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Abstarct: This study examines the dynamic behaviour of historic, unreinforced masonry buildings' 

exterior walls made of flexible diaphragms that are bent out of plane. Dynamic analyses using a streamlined 

two-degrees-of-freedom model (2DOF) have been used to investigate the effect of diaphragm flexibility on 

the displacement capacity and demand of walls in out-of-plane bending. The wall has been modelled as an 

assembly of two rigid bodies constrained at the top by a spring and joined by an intermediate hinge. The 

damping has been modelled by adding the coefficient of restitution. The 2DOF system's equations of motion 

have been calculated and integrated in time. A set of walls have undergone dynamic analysis using recorded 

accelerogram inputs and a gaussian impulse. In order to compare the responses of the wall that is simply 

supported and the wall that has an elastic spring at the top. 
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1.INTRODUCTION 
 

Out-of-plane wall collapses of old unreinforced masonry buildings are frequent and extremely 

dangerous, even in terms of human life loss, according to observations of the seismic damage done to those 

structures. As a result of the poor links between the many structural elements that characterise historical 

buildings, local collapses frequently occur before global ones. Single components of a building can split 

from the rest of it during earthquakes and frequently behave as completely independent structural 

components. Therefore, it is crucial to research how such systems behave, and in recent years, several 

academics have done just that. Various methods have been suggested, including static, kinematic, or 

dynamic analysis, elasto-plastic, no-tension, or stiff models, however there have only been a small number 

of experimental experiments. been emphasised on the most basic failure mechanisms (parapet wall or 

merely supported wall) because to their easier replication and understanding. However, only recently have 

some analytical and experimental studies (Doherty, 2000; Doherty et al., 2002; Griffith et al., 2003; Griffith 

et al., 2004; Lam et al., 2003; Sorrentino, 2003; Sorrentino, 2008) highlighted the necessity of dynamic 

analysis in order to understand the actual behaviour of walls in actual situations. Housner's work (Housner, 

1963) served as the foundation for the dynamic studies on the They emphasised that out-of-plane collapses 

of walls are mostly caused by an excessive displacement demand as opposed to force or acceleration 

demand, and that static approaches, which concentrate on comparing forces and resistance, are therefore 

unable to capture some special dynamics-related characteristics. Since diaphragms were assumed to be 

rigid, the complexity of the dynamic issue and the number of degrees of freedom were reduced in nearly all 

previous publications that explored simpler hypotheses about how the wall interacts with the rest of the 
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building. When the diaphragms cannot be thought of as rigid, as they are in most historical buildings, the 

inputs to the out-of-plane walls at adjacent floors have different amplitude, phase, and duration. This implies 

that the path of the seismic action from the ground to the out-of-plane walls implies a filtering effect of the 

shear walls and diaphragm response. content of frequency. Instead of using the standard single-degree 

model in this situation, numerous degrees of freedom must be taken into account. Simsir (2004) found that 

there are very few studies that explicitly consider the impact of diaphragm flexibility on displacement 

capacity and demand. In order to examine the dynamic out-of-plane behaviour of a single wall with the 

flexible diaphragm hypothesis, a simple 2DOF model has been constructed by extending various 

formulations suggested by other authors (Doherty, 2000; Sorrentino, 2003; Simsir, 2004). The major 

findings are given after the wall's motion equations were generated and a technique for their numerical 

integration was created. 

 

2.MODEL DESCRIPTION 
 

    To  examine the dynamic out-of-plane behaviour of a single wall with an intermediate hinge and a 

top elastic spring, a simplified 2DOF model has been built. The wall is described as an assembly of two rigid bodies, a 

lower and an upper half, each of which is free to rotate around the intermediate hinge, as illustrated in Fig. 1.1. 

