RADIO MEAN Gd-DISTANCE NUMBER OF SOME BASIC GRAPHS

${ }^{1}$ K. John Bosco \& ${ }^{2}$ R. Adlin Queen
${ }^{1}$ Assistant Professor, Department of Mathematics, St. Jude's College Thoothoor, India.
${ }^{2}$ Research Scholar (Reg. no:23113232092004), Department of Mathematics, St. Jude's College Thoothoor, India.

Abstract

A Radio Mean Gd-distance labeling of a connected graph G is an injective map f from the vertex set $\mathrm{V}(\mathrm{G})$ to N such that for two distinct vertices u and vof G, $d^{G d}(u, v)+\left\lceil\left.\frac{f(u)+f(v)}{2} \right\rvert\, \geq 1+\operatorname{diam}^{G d}(G)\right.$, where $d^{G d}(u, v)$ denotes the Gd-distance between u and v and $\operatorname{diam}^{G d}(G)$ denotes the Gd -diameter of G . The Radio Mean Gd-distance number of $\mathrm{f}, r n^{G d}(f)$ is the maximum label assigned to any vertex of G . The Radio Mean Gd -distance number of $\mathrm{G}, r m n^{G d}(G)$ is the minimum value f of G . In this paper we find the radio mean Gd-distance number of some basic graphs.

Keywords: Gd-distance, Radio Mean Gd-distance, Radio mean Gd-distance number.

1. INTRODUCTION

By a graph $G=(V(G), E(G))$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively.

The Gd-distance was introduced by V. Maheswari and M. Joice Mabel. If u and v are vertices of a connected graph G, Gd-length of a u-v path is defined as $d^{G d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)$. The Gd-radius, denoted by $r^{G d}(G)=\min \left\{e^{G d}(v): v \in V(G)\right\}$. Similarly the Gd-diameter $d^{G d}(G)=\max \left\{e^{G d}(v): v \in V(G)\right\}$. We observe that for any two vertices u and v of G we have $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq d^{G d}(u, v)$. The equality holds if and only if u, v are identical. If G is any connected graph, then the $d^{G d}$ distance is a metric on the set of vertices of G. We can check easily that for any non-trivial connected graph, $r^{G d}(G) \leq d^{G d}(G) \leq 2 r^{G d}(G)$. The lower bound is clear from the definition and the upper bound follows from the triangular inequality.

Radio mean labeling was introduced by R. Ponraj et al [17,18]. A radio mean labeling is a one to one mapping f from $\mathrm{V}(\mathrm{G})$ to \mathbb{N} satisfying the condition, $d(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}(G)$ for every $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$. The span of labeling f is the maximum integer that f maps to a vertex of G . The radio mean number of $\mathrm{G}, \operatorname{rmn}(G)$ is the lowest span taken over all radio mean labelings of the graph G .

In this paper, we introduced the concept of radio mean Gd-distance labeling of a graph G. Radio mean Gd-distance labeling is a function f from $\mathrm{V}(\mathrm{G})$ to \mathbb{N} satisfying the condition
$d^{G d}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}^{G d}(G)$, where $\operatorname{diam}^{G d}(G)$ is the Gd-distance diameter of G. A Gd-distance radio labeling number of G is the maximum label assigned to any vertex of G . It is denoted by $r m n^{G d}(G)$.

Radio labeling can be regarded as an extension of distance-two labeling which is motivated by the channel assignment problem introduced by W. K. Hale [6]. G. Chartrand et al.[2] introduced the concept of radio labeling of graph. Also G. Chartrand et al.[3] gave the upper bound for the radio number of path. The exact value for the radio number of path and cycle was given by Liu and Zhu [9]. However G. Chartrand et al.[2] obtained different values for them. They found the lower and upper bound for the radio number of cycle. Liu [8] gave the lower bound for the radio number of Tree. M. M. Rivera et al.[22] gave the radio number of $C_{n} \times C_{n}$, the Cartesian product of C_{n}. In [4] C. Fernandez et al.found the radio number for Complete graph, Star graph, Complete Bipartite graph, Wheel graph and Gear graph. In this paper, we determine the radio mean Gd-distance number of some basic graphs.

2. MAIN RESULTS

Theorem 2.1.

The radio mean Gd-distance number of a complete graph $K_{n}, r m n^{G d}\left(K_{n}\right)=n$

Proof.

