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ABSTRACT The state-of-health (SOH) estimation of lithium-ion batteries (LIBs) is of great importance to the safety of systems. In this, a novel 

ensemble learning method is proposed to accurately estimate the SOH of LIBs. The feature is defined as voltage, current, current capacity, 

and discharge capacity are extracted as the key health indicator for the LIBs. The Pearson correlation analysis is performed to select four 

optimal indicators that are used as inputs of the prediction model. A random learning algorithm named extreme learning machine (ELM) is applied 

to extract the mapping knowledge relationship between the health indicators and the SOH due to its fast-learning speed and efficient tuning 

mechanism. Moreover, an ensemble learning structure is proposed to reduce the prediction error of the ELM models. The accuracy and reliability 

of the estimation results are then markedly improved by creating a trustworthy decision-making rule to assess the veracity of the output of each 

individual ELM model and exclude unreliable outputs. The testing results on public data sets show that the proposed method can accurately estimate 

the SOH in 1 ms and is robust to the operating temperature. The lower root-mean-square error (RMSE) is as low as 0.78%. The proposed method 

does not require any additional hardware or downtime of the system, which makes the method suitable for online practical applications.  
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1. INTRODUCTION 

Due to their high energy densities, high nominal voltage, low self-discharge rate, low maintenance requirements, and relatively long lifespans, 

lithium-ion batteries (LIBs) have been used extensively in electric vehicles and energy storage systems. [1], [2]. However, as LIB ages and is 

affected by the working environment, its performance will inevitably decline over time [3]. The unexpected failure may result in emergent 

maintenance and unexpected system shutdown, which can be catastrophic. To achieve a satisfactory performance, it is crucial to precisely evaluate 

the state of health (SOH) of LIBs. The aging of LIB is a very intricate process. It can be generally summarized as the decomposition, precipitation, 

and lithium metal plating of the solid electrolyte interface, which results in capacity reduction and impedance increment [4]. Therefore, the capacity 

and impedance of LIB are two important indicators that can quantify the SOH. Various methods have been reported in recent years for the SOH 

estimate of LIB. Direct measurement methods, model-based methods, and data-driven methods can be used to classify these approaches. Direct 

measurement methods to calculate the capacity or impedance of battery cells based on direct measurements. Both the Coulomb-counting approach 

and the open-circuit voltage method [5] are frequently used to determine a battery's capacity. The internal relationship between the OCV relaxation 

curve and also the ability is used by the open-circuit voltage methodology to estimate the capacity [6]. In [7], the Coulomb-counting method is 

proposed to investigate the nonlinear aging characteristics of LIBs. Additionally, SOH can be detected by measuring the increase in battery 

impedance brought on by electrochemical processes throughout the aging process. The most used technique for determining a battery's impedance 

is electrochemical impedance spectroscopy [8]. In addition to the EIS method, the current pulses and the Joule effect are also applied to measure 

internal resistance [9]. In summary, a direct measurement method usually has less computational complexity but is hard to be implemented online 

and may require additional hardware.  

 
Fig.1: Example figure 
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The model-based methods use the electrochemical mechanism or equivalent electrical circuit to emulate the mathematical or stochastic models of 

the battery degradation phenomenon [10]. One of the model's parameters is the battery's capacity or impedance. The model parameters are identified 

to estimate health. Typically, the analogous model is simulated and the SOH is estimated using the Kalman filter [11], particle filter [12], and dual-

sliding-mode observer [13]. Moreover, a probability density function in [14] is also proposed for estimating the SOH by analyzing the charging 

and discharging data of the battery. 

1. 2. LITERATURE REVIEW 

Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method 

A new method for state of health (SOH) and remaining useful life (RUL) estimations for lithium-ion batteries using Dempster–Shafer theory (DST) 

and the Bayesian Monte Carlo (BMC) method is proposed. This study develops an empirical model based on the way lithium-ion batteries degrade 

physically. Combining sets of training data based on DST allows for the initialization of the model's parameters. BMC then used the output data 

of the model parameters and predicted the RUL based on available data through battery capacity monitoring. The model becomes increasingly 

accurate at forecasting RUL as more data become available. This strategy is described in two case examples.   