 

 

 
 

Fig.2.1 2DOF model of the wall in out-of –plane bending 

 

In Fig. 2.1 W1 and W2 are the weights of the lower and upper part of the wall, Wd is the 

overburden load from the diaphragm, Kd is the translational stiffness of the spring at the top, that 

simulates the in- plane stiffness of the upper diaphragm and is considered perfectly elastic, q1 e q2 are 

the rotations, respectively of the lower and the upper portion of the wall related to the vertical axis, 

that have been assumed as independent variables. The intermediate hinge has been assumed at the 

mid-height of the wall and the load Wd is supposed to be applied at the middle of the thickness, in 

order to reproduce the hypotheses made by Doherty in his study on the simply supported wall 

(Doherty, 2000) and to compare the results obtained by Doherty with the ones of the present 

study.3.EQUATIONS OF MOTION 

 
  The Lagrange equations have been used to derive the equations of motion for the two degrees of 

freedom system, taking into account the kinetic energy resulting from the translation of the masses and 

the rotation of the two parts of the wall around their respective centroids as well as the potential energy 

resulting from the translational spring at the top and the gravitational loads' contribution. The 

aforementioned figures were computed under the presumption of slight displacements. 

 

   3.1.Geometric possible configurations 

 
 Due to the abrupt change in the point of rotation at the base and intermediate hinges, the equations of 

motion are extremely nonlinear. The passing from one condition to another is defined by an impact at the 

bottom or at the intermediate hinge connected with the shift of the centre of rotation (see Fig. 3.2). There 

are four different conditions, each described by four related sets of equations (see Fig. 3.1). 

  Every time q1 passes through the zero, there is an impact at the bottom and a change of    the centre of 

rotation (O to O’ or O’ to O): similarly, every time q1 =q2, there is an impact at the intermediate hinge 
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Fig 3.1 2Dfmodel of the wall in oyt-of-plane beding 

 

3.2.Energy dissipation: 
 The equations of motion are as follows, assuming that h is the entire height of the wall, g is  the 

acceleration of gravity, W1=W2 since the intermediate hinge is located at the midpoint of the wall, 

and that the clockwise rotations are positive: 

 

 

 

       The coefficients of the mass matrix are reported in Eqn. 3.2: 

 

 The coefficients of the stiffness matrix are reported in Eqn. 3.3: 
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The terms peff,1(t) and peff,2(t) represent the contribution due to the ground acceleration. They are 

reported in Eqn. 3.4: 

 
 

The terms Ai and Bi in Eqn. 3.1 are different in the four conditions: they are expressed in Eqn. 3.5, 3.6, 

3.7, 3.8. 
Condition 1 (q1>0 and q2<q1): 

 

Condition 2 (q1<0 and q2>q1): 

 

Condition 3 (q1>0 and q2>q1): 

 

Condition 4 (q1<0 and q2<q1): 

 

4.NUMERICAL ALGORITHM 

A variable step size Runge-Kutta integration method of fourth- to fifth-order, implemented in Matlab 
ODE-suite ODE45, has been employed in the development of an algorithm for the numerical integration 

of sets of equations of motion in the time domain. Each step of the numerical integration has been 

subjected to a local error control, with suitably low values of the relative tolerance RelTol and the 

absolute tolerance AbsTol (RelTol=10-5 and AbsTol=10-10), respectively. The abrupt change in the sign 

of the resisting moment of the weights W1 and W2 and of Wd about the effective centre of rotation at 

the bottom and intermediate hinges, which corresponds to the abrupt change in the hinge's position, 

causes the strong nonlinearity of the set of motion equations. 
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Eqn. 4.1 and Eqn. 4.2 present the expression of Mq1 and Mq2: Mq1 is the resisting moment about the 

bottom hinge O or O’ (depending on the actual condition) of the self weight W1 of the lower part of 

the wall and of the weights W2=W1 and Wd transferred from the upper to the lower part of the wall at 

the intermediate hinge C or C’; Mq2 is the resisting moment about the intermediate hinge C or 

C’(depending on the actual condition) of the weights W2 and Wd. Ai and Bi are presented in Eqn. 3.5, 

Eqn. 3.6, Eqn. 3.7 and Eqn. 3.8 and represent the resisting moments Mq1 and Mq2 when the 

independent variables q1 and q2 are zero. 