For any complete graph $K_{n}, d^{G d}\left(v_{i}, v_{i+1}\right)=2 n-1$ for $1 \leq i \leq n-1$
so the $\operatorname{diam}^{G d}\left(K_{n}\right)=2 n-1$.
The radio mean Gd-distance condition is $d^{G d}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}^{G d}(G)=2 n$
Now, fix $f\left(v_{1}\right)=1$

$$
d^{G d}\left(v_{1}, v_{2}\right)+\left\lceil\frac{1+f\left(v_{2}\right)}{2}\right\rceil \geq 2 n
$$

$1+f\left(v_{2}\right) \geq 0$, therefore $f\left(v_{2}\right)=2$
$\therefore f\left(v_{i}\right)=i, 1 \leq i \leq n$
Hence, $r m n^{G d}\left(K_{n}\right)=n, \forall n$

Theorem 2.2.

The radio mean Gd-distance number of a star graph, $r m n^{G d}\left(K_{1, n}\right) \leq 2 \mathrm{n}-3, \mathrm{n} \geq 4$

Proof.

Let $\mathrm{V}\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set, where v_{0} be the central vertex and $\mathrm{E}\left(K_{1, n}\right)=\left\{v_{0} v_{i} ; 1 \leq i \leq n\right\}$ be the edge set
Then, $d^{G d}\left(v_{0}, v_{i}\right)=n+2 ; 1 \leq i \leq n$ and $d^{G d}\left(v_{i}, v_{j}\right)=4 ; 1 \leq i, j \leq n ; i \neq j$
So, $\operatorname{diam}^{G d}\left(K_{1, n}\right)=n+2$
Without loss of generality, $f\left(v_{0}\right)<f\left(v_{1}\right)<\cdots<f\left(v_{n}\right)$
We shall check the radio mean Gd-distance condition
$d^{G d}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}^{G d}(G)=n+3$
Fix $f\left(v_{0}\right)=n-3$, for any pair $\left(v_{0}, v_{i}\right), 1 \leq i \leq n$

$$
d^{G d}\left(v_{0}, v_{1}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{1}\right)}{2}\right\rceil \geq \mathrm{n}+2+\left\lceil\frac{n-3+f\left(v_{1}\right)}{2}\right\rceil \geq n+3
$$

$n-3+f\left(v_{1}\right) \geq 0$, therefore, $f\left(v_{1}\right)=n-2$
For any pair $\left(v_{i}, v_{j}\right) \quad 1 \leq i, j \leq n, i \neq j$

$$
d^{G d}\left(v_{1}, v_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq 4+\left\lceil\frac{n-2+f\left(v_{2}\right)}{2}\right\rceil \geq n+3
$$

$n-2+f\left(v_{2}\right) \geq 2 n-4$ therefore, $f\left(v_{2}\right)=n-1$
$\therefore f\left(v_{i}\right)=n+i-3,0 \leq i \leq n$
Hence, $r m n^{G d}\left(K_{1, n}\right) \leq 2 \mathrm{n}-3, \mathrm{n} \geq 4$
Note. $r m n^{G d}\left(K_{1, n}\right)=\mathrm{n}+1$ if $1 \leq n \leq 3$

Theorem 2.3

The radio mean Gd-distance number of bistar graph $r m n^{G d}\left(B_{n, n}\right) \leq 4 n-2, n \geq 2$

Proof.

Let $\mathrm{V}\left(B_{n, n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\mathrm{n}}, x_{1}, x_{2}, u_{1}, u_{2}, \ldots, u_{\mathrm{n}}\right\}$ be the vertex set and $\mathrm{E}\left(B_{n, n}\right)=\left\{x_{1} u_{i}, x_{2} v_{i,} x_{1} x_{2} ; 1 \leq i \leq n\right\}$ be the edge set
Then, $d^{G d}\left(x_{1}, u_{i}\right)=d^{G d}\left(x_{2}, v_{i}\right)=n+3 ; 1 \leq i \leq n, d^{G d}\left(x_{1}, x_{2}\right)=2 \mathrm{n}+3, d^{G d}\left(u_{i}, v_{j}\right)=5 ; 1 \leq i, j \leq n, i \neq j$,
$d^{G d}\left(u_{i}, u_{j}\right)=d^{G d}\left(v_{i}, v_{j}\right)=4 ; 1 \leq i, j \leq n, i \neq j, d^{G d}\left(x_{1}, v_{i}\right)=d^{G d}\left(x_{2}, u_{i}\right)=n+4 ; 1 \leq i \leq n$
It is clear that $\operatorname{diam}^{G d}\left(B_{n, n}\right)=2 n+3$
Without loss of generality $f\left(x_{1}\right)<f\left(x_{2}\right)<f\left(v_{1}\right)<\ldots<f\left(v_{n}\right)<f\left(u_{1}\right)<\cdots<f\left(u_{n}\right)$
We shall check the radio mean Gd-distance condition
$d^{G d}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}^{G d}(G)=2 n+4$ for every pair of vertices $(\mathrm{u}, \mathrm{v}) ; u \neq v$
Case 1. Fix, $f\left(x_{1}\right)=2 n-3$, For $\left(x_{1}, x_{2}\right)$

$$
d^{G d}\left(x_{1}, x_{2}\right)+\left\lceil\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}\right\rceil \geq 2 n+3+\left\lceil\frac{2 n-3+f\left(x_{2}\right)}{2}\right\rceil \geq 2 n+4
$$

