraging 
results. Although more computationally intensive than time 
or frequency domain features, time-frequency domain 
features provide information in both time and frequency 
domains for the EEG signal. 
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IV. FEATURE OPTIMIZATION TECHNIQUES 

Data mining and machine learning suffer from the "curse 
of dimensionality" [55]. The high dimensionality of EEG 
features causes the classifier model to overfit. A classifier's 
efficiency is diminished when it uses redundant or 
superfluous features. The features of multiple EEG channels 
are combined into a single feature vector. Expanding the 
feature vector. Poor performance of the classification 
algorithm is observed [55] when the size of the training 
sample is small in comparison to the feature dimension. In 
order to address this issue, researchers have turned to various 
feature optimization and feature selection techniques, such as 
principal component analysis (PCA) [56-58], Fisher 
discriminant analysis (FDA) [59], higher order spectral 
regression discriminant analysis (HOSRDA) [60], and 
independent component analysis (ICA) [61]. There are a 
number of other methods used for effective channel 
selection, including sequential floating forward selection 
(SFFS), recursive channel elimination (RCE), binary 
differential evolution (DE), and sparse common spatial 
pattern (SCSP). 

V. FEATURE CLASSIFIERS  

A BCI system's final stage is class identifying 
characteristics [24]. [25,69] provide classification techniques 
for this phase. Unsupervised, supervised, and semi-
supervised classification techniques exist. Unsupervised 
classifier is used to classify unidentified feature sets. Semi-
supervised classifiers combine supervised and unsupervised 
classification, where feature sets are coupled with different 
classifiers. 

A. Semi-supervised 

Semi-supervised classifiers are investigated [74] when 
the data set is insufficient. Unsupervised learning [2] is used 
to improve a classifier model that was trained with the 
training set data. Online semi-supervised LS-SVMs [74] are 
used by P300-based spellers. An example of an adaptive 
semi-supervised classifier is spectral regression kernel 
discriminant analysis (SRKDA) [75], which is used for 
multi-class MI classification. Asynchronous and self-
calibrated BCI classifier systems are developed for online 
character recognition in [16,76].. 

B. Supervised 

Due to the lack of label information in the training data, 
unsupervised and semi-supervised classifiers perform poorly. 
Lack of labelled data makes the classifier's decision 
boundary imperfect, resulting in poor performance. Most 
BCI research uses supervised classifiers. The training data is 
used to build the decision boundary in supervised 
classification [48]. In BCI applications, LDA, MLP-BP-NN, 
and SVM are the most used supervised classifiers. 

To classify information, Fisher's LDA makes use of a 
hyperplane. LDA presumes that classes have similar means 
and variances [77]. LDA classifiers address problems with 
two-class data. The OVR method, where one class is positive 
and the others are negative, is used in conjunction with a 
large number of hyperplanes to solve multi-class problems. 
By maximising the distance between the means of the two 
classes and minimising the interclass variance, LDA uses a 
hyperplane to separate the data [77]. The LDA classifier is 
commonly used in online BCI systems because of its low 
processing cost. LDA has been used in motor imaging and 
P300-based BCIs [17,34,77]. LDA is most effective with 
easily separable data [78]. When the number of features 
exceeds the number of trials, it also struggles. 

MLP-BP-NN is a nonlinear classifier with input, hidden, 
and output neurons [51]. The buried layer processes MLP-

BP-NN input data. Output neurons classify incoming data. 
Back-propagation updates MLP-BP-NN layer weights 
during training. MLP-BP-NN is a versatile multi-class 
classifier with enough neurons and layers. MLP-BP-NN 
classifies two, three, and five BCI tasks [79–82]. 

The MLP-BP-NN classifier is susceptible to the local-
minimum problem, which degrades its performance. The 
selection of hidden layer nodes and the number of hidden 
layers also have a significant impact on classification 
performance, which is another drawback of this classifier. 
SVM is widely used in BCI applications because it provides 
a global and unique solution without getting stuck in local 
minima points, and it can function as a linear or nonlinear 
classifier depending on the kernel function [78,83]. As a 
result of reducing structural risk, SVM is able to generalise 
better than traditional classification methods [84]. Similar to 
LDA, SVM creates hyperplanes out of the feature vector. If 
two hyperplanes have different distances from the nearest 
training sample, then SVM will pick the one with the larger 
margin [58]. Classification of EEG data is accomplished 
with SVM and its variants, such as LS-SVM [83] and 
GSVM [77]. The efficacy of BCI speller systems is 
determined by ITR. ITR in a BCI speller system may be 
improved with the help of 1D-CNN or 3D-CNN [45,46,85-
87]. For SSVEP and SSMVEP signal classifications, [23] 
develops a limited penetrable visibility graph (LPVG) using 
a broad learning system (BLS) that outperforms previous 
methods. 

Signal averaging, a traditional method for improving 
signal-to-noise ratio, can diminish bio-signal-induced EEG 
signal variance (SNR). Ensemble of classifiers minimizes 
classifier variability and improves classification 
performance. Ensemble classifiers increase classifier 
performance [26,45,48,49,51]. 

C. Unsupervised 

Data can be categorised without human oversight using 

features like distance. Instead of using user IDs, the 

computer groups the training data based on its inherent 

patterns [70]. Unsupervised learning cannot provide feature 

classification, even for a small dataset. The iterative 

technique (EM) is used in P300-based character recognition 

[71]. For unsupervised classification of MI signals [72], the 

Gaussian mixture model (GMM) is used. The method of 

BCI used in [73] is unsupervised adaptive sequential EM 

with GMM. 

VI. DATABASE AVAILABLE  

BCI study requires datasets. In-house datasets 

predominate. Table1 highlights a few publicly available 

datasets. 

TABLE I.  POPULAR BCI SPELLER DATASETS 

Sr. No. Name of the Database Subjects 

1 Dataset IIb of BCI competition II [10] 01 

2 Dataset II of the BCI competition III [88] 02 

3 EPFL dataset [89] 09 

4 LINI dataset [90] 030 

 BNCI dataset [11] 010 

VII. CONCLUSION  

 The BCI speller system for character recognition is 

examined in detail in this article. The MI, SSVEP, P300, and 

hybrid BCI speller paradigms are analysed to determine their 

efficacy in character recognition. Several feature extractions, 

feature optimization, and classification methods are 

described for use with the BCI speller system. In this article, 

we look at the benefits and drawbacks of several distinct 
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machine learning algorithms and system architectures. The 

article goes on to detail the challenges currently faced by the 

BCI industry. 
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