The diagrams of Mq1 in the four conditions are shown in Fig. 4.1 (represented by the green and red 

continuous lines); the diagram of Mq1 in the hypothesis of the stiff behaviour of the wall is represented 

by the blue dotted line. The two purple and yellow lines represent the change from one condition to 

another at q1=0, following the Doherty studies' (Doherty, 2000) suggestion that the stiffness at this point 

be finite rather than infinite. The algorithm then follows these lines rather than the rigid behavior's blue 

lines. The values of q1 at the intersections of the diagrams of Mq1 in the four conditions with the line of 

finite stiffness are represented by the parameters -D12,1, -D34,1, D34,1, and D12,1. changes from 

condition 1 to condition 4 or from The vertical black dotted lines depict the impacts at the intermediate 

hinge, which occur when the ratios of 4 to 1 and from 2 to 3 or from 3 to 2 occur (q1=q2). 

Fig.4.1 Resisting moment Mq1 in the 4 conditions 

 

 

Fig. 4.2 shows the diagrams of Mq2 in the 4 conditions (red continuous lines): the couples of 

conditions 1 and 4, 2 and 3 have the same diagram. Similarly to the diagram of Fig. 4.1 an initial 

finite stiffness is assumed (purple dotted line). The parameters -D12,2, D12,2 are the values of q2 at the 

intersections of the diagrams of Mq2 in the 4 conditions with the line of finite stiffness. Transitions 

from conditions 1 or 4 to conditions 2 or 3 or from conditions 2 or 3 to conditions 1 or 4, 

corresponding to an impact at the intermediate hinge (q1=q2), are represented by the vertical black 

dotted lines, while transitions at q1=0 do not cause any jump in the diagram. 
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Fig 4.2 Resisting moment Mq2 in the 4 conditions 

 

equations of motion of the Eqn. 3.1 until the first event: the algorithm can detect the events at the 

target values of q1 and q2: the integration stops when the variable q1 assumes the values -D12,1, -

D34,1, 0, D34,1, D12,1 or when the variable q2 assumes the values -D12,2, D12,2 or when q1= q2. State 

variables identify the condition corresponding to each time step: the value of these variables at the 

event defines the condition before the event and allows the algorithm to decide which condition to 

assume afterwards and which line to follow in Fig. 3.1 and 3.2. Except for the impact for q1=0, the 

values of the rotations q1 and q2 and the corresponding angular velocities after every event are the 

same detected at the event. These are the new initial conditions of the differential equations that the 

algorithm assumes in order to integrate the appropriate equations, depending on the effective initial 

geometrical configuration of the wall. For q1=0, the rotations after the impact are the same as the 

ones before the impact, while the angular velocities of the lower and upper part of the wall are 

reduced by the restitution coefficient er<1. 

 

     5.RESULTS 

  To verify the numerical approach used in the present work and to compare Doherty's results to those 
obtained with the 2DOF model in the case of a very high value of stiffness of the top spring—in that 

case, the top and bottom absolute displacements of the wall tend to be equal and in phase—an algorithm 

for the integration of the equations of motion of the semi-rigid 1DOF model has been implemented. The 

experimental and analytical findings by Doherty indicated that the 1DOF model created in the present 

work was in good accord with those findings. dynamic studies with recorded accelerogram inputs and a 

gaussian distribution have been carried out on a group of walls, altering the stiffness Kd at the top values 

and researching its impact on the displacement demand. Both the 1DOF and the 2DOF models employ 

the same coefficient of restitution, er=0.86. 

 

5.1.Set of walls 
A set of 3 walls with different characteristics, in terms of maximum resisting force and ultimate 

displacement in the hypothesis of rigid behaviour (see Table 5.1 and Fig. 5.1) has been considered.  

In Table 5.1 b is the thickness, h is the height, W is the self weight of the wall,  is the ratio between 

Wd and W1, Re1 is the rigid threshold resistance and Δu is the ultimate displacement, calculated 

following Doherty formulation (Doherty, 2000; Doherty et al., 2002). 