$2 n-3+f\left(x_{2}\right) \geq 0$, therefore $f\left(x_{2}\right)=2 n-2$

For $\left(x_{2}, v_{i}\right) 1 \leq i \leq n$

$$
d^{G d}\left(x_{2}, v_{1}\right)+\left\lceil\frac{f\left(x_{2}\right)+f\left(v_{1}\right)}{2}\right\rceil \geq \mathrm{n}+3+\left\lceil\frac{2 n-2+f\left(v_{1}\right)}{2}\right\rceil \geq 2 n+4
$$

$2 n-2+f\left(v_{1}\right) \geq 2 n$, therefore $f\left(v_{1}\right)=2 n-1$
For non adjacent vertices $\left(v_{i}, v_{j}\right) 1 \leq i, j \leq n, i \neq j$

$$
d^{G d}\left(v_{1}, v_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq 4+\left\lceil\frac{2 n-1+f\left(v_{2}\right)}{2}\right\rceil \geq 2 n+4
$$

$2 n-1+f\left(v_{2}\right) \geq 4 n-2$, therefore $f\left(v_{2}\right)=2 n$
Therefore $f\left(v_{i}\right)=2 n+i-2,1 \leq i \leq n$
Case 2. For $\left(x_{1}, u_{\mathrm{i}}\right) 1 \leq i \leq n$

$$
d^{G d}\left(x_{1}, u_{1}\right)+\left\lceil\frac{f\left(x_{1}\right)+f\left(u_{1}\right)}{2}\right\rceil \geq \mathrm{n}+3+\left\lceil\frac{2 n-3+f\left(u_{1}\right)}{2}\right\rceil \geq 2 n+4
$$

$2 n-3+f\left(u_{1}\right) \geq 2 n$, therefore $f\left(u_{1}\right)=3 n-1$
For non adjacent vertices $\left(u_{i}, u_{j}\right) 1 \leq i, j \leq n, i \neq j$

$$
d^{G d}\left(u_{1}, u_{2}\right)+\left\lceil\frac{f\left(u_{1}\right)+f\left(u_{2}\right)}{2}\right\rceil \geq 4+\left\lceil\frac{3 n-1+f\left(u_{2}\right)}{2}\right\rceil \geq 2 n+4
$$

$3 n-1+f\left(u_{2}\right) \geq 4 n-2$, therefore $f\left(u_{2}\right)=3 n$
$\therefore f\left(u_{i}\right)=3 n+i-2, \quad 1 \leq i \leq n$

$$
\text { Hence } r m n^{G d}\left(B_{n, n}\right) \leq 4 n-2, n \geq 2
$$

*The subdivision of a star $K_{1, n}$ denoted by $\mathrm{S}\left(K_{1, n}\right)$ is a graph obtained from $K_{1, n}$ by inserting a vertex on each edge of $K_{1, n}$

Theorem 2.4

The radio mean Gd-distance number of a subdivision of a star,
$r m n^{G d} S\left(K_{1, n}\right) \leq 3 n-4, n \geq 5$

Proof.

Let $\mathrm{V}\left(\mathrm{S}\left(K_{1, n}\right)\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{\mathrm{n}}, u_{1}, u_{2}, \ldots, u_{\mathrm{n}}\right\}$ be the vertex set, where v_{0} is the central vertex and $\mathrm{E}\left(\mathrm{S}\left(K_{1, n}\right)\right)=\left\{v_{0} u_{i}, v_{i} u_{i} ; 1 \leq i \leq n\right\}$ be the edge set