Data-driven prediction of battery cycle life before capacity degradation 

Technology development must go more quickly if the lifetime of complicated, nonlinear systems like lithium-ion batteries is to be accurately 

predicted. Diverse aging mechanisms, high device heterogeneity, and changing, working environments continue to be important obstacles. With 

124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions and cycle lifetimes ranging from 150 to 2,300 cycles, 

we create a comprehensive dataset. We employ machine learning techniques to forecast and categorize cells by cycle life using discharge voltage 

curves from early cycles that have not yet shown a capacity decline. Our top models get a 9.1% test error for categorizing cycle life into two groups 

using the first five cycles and a 4.9% test error for forecasting cycle life quantitatively using the first 100 cycles (showing a median increase of 

0.2% from baseline capacity). This research demonstrates the potential for predicting the behavior of complex dynamical systems by combining 

deliberate data production with data-driven modeling.   

Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation mode 

 

Lithium-ion batteries are widely used as power sources in commercial products, such as laptops, electric vehicles (EVs), and unmanned aerial 

vehicles (UAVs). In order to ensure a continuous power supply, the functionality and reliability of lithium-ion batteries have received considerable 

attention. In this study, a battery capacity prognosis approach is created to determine how long lithium-ion batteries will still be useful. A relevance 

vector machine and a conditional three-parameter capacity degradation model make up this capacity prognostic technique. The representative 

training vectors including the cycles of the relevance vectors and the predicted values at the cycles of the relevance vectors are found using the 

relevance vectors that are derived using the relevance vector machine. To fit the prediction values at the cycles of the relevance vectors, a 

conditional three-parameter capacity degradation model was created. Lithium-ion battery remaining useful life is calculated by extrapolating the 

conditional three-parameter capacity degradation model to a failure threshold. To validate the created method, three instance studies were done. 

The findings demonstrate the capability of the established technology to forecast lithium-ion battery health in the future. 

Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives 

     

Lithium-ion batteries decay every time it is used. Degradation brought on by aging is unlikely to be reversed. Lithium-ion battery aging mechanisms 

are numerous and intricate, and they are intricately linked to a variety of interaction aspects, including battery types, electrochemical reaction 

stages, and operating circumstances. We extensively review the mechanisms and analysis of lithium-ion battery aging in this study. On the basis 

of the anode, cathode, and other battery structures, the effects of various internal side reactions on the degradation of lithium-ion batteries are 

studied with regard to the aging mechanism. It is discussed how many environmental elements affect the ageing process, with temperature having 

the biggest influence in comparison to other external factors. Three commonly utilized techniques are covered when it comes to aging diagnosis: 

disassembly-based post-mortem analysis, curve-based analysis, and model-based analysis. While curve-based analysis and model-based analysis 

offer quantitative analysis, post-mortem analysis is typically used for cross-validation. Insights are provided for creating online battery 

aging diagnosis and battery health management in the next generation of intelligent battery management systems on the basis of the difficulties in 

using quantitative diagnosis and onboard diagnostic on battery aging (BMSs). 

3. METHODOLOGY 

Compared with the model-based methods, data-driven methods do not require understanding the electrochemical principles of battery. However, 

many data-driven methods, such as support vector machine (SVM), often suffer from extended training time, heavy computational burden, and/or 

tedious tuning procedures, which reduce the efficiency of SOH estimation. Furthermore, estimation accuracy and reliability are also a concern for 

practical applications. 

 

1. Suffer from extended training time 

2. Heavy computational burden 

3. and/or tedious tuning procedures, which reduce the efficiency 

To overcome the drawbacks of long training time, heavy computational burden, and tedious tuning procedures of some data-driven methods, this 

article proposes a new fast ensemble learning method to estimate the cycling SOH of battery online with only one accessible and correlative health 

indicator. 

1. The proposed method can accurately estimate the SOH in 1 ms and is robust to the operating temperature and load profile.  
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Fig.2: System architecture 

MODULES: 

To implement this project, we have designed the following modules 

1) Upload Lithium CALCE Dataset; using this module we will upload the dataset to the application 

2) Run Pearson Correlation: using this module we run the Pearson formula to calculate important attributes from the dataset and the 

attributes/column names which give a score of 1 will be considered an important attribute 

3) Run Ensemble ELM Algorithm: using this module we will input the above dataset to a group or ensemble of ELM to train a model and then 

perform a prediction of battery health and then check its prediction error rate with the original estimated values to get RMSE 

4) Run Random Forest Algorithm: using this module we will input the above dataset to Random Forest train a model and then perform prediction 

of battery health and then check its prediction error rate with the original estimated values to get RMSE 

5) Run Decision Tree Algorithm: using this module we will input the above dataset to Decision Tree to train a model and then perform a prediction 

of battery health and then check its prediction error rate with the original estimated values to get RMSE 