 

 
Wall b h  W Re1 Δu F0/W Δu/b 

 [m] [m] [-] [KN/m] [KN/m] [m] [-] [-] 

1 0,15 2,5 0 6,622 1,192 0,150 0,180 1,000 
2 0,15 2,5 0,5 6,622 1,639 0,138 0,248 0,917 
3 0,15 2,5 1 6,622 2,086 0,131 0,315 0,875 

 

    Fig 5.1 set a considered wall 
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 5.2.Semi-rigid 1DOF model 
 

The Doherty-proposed semi-rigid 1DOF model has been used in practise. The mid-height 

acceleration-displacement curve for the rigid (blue dotted line) and semi-rigid model is depicted in Figure 

5.2 (red line). The ultimate displacement (u) and the displacements (i) and (ii) in Fig. 5.2 are related to the 

material qualities and the state of deterioration of the mortar joints at the pivot locations, respectively. 

According to Sorrentino's proposed formulations (Sorrentino, 2003), the values of 1 and 2 have been 

assumed, and they are expressed in Eqns. 5.1 and 5.2. 

 

 

 
 

 

Fig.5.2 simply supported wall (1DOF model):mid-height acceleration-displacement curve 

 

 

5.3.Gaussian inputs 
 

 Dynamic assessments of the set of walls have been conducted using Gaussian impulse inputs in 

terms of displacement with durations T1=1 s and T2=2 s and varied maximum amplitudes. In the 2DOF 

model, the stiffness Kd of the spring at the top has been taken into account for 4 different values: 1000 

KN/m, 100 KN/m, 50 KN/m, and 10 KN/m. The displacement time-histories of wall n.1 for the 1DOF 

and 2DOF models are shown in Fig. 5.3 for Gaussian input with amplitude D=40 mm and T1=1 s: When 

Kd is increased, the response of the 2DOF model often replicates the response of 

 the top displacement s2 gets near to zero in the 1DOF model. The top displacement s2 grows as Kd 

decreases. The In the 1DOF model, rotations q1 and q2 that were in phase opposition become more 

uncoupled and autonomous. When Kd=10 KN/m is reached, the mid-height displacement s1 starts to 

decline after increasing from Kd=1000 KN/m to Kd=50 KN/m. When Kd is that number, top 

displacement s2 grows to be larger than mid-height displacement s1, then s2 and s1 start to phase with 

one another. 

 

   Maximum displacement |Δ|max 

Wal

l 

Impuls
e 

Impulse 1DO

F 

2DO
F 

duratio
n 

amplitu
de 

Kd=1000 
KN/m 

Kd=100 N/m Kd=50 KN/m Kd=10 N/m 

  s1 s1 s2 s1 s2 s1 s2 s1 s2 

 [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] 

1 T1=1 s 0,040 0,064 0,066 0,002 0,069 0,021 0,073 0,040 0,053 0,085 
2 T1=1 s 0,040 0,040 0,613 0,003 0,093 0,036 0,058 0,047 0,033 0,073 
3 T1=1 s 0,050 0,033 0,068 0,008 0,056 0,056 0,034 0,063 0,030 0,053 

 

Table 5.2. Gaussian input: maximum mid-height and top displacements s1 and s2; comparison 

between 1DOF and 2DOF results 

 

Table 5.2 shows the maximum displacements s1 and s2 of walls n.1, 2 and 3 for Gaussian impulse 

inputs with duration T1=1 s and different amplitudes: the trend described for wall n.1 in Fig. 5.3 is 
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confirmed. Increasing the value of Kd the top displacement s2 becomes close to zero, while the mid- 

height displacement s1 increases until a specific value of Kd and then diminishes, so that s2 becomes 

greater than s1. With a significant overburden load (wall n.3) s1 decreases while Kd gets smaller. The 

trend for Gaussian inputs with T2=2 s is similar to the one with T1=1 s. 

 

 

 
 

Fig.5.3  Wall n.1: displacement time-histories for 1DOF and 2DOF models with different values 
of     Kd; s1=mid-height displacement, s2=top displacement; gaussian input with amplitude D=40 mm 

and duration T1=1 s 

5.4.Recorded accelerogram inputs 

To conduct dynamic analysis on the three walls, 6 recorded accelerograms have been used as 

input. The properties of the records are described in Table 5.3.For the value of Kd = 500 KN/m, the 

response of the 2DOF model tends to reproduce the response of the 1DOF model, even better than for 

Gaussian inputs, as shown in Fig. 5.4, which scales the displacement time histories of wall n.1 for the El 

Centro record at 50% of PGA.  