Then, $d^{G d}\left(v_{0}, v_{i}\right)=d^{G d}\left(v_{0}, u_{i}\right)=n+3 ; 1 \leq i \leq n, d^{G d}\left(v_{i}, v_{i+1}\right)=d^{G d}\left(u_{i}, u_{i+1}\right)=6 ; 1 \leq i \leq n$, $d^{G d}\left(v_{i}, u_{i}\right)=4 ; 1 \leq i \leq n$
It is clear that $\operatorname{diam}^{G d}\left(\mathrm{~S}\left(K_{1, n}\right)\right)=n+3$
Without loss of generality $f\left(v_{0}\right)<f\left(u_{1}\right)<\cdots<f\left(u_{n}\right)<f\left(v_{1}\right)<\cdots<f\left(v_{n}\right)$
We shall check the radio mean Gd-distance condition
$d^{G d}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}^{G d}(G)=n+4$ for every pair of vertices $(\mathrm{u}, \mathrm{v}) ; u \neq v$
Fix $f\left(v_{0}\right)=n-4$, for $\left(v_{0}, u_{\mathrm{i}}\right) 1 \leq i \leq n$

$$
d^{G d}\left(v_{0}, u_{1}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(u_{1}\right)}{2}\right\rceil \geq \mathrm{n}+3+\left\lceil\frac{n-4+f\left(u_{1}\right)}{2}\right\rceil \geq n+4
$$

$n-3+f\left(u_{1}\right) \geq 0$, therefore $f\left(u_{1}\right)=n-3$
For a non adjacent vertices $\left(u_{\mathrm{i}}, u_{\mathrm{i}+1}\right) \quad 1 \leq i \leq n-1$

$$
d^{G d}\left(u_{1}, u_{2}\right)+\left\lceil\frac{f\left(u_{1}\right)+f\left(u_{2}\right)}{2}\right\rceil \geq 6+\left\lceil\frac{n-3+f\left(u_{2}\right)}{2}\right\rceil \geq n+4
$$

$n-3+f\left(u_{2}\right) \geq 2 n-6$, therefore $f\left(u_{2}\right)=n-2$
$\therefore f\left(u_{i}\right)=n+i-4 ; \quad 1 \leq i \leq n$
For any adjacent vertices $\left(u_{\mathrm{i}}, v_{\mathrm{i}}\right) \quad 1 \leq i \leq n$

$$
d^{G d}\left(u_{1}, v_{1}\right)+\left\lceil\frac{f\left(u_{1}\right)+f\left(v_{1}\right)}{2}\right\rceil \geq 4+\left\lceil\frac{n-3+f\left(v_{1}\right)}{2}\right\rceil \geq n+4
$$

$n-3+f\left(v_{1}\right) \geq 2 n-2$, therefore $f\left(v_{1}\right)=2 n-3$
For a non adjacent vertices $\left(v_{\mathrm{i},} v_{\mathrm{i}+1}\right) \quad 1 \leq i \leq n-1$

$$
d^{G d}\left(v_{1}, v_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq 6+\left\lceil\frac{2 n-3+f\left(v_{2}\right)}{2}\right\rceil \geq n+4
$$

$2 n-3+f\left(v_{2}\right) \geq 2 n-6$, therefore $f\left(v_{2}\right)=2 n-2$
$\therefore f\left(v_{i}\right)=2 n+i-4 ; \quad 1 \leq i \leq n$
Hence, $r m n^{G d} S\left(K_{1, n}\right) \leq 3 n-4, n \geq 5$
Note. $r m n^{G d} S\left(K_{1, n}\right) \leq 2 n+1$ if $2 \leq n \leq 4$

Theorem 2.5

The radio mean Gd-distance number of a path $r m n^{G d}\left(P_{n}\right) \leq 2 n-4, n \geq 5$

Proof.

Let $\mathrm{V}\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\mathrm{n}}\right\}$ be the vertex set and $\mathrm{E}\left(P_{n}\right)=\left\{v_{\mathrm{i}} v_{i+1} ; 1 \leq i \leq n-1\right\}$ be the edge set
Then, $d^{G d}\left(v_{1}, v_{n}\right)=d^{G d}\left(v_{2}, v_{n}\right)=n+1, d^{G d}\left(v_{1}, v_{2}\right)=d^{G d}\left(v_{\mathrm{n}-1}, v_{n}\right)=4$,
$d^{G d}\left(v_{i,}, v_{i+1}\right)=5 ; 2 \leq i \leq n-2$
It is clear that $\operatorname{diam}^{G d}\left(P_{n}\right)=n+1$
Without loss of generality $f\left(v_{1}\right)<f\left(v_{2}\right)<\cdots<f\left(v_{n}\right)$
We shall check the radio mean Gd-distance condition
$d^{G d}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}^{G d}(G)=n+2$ for every pair of vertices $(\mathrm{u}, \mathrm{v}) ; u \neq v$
Fix $f\left(v_{1}\right)=n-3$, for $\left(v_{1}, v_{2}\right)$

$$
d^{G d}\left(v_{1}, v_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq 4+\left\lceil\frac{n-3+f\left(v_{2}\right)}{2}\right\rceil \geq n+2
$$