6) Run SVM Algorithm: using this module we will input the above dataset to SVM to train a model and then perform a prediction of battery 

health and then check its prediction error rate with the original estimated values to get RMSE 

7) Run KNN Algorithm: using this module we will input the above dataset to KNN to train a model and then perform a prediction of battery 

health and then check its prediction error rate with the original estimated values to get RMSE 

8) Run the Linear Regressor algorithm using this module we will input the above dataset to Linear Regressor to train a model and perform a 

prediction of battery health and check its prediction error rate with the original estimated values to get RMSE 

9) Comparison Graph: using this module we will plot RMSE comparison between all algorithms and the algorithm with less RMSE is the better 

one 

ALGORITHMS 

ELM is a fast and robust machine-learning algorithm. The generalized single-layer feed-forward neural network (SLFN) was simply referred to as 

2006–2008. The ELM theory is in favor of the assumption that learning models can be fed by randomness in the selection of input weights without 

any distribution-specific adjustment. An extreme learning machine (ELM) is a training algorithm for single hidden layer feedforward neural 

network (SLFN), which converges much faster than traditional methods and yields promising performance. fig.7 

Random forest is a Supervised Machine Learning Algorithm that is used widely in Classification and Regression problems. It builds decision trees 

on different samples and takes their majority vote for classification and average in case of regression. Fig.8 

Decision trees use multiple algorithms to decide to split a node into two or more sub-nodes. The homogeneity of newly formed sub-nodes is 

increased by sub-node creation. In other words, we can say that the purity of the node increases with respect to the target variable. Fig.9 

A supervised machine learning approach called "Support Vector Machine" (SVM) can be applied to classification and regression problems. 

However, it is mostly used in classification problems. Fig.11 

The k-nearest neighbors (KNN) algorithm is a simple, supervised machine learning algorithm that can be used to solve both classification and 

regression problems. It's easy to implement and understand but has a major drawback of becoming significantly slow as the size of that data in use 

grows. Fig.10 

 

 

4. IMPLEMENTATION 

In this, we are in estimating the state of health (SOH refers to the life of the battery) of lithium batteries by using machine learning algorithms as 

its health is important to the safety of the system. Early prediction of battery health allows humans to replace the battery on time and the system 

can be protected. In the proposed, we are using the Pearson correlation formula to find out important attributes from the dataset and then using an 

Ensemble or group of ELM (extreme learning machines) algorithm to train a model and this model can be used to predict the SOH of the battery. 

Has evaluated the performance of ELM in terms of RMSE error which refers to the error rate of prediction. The lower the prediction error rate the 

better the algorithm. We have compared ELM RMSE with Random Forest, SVM, KNN, decision tree, etc. In all algorithms propose Ensemble 

ELM gives less error rate. 

To implement this project author has used the ‘CALCE Dataset’ which contains battery charging, voltage, battery discharge, etc. by using this 

dataset values we will train all algorithms and compare their performance. Below screen showing dataset details. fig.3 
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Fig.3: Dataset 

5. EXPERIMENTAL RESULTS 

 
Fig.4: Home screen 

 
Fig.5: Lithium Calce dataset loaded 

 
Fig.6: Pearson correlation 
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Fig.7: Ensemble EML algorithm 

 
Fig.8: Random Forest algorithm 

 
Fig.9: Decision tree algorithm 

 
Fig.10: KNN algorithm 
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Fig.11: SVM algorithm 

 
Fig.12: Linear Regressor algorithm 

 

 
Fig.13: Comparison graph 

 

 

6. CONCLUSION 

A new data-driven method based on an ensemble Extreme Learning Machine for (SOH) estimation of (LIBs) is proposed. A health indicator 

extracted from the charging voltage signal is used to reflect the battery’s health due to its strong linear relationship with the (SOH) of the battery. 

Four optimal voltage, current, current capacity, and discharge capacity parameters are integrated as the prediction features of (ELM) according to 

the Pearson correlation analysis. (ELM) is applied as a predictor to learn the knowledge relationship between features and (SOH), due to its merit 

of fast and accurate learning. An ensemble (ELM) learning structure is designed to improve the accuracy and stability of the prediction results. 

Finally, the standard data from (CALCE) are introduced to verify the effectiveness of the proposed (SOH) estimation method. The estimation 

results show that the proposed ensemble (ELM) based data-driven method can accurately and reliably estimate the (SOH) using a health indicator 

extracted from a small voltage range. The proposed (RMSE) value gives a less error rate. 
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