Table 5.3. Recorded accelerograms used in the analyses 
Event Year Station Id. Compone

nt 
PGA 

Imperial Valley 1940 El Centro Elce S00E 0.348 g 
Friuli 1976 Tolmezzo tolm 270 0.315 g 
Irpinia 1980 Sturno stur 270 0.358 g 
Loma Prieta 1989 Capitola loma 000 0.529 g 
Northridge 1994 Sylmar Hospital Sylm 360 0.843 g 
Kobe 1995 KJMA kjmh 000 0.821 g 

 

When Kd is decreased, the top displacement s2 grows and is significantly magnified at Kd=50 KN/m 

before becoming quite three times the value at Kd=500 KN/m. The top displacement s2 exceeds the mid-

height displacement s1 for Kd=5 KN/m. 
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Figure 5.4 Wall n.1: displacement time-histories for 1DOF and 2DOF models with different values of 

Kd;s1=mid-height displacement, s2=top displacement; El Centro recorded accelerogram scaled to 50% of 

PGA 

 

Table 5.4. Recorded accelerograms: maximum mid-height and top displacements s1 and s2; 

comparison between 1DOF and 2DOF results 
Wall 

1 
Maximum displacement |Δ|max 

 

Accelerogra

m 

 

% 

PGA 

1DOF 2DO
F 

 Kd=500 KN/m Kd=50 KN/m Kd=5 K/m 

s1 s1 s2 s1 s2 s1 s2 
[m] [m] [m] [m] [m] [m] [m] 

elce 50 0,043 0,043 0,004 0,137 0,019 0,050 0,109 
tolm 100 0,094 0,094 0,004 0,114 0,036 0,048 0,095 
stur 80 0,053 0,048 0,005 0,035 0,023 0,082 0,074 
loma 50 0,031 0,034 0,004 0,039 0,026 0,056 0,078 
sylm 35 0,045 0,047 0,005 0,057 0,028 0,077 0,082 
kjmh 20 0,063 0,068 0,004 0,046 0,035 0,060 0,114 

 

The maximum displacements s1 and s2 of wall n.1 for recorded accelerogram inputs scaled at 
various percentages of PGA are shown in Table 5.4; this partially confirms the trend shown in Fig. 5.4, 

even though it is less regular for various ground motions. The top displacement s2 approaches zero as 

Kd is increased, but the mid-height displacement s1 does not exhibit a consistent pattern across all 

samples. When Kd is high, the wall collapses due to an overwhelming demand for mid-height 

displacement, similar to how a simply supported wall (1DOF) collapses. Similar to a parapet wall, when 

Kd is small, s2 exceeds s1 and collapses due to an excessive demand for top displacement. Results for 

wall number two. and n. 3 are similar to the ones obtained for wall n. 1 

5.5Observations 
    To more thoroughly evaluate the impact of diaphragm flexibility on the out-of-plane 

behaviour of walls, an expansion of the current study will be required. In any case, it is already 

conceivable to point out that, depending on the input and wall parameters, ignoring diaphragm 

flexibility might result in either an excessively cautious underestimating of the displacement demand on 

the wall or a considerable and dangerous overestimation. The displacement demand is actually greatly 

influenced by the diaphragms' flexibility, which makes it seem like a crucial parameter to take into 

account in dynamic assessments of the out-of-plane behaviour of unreinforced masonry walls. 
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6.CONCLUSIONS 
 The goal of the current work is to apply several formulations and ideas that have been previously put 

forth by other authors for the parapet wall and the simply supported wall to the case of out-of-plane bending 

of walls in structures with flexible diaphragms. Investigation of the results of dynamic analyses on a set of 

walls using recorded accelerogram inputs or Gaussian impulses revealed that the stiffness of the diaphragm 

significantly affects the displacement demand of the walls, despite the apparent impossibility of defining a 

general rule to predict such demand without conducting dynamic analyses. The model and numerical 

algorithm's underlying hypotheses need to be tested experimentally in order to be confirmed. Future 

advancements may include models of the inelastic behaviour of the spring at the top and the definition of a 

3-degrees-of-freedom model that includes the in-plane walls. 
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