$n-3+f\left(v_{2}\right) \geq 2 n-6$, therefore $f\left(v_{2}\right)=n-2$
If both $\left(v_{i}, v_{j}\right), 2 \leq i, j \leq n-1,|i-j|=1$ are intermediate adjacent vertices

$$
d^{G d}\left(v_{2}, v_{3}\right)+\left\lceil\frac{f\left(v_{2}\right)+f\left(v_{3}\right)}{2}\right\rceil \geq 5+\left\lceil\frac{n-2+f\left(v_{3}\right)}{2}\right\rceil \geq n+2
$$

$n-2+f\left(v_{3}\right) \geq 2 n-8$, therefore $f\left(v_{3}\right)=n-1$
$\therefore f\left(v_{i}\right)=n+i-4,1 \leq i \leq n$
Hence, $r m n^{G d}\left(P_{n}\right) \leq 2 n-4, n \geq 5$
Note. $r m n^{G d}\left(P_{n}\right)=n, 2 \leq n \leq 4$

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs,Addition- Wesley, Redwood City, CA, 1990.
[2] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," Bulletin of the Institute of Combinatories and Its Applications, vol. 33,pp. 77-85, 2001.
[3] G. Chartrand, D. Erwinn, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., 43, 43-57(2005).
[4] C. Fernandaz, A.Flores, M.Tomova, andC.Wyels, " The Radio Number of Gear graphs," arXiv:0809. 2623, September 15, (2008).
[5] J.A. Gallian, A dynamic survey of graph labeling,Electron. J.Combin. 19(2012)"£Ds6.
[6] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497-1514.
[7] F.Harary, Graph Theory, Addition Wesley,New Delhi(1969).
[8] D. Liu, X. Zhu, "Radio number for trees", Discrete Math.308(7)(2008) 1153-1164.
[9] D. Liu,.X.Zhu, Multilevel distance labeling for paths and cycles, SIAM J. Discrete Math. 19(3)(2005) 610-621
[10] V. Maheswari and M. Joice Mabel " Gd- Distance in Graphs", International Journal of Mathematical Archive-9(2), 2018, 1-5 ISSN 2229-5046
[11] T. Nicholas, K. John Bosco, Radio D-distance Number of some graphs,IJESR , vol. 5 Issue 2, Feb. 2017.
[12]T. Nicholas, K. John Bosco, M. Antony, V. Viola, Radio mean D-distance Number of BananaTree, Thorn Star and Cone Graph ,IJARIIT, Vol. 5 Issue 6, Feb.2017, ISSN:2456 - 132X
[13]T. Nicholas, K. John Bosco, M. Antony, V. Viola, On Radio Mean D-distance Number of DegreeSplitting Graphs, IJARSET, Vol. 4 Issue 12, Dec2017, ISSN: 2350-0328.
[14] T. Nicholas, K. John Bosco, V. Viola, On Radio mean D-distance Number family of Snake Graph,IJIRS, Vol. 8 Issue VI, June 2018, ISSN:2319-9725.
[15]T. Nicholas, K. John Bosco, V. Viola, On Radio Mean D-distance Number of Graph Obtained from Graph Operation IJMTT, Vol. 58 Issue 2, June 2018, ISSN: 2231-5373.
[16] T. Nicholas, V. Viola., A Study on Radio Mean Dd- distance number of some basic graphs, International Journal of Applied Engineering Research ISSN 0973-4562 volume 14, number 8, 2019
[17] R. Ponraj, S. Sathish Narayanan and R. Kala, Radio mean labeling of graphs, AKCE International Journal of Graphs and Combinatories 12 (2015) 224-228
[18]R. Ponraj, S. Sathish Narayanan and R. Kala, On Radio mean Number of Some Graphs, International J. Math. Combin. Vol.3(2014), 41-48
[19] Reddy Babu,D., Varma, P.L.N., "D-distance in graphs", Golden Research Thoughts, 2(2013),53-58.
[20] Reddy Babu,D., Varma, P.L.N., "Average D-distance Between Vertices of a graph", ItalianJournal of pure and applied mathematics-N. 33; 2014(293;298).
[21]Reddy Babu,D., Varma, P.L.N., "Average D-distance Between Edges of a graph" Indian Journal of Science and Technology, Vol 8(2), 152-156, January 2015.
[22]M.M. Rivera, M.Tomova, C. Wyels, and A.Yeager, "The Radio Number of $C_{n} C_{n}$, resubmitted to ArsCombinatoria, 2